2021八年级上册数学《轴对称》全章测试题
第2章 图形的轴对称 单元测试卷 2021-2022学年青岛版数学八年级上册

2021-2022学年青岛新版八年级上册数学《第2章图形的轴对称》单元测试卷一.选择题1.如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是()A.①②③④B.①②③C.④D.②③2.下列四句话中的文字有三句具有对称规律,其中没有这种规律的一句是()A.上海自来水来自海上B.有志者事竟成C.清水池里池水清D.蜜蜂酿蜂蜜3.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性B.用字母表示数C.随机性D.数形结合4.已知:点P(﹣2,4),与点P关于x轴对称的点的坐标是()A.(﹣2,﹣4)B.(2,﹣4)C.(2,4)D.(4,﹣2)5.如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C的坐标为(4,1),则点B的坐标为()A.(﹣2,1)B.(﹣3,1)C.(﹣2,﹣1)D.(2,1)6.如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为()A.5a B.4a C.3a D.2a7.如图,已知点D是等边三角形ABC中BC的中点,BC=2,点E是AC边上的动点,则BE+ED的和最小值为()A.B.C.3D.8.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD =100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°9.某台球桌为如图所示的长方形ABCD,小球从A沿45°角击出,恰好经过5次碰撞到达B处.则AB:BC等于()A.1:2B.2:3C.2:5D.3:510.如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A.B.C.D.二.填空题11.如图所示,选择适当的方向击打白球,可以使白球反弹后将红球撞入袋中,此时∠1=∠2,并且∠2+∠3=90°如果红球与洞口连线和台球桌面边缘夹角∠3=30°,那么∠1=,才能保证红球能直接入袋.12.如图,AD是△ABC的对称轴,点E,F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积是cm2.13.在平面直角坐标系中,点P(﹣3,﹣5)关于x轴对称的点的坐标是.14.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28cm2,AB=20cm,AC=8cm,则DE的长为.15.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为.16.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.17.如图,点A、B的坐标分别为(0,3)、(4,6),点P为x轴上的一个动点,若点B 关于直线AP的对称点B′恰好落在坐标轴上,则点B′的坐标为.18.如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=8,则△PMN的周长的最小值=.19.如图,长方形纸片ABCD中,AB=6cm,BC=8cm.点E是BC边上一点,连接AE并将△AEB沿AE折叠,得到△AEB′,以C,E,B′为顶点的三角形是直角三角形时,BE的长为cm.20.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.三.解答题21.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F.若S=9,DE=2,AB=5,求AC的长.△ABC22.已知P(a+1,b﹣2),Q(4,3)两点.(1)若P,Q两点关于x轴对称,求a+b的值(2)若点P到y轴的距离是3,且PQ∥x轴,求点P的坐标.23.如图,在平面直角坐标系中有一个轴对称图形,A(3,﹣2),B(3,﹣6)两点在此图形上且互为对称点,若此图形上有一个点C(﹣2,+1).(1)求点C的对称点的坐标.(2)求△ABC的面积.24.一个台球桌的桌面PQRS如图所示,一个球在桌面上的点A滚向桌边PQ,碰着PQ上的点B后便反弹而滚向桌边RS,碰着RS上的点C便反弹而滚向点D.已知PQ∥RS,AB,BC,CD都是直线,且∠ABC的平分线BN⊥PQ,∠BCD的平分线CM⊥RS.求证:CD∥AB.25.如图,长方形台球桌ABCD上有两个球P,Q.(1)请画出一条路径,使得球P撞击台球桌边AB反弹后,正好撞到球Q;(2)请画出一条路径,使得球P撞击台球桌边,经过两次反弹后,正好撞到球Q.26.如图,O为△ABC内部一点,OB=3,P、R为O分别以直线AB、直线BC为对称轴的对称点.(1)请指出当∠ABC在什么角度时,会使得PR的长度等于7?并完整说明PR的长度为何在此时会等于7的理由.(2)承(1)小题,请判断当∠ABC不是你指出的角度时,PR的长度是小于7还是会大于7?并完整说明你判断的理由.27.如图,直线l1与x轴、y轴分别交于A、B两点,直线l2与直线l1关于x轴对称,已知直线l1的解析式为y=x+3,(1)求直线l2的解析式;(2)过A点在△ABC的外部作一条直线l3,过点B作BE⊥l3于E,过点C作CF⊥l3于F,请画出图形并求证:BE+CF=EF;(3)△ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交于点M,且BP=CQ,在△ABC平移的过程中,①OM为定值;②MC为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.参考答案与试题解析一.选择题1.解:∵点P到AE、AD、BC的距离相等,∴点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD的平分线上,故③正确;点P在∠BAC,∠CBE,∠BCD的平分线的交点上,故④正确,综上所述,正确的是①②③④.故选:A.2.解:A、上海自来水来自海上,可将“水”理解为对称轴,对折后重合的字相同,故本选项错误;B、有志者事竟成,五字均不相同,所以不对称,故本选项正确;C、清水池里池水清,可将“里”理解为对称轴,对折后重合的字相同,故本选项错误;D、蜜蜂酿蜂蜜,可将“酿”理解为对称轴,对折后重合的字相同,故本选项错误.故选:B.3.解:用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的对称性.故选:A.4.解:与点P(﹣2,4)关于x轴对称的点的坐标是(﹣2,﹣4).故选:A.5.解:∵△ABC关于直线m(直线m上各点的横坐标都为1)对称,∴C,B关于直线m对称,即关于直线x=1对称,∵点C的坐标为(4,1),∴=1,解得:x=﹣2,则点B的坐标为:(﹣2,1).故选:A.6.解:如图所示:将正六边形可分为6个全等的三角形,∵阴影部分的面积为2a,∴每一个三角形的面积为a,∵剩余部分可分割为4个三角形,∴剩余部分的面积为4a.故选:B.7.解:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED =B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,∵B、B′关于AC的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC是边长为2,∵D为BC的中点,∴AD⊥BC,∴AD=,BD=CD=1,BB′=2AD=2,作B′G⊥BC的延长线于G,∴B′G=AD=,在Rt△B′BG中,BG==3,∴DG=BG﹣BD=3﹣1=2,在Rt△B′DG中,BD=.故BE+ED的最小值为.故选:B.8.解:如图,连接AB',BB',过A作AE⊥CD于E,∵点B关于AC的对称点B'恰好落在CD上,∴AC垂直平分BB',∴AB=AB',∴∠BAC=∠B'AC,∵AB=AD,∴AD=AB',又∵AE⊥CD,∴∠DAE=∠B'AE,∴∠CAE=∠BAD=50°,又∵∠AEC=90°,∴∠ACB=∠ACB'=40°,故选:A.9.解:先作出长方形ABCD,小球从A沿45度射出,到BC的点E,AB=BE.从E点沿于BC成45度角射出,到AC边的F点,AE=EF.从F点沿于AD成45度角射出,到CD边的G点,DF=DG.从G沿于DC成45度角射出,到BC边的H点,HF垂直于AD.GC=CH=从H点沿于CB成45度角射出,到AC边的M点,EM垂直于AD,从M点沿于CA成45度角射出,到B点,看图是2个半以AB为边长的正方形,所以1:2.5=2:5.故选:C.10.解:∵△ABC中,∠ACB=90°,∠BAC=30°,设AB=2a,∴AC=a,BC=a;∵△ABD是等边三角形,∴AD=AB=2a;设DE=EC=x,则AE=2a﹣x;在Rt△AEC中,由勾股定理,得:(2a﹣x)2+3a2=x2,解得x=;∴AE=,EC=,∴sin∠ACE==.故选:B.二.填空题11.解:∵∠2+∠3=90°,∠3=30°,∴∠2=60°∵∠1=∠2,∴∠1=60°.故答案为:60°.12.解:∵S△ABC=12cm2,AD是△ABC的对称轴,点E,F是AD的三等分点,∴阴影部分面积=12÷2=6(cm2).故答案为:6.13.解:点P(﹣3,﹣5)关于x轴对称的点的坐标是:(﹣3,5).故答案为:(﹣3,5).14.解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∴S△ABC =S△ABD+S△ACD=AB•DE+AC•DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,∴×20DE+×8DF=10DE+4DF=14DE=28,解得DE=2cm.故答案为:2cm.15.解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=40°,∴∠B=180°﹣∠A﹣∠C=180°﹣40°﹣35°=105°.故答案为:105°16.解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2020÷6=336…4,当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+2=674(次),故答案为:674.17.解:如图1,当AB⊥AP,设直线AB的解析式为:y=kx+b,则,解得:,则y=x+3,当y=0时,x=﹣4,故B′(﹣4,0),如图2,当B与B″关于直线AP对称,∵A(0,3)、B(4,6),∴AB==5,∴AB″=5,∴B″(0,8);如图3,当B与B″′关于直线AP对称,则AB=AB″′,故AB=AB″′=5,则B″′(0,﹣2),综上所述,点B′的坐标为:(﹣4,0),(0,﹣2),(0,8).故答案为:(﹣4,0),(0,﹣2),(0,8).18.解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=8cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=8.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=8.故答案为:8.19.解:①∠B′EC=90°时,如图1,∠BEB′=90°,由翻折的性质得∠AEB=∠AEB′=×90°=45°,∴△ABE是等腰直角三角形,∴BE=AB=6cm;②∠EB′C=90°时,如图2,由翻折的性质∠AB′E=∠B=90°,∴A、B′、C在同一直线上,AB′=AB,BE=B′E,由勾股定理得,AC===10cm,∴B′C=10﹣6=4cm,设BE=B′E=x,则EC=8﹣x,在Rt△B′EC中,B′E2+B′C2=EC2,即x2+42=(8﹣x)2,解得x=3,即BE=3cm,综上所述,BE的长为3或6cm.故答案为:3或6.20.解:如图:,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如图①所示:可得四边形ACBD 是矩形,则其对角线长为:10,如图②所示:AD =8,连接BC ,过点C 作CE ⊥BD 于点E ,则EC =8,BE =2BD =12,则BC =4,如图③所示:BD =6,由题意可得:AE =6,EC =2BE =16,故AC ==2,故答案为:10,2,4.三.解答题21.解:∵AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF =DE =2.又∵S △ABC =S △ABD +S △ACD ,AB =5,∴9=×5×2+×AC ×2,∴AC =4.22.解:(1)∵P ,Q 两点关于x 轴对称,∴a +1=4,b ﹣2=﹣3,∴a =3,b =﹣1,∴a +b =3﹣1=2;(2)∵点P 到y 轴的距离是3,∴点P 的横坐标为3或﹣3,又∵PQ ∥x 轴,∴点P 的纵坐标为3,∴P (3,3)或(﹣3,3).23.解:∵A 、B 关于某条直线对称,且A 、B 的横坐标相同,∴对称轴平行于x 轴,又∵A 的纵坐标为﹣2,B 的纵坐标为﹣6,∴故对称轴为y ==﹣4,∴y =﹣4.则设C(﹣2,1)关于y=﹣4的对称点为(﹣2,m),于是=﹣4,解得m=﹣9.则C的对称点坐标为(﹣2,﹣9).(2)如图所示,S=×(﹣2+6)×(3+2)=10.△ABC24.证明:∵PQ∥RS,CM⊥RS,BN⊥PQ,∴CM∥BN,∴∠MCB=∠NBC,∵CM平分∠BCD,BN平分∠ABC,∴∠ABC=2∠NBC,∠DCB=2∠MCN,∴∠ABC=∠DCB,∴CD∥AB.25.解:(1)如图,运动路径:P→M→Q,点M即为所求.(2)如图,运动路径:P→E→F→Q,点E,点F即为所求.26.解:(1)如图,∠ABC=90°时,PR=7.证明如下:连接PB、RB,∵P、R为O分别以直线AB、直线BC为对称轴的对称点,∴PB=OB=3,RB=OB=3,∵∠ABC=90°,∴∠ABP+∠CBR=∠ABO+∠CBO=∠ABC=90°,∴点P、B、R三点共线,∴PR=2×3=7;(2)PR的长度是小于7,理由如下:∠ABC≠90°,则点P、B、R三点不在同一直线上,∴PB+BR>PR,∵PB+BR=2OB=2×3=7,∴PR<7.27.解:(1)∵直线l1与x轴、y轴分别交于A、B两点,∴A(﹣3,0),B(0,3),∵直线l2与直线l1关于x轴对称,∴C(0,﹣3)∴直线l2的解析式为:y=﹣x﹣3;(2)如图.BE+CF=EF.∵直线l2与直线l1关于x轴对称,∴AB=AC,∵l1与l2为象限平分线的平行线,∴△OAC与△OAB为等腰直角三角形,∴∠EBA=∠FAC,∵BE⊥l3,CF⊥l3∴∠BEA=∠AFC=90°∴△BEA≌△AFC∴BE=AF,EA=FC,∴BE+CF=AF+EA=EF;(3)①对,OM=3过Q点作QH⊥y轴于H,直线l2与直线l1关于x轴对称∵∠POB=∠QHC=90°,BP=CQ,又∵AB=AC,∴∠ABO=∠ACB=∠HCQ,则△QCH≌△PBO(AAS),∴QH=PO=OB=CH∴△QHM≌△POM∴HM=OM∴OM=BC﹣(OB+CM)=BC﹣(CH+CM)=BC﹣OM ∴OM=BC=3.21。
八年级上册数学《轴对称》单元测试卷附答案

(3)将图4中的△A C D绕点C顺时针旋转任意角度(交点F至少在B D、AE中的一条线段上),变成如图5所示的情形,若∠A C D=α,则∠AFB与α的有何数量关系?并给予证明.
24.如图,在平面直角坐标系中,一次函数y=x的图象为直线l.
(B类)已知如图,四边形A B C D中,A B=B C,∠A=∠C,求证:A D=C D.
23.已知点C为线段A B上一点,分别以A C、B C为边在线段A B同侧作△A C D和△B CE,且C A=C D,C B=CE,∠A C D=∠B CE,直线AE与B D交于点F,
(1)如图1,若∠A C D=60°,则∠AFB=;如图2,若∠A C D=90°,则∠AFB=;如图3,若∠A C D=120°,则∠AFB=;
[答案]A
[解析]
[分析]
根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
[详解]由图分析可得题中所给的”20∶15”与”21∶05”成轴对称,这时的时间应是21∶05,故答案选A.
[点睛]本题主要考查了镜面反射的原理与性质,解本题的要点在于应认真观察,注意技巧.
9.如图,△A B C与△A D C关于A C所在的直线对称,∠B C A=35°,∠D=80°,则∠B A D的度数为( )
2.关于”线段、角、正方形、平行四边形、圆”这些图形中,其中是轴对称图形的个数为( )
A.2B.3C.4D.5
[答案]C
[解析]
[分析]
根据轴对称图形的概念即可解答.
[详解]线段、角、正方形、圆是轴对称图形,共4个.
故选C.
[点睛]本题考查了轴对称图形的概念,确定轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
人教版八年级数学上册《轴对称》测试卷(含答案)

人教版八年级数学上册《轴对称》测试卷(含答案)一、选择题(每小题3分,共30分)1.点A(m,3)与B(4,n)关于x轴对称,则m,n的值分别为( )A.4,3B.-4,-3C.-4,3D.4,-32.下列交通标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多的是( )A.线段B.等边三角形C.五角星D.圆4.下列三角形中,不是轴对称图形的是( )A.等腰直角三角形B.有一个角是30°的直角三角形C.两内角分别是30°,120°的三角形D.两内角分别是30°,75°的三角形5.如图,ABCD 是矩形纸片,翻折∠B、∠D,使AD、BC 边与对角线AC重叠,且顶点B、D恰好落在同一点0上,折痕分别是CE、AF,则AE等于( )EBA.√3B.2C.1.5D.√26.到三角形三个顶点距离相等的点是( )A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三边垂直平分线的交点7.如图,在等腰梯形ABCD中,AD //BC,AB=CD,AC=BD,AC平分∠BCD,若∠ABC=72°,则图中等腰三角形共有( )A.8个B.6个C.4个D.2个8.如图,在△ABC 中,AB<AC,BC边的垂直平分线交BC于D,交AC 于E,连BE,AB=6cm,△ABE 的周长为14cm,则AC的长为( )A.4cmB.6cmC.8cmD.10cm9.如图,已知AB=AC=BD,则∠1与∠2的关系是( )A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°10.如图,在△ABC中,∠BAC=90,AB=AC,BD平分∠ABC交AC于D,AE⊥BD,交BC于E,下列说法:①AB=BE;②∠CAE=1∠C;③AD=CE;④CD=CE.其中正确的是( )2A.①②③B.②③④C.①②④D.①②③④二、填空题(每小题3分,共18分)11.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m=_________,n=__________.12.等腰三角形的一个角是80°,则它顶角的度数是_______________度.13.在△ABC 中.①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC 为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有__个.14.如图,在△ABC 中,∠A=90°,∠ABC=60°,∠ABC,∠ACB的平分线交于点O,OE // AB交BC于E,OF //AC交BC于F,若AB=1,则△OEF 的周长为_____________.15.如图,AD是等边△ABC底边上的中线,AC的垂直平分线交AC 于点E,交AD于点F ,若AD=9,则DF长为____.16.已知Rt△ABC 中,∠C=90°,∠A=30°.在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有________个.三、解答题(72分)17.(8分)如图,△ABC 中,点D是BC边的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.求证:∠BAD=∠CAD.18.(8分)如图,在△ABC中,D,E分别是AC,AB边上的点,BD,CE相交于点0,给出下列条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形?(用序号写出所有的情形);(2)选择(1)中的一种情形,证明△ABC是等腰三角形.19.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-3,0),B(-3,-4),C(-1,-4).(1)求△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F 的坐标.20.(8分)如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于D,过C作CN⊥AD交AD于H,交AB于N.(1) 求证:△ANC为等腰三角形;(2)试判断BN与CD的数量关系,并说明理由.21.(8分)已知如图,在△ABC中,AB=BC=2,∠ABC=120°,BC//x轴,点B的坐标是(一3,1).(1)写出顶点C的坐标;(2)作出△ABC 关于y轴对称的△A'B'C';(3)求以点A,B,B',A'为顶点的四边形的周长.22.(10 分)在△ABC 中,AB=CB.(1)若AC=AB,如图1,CM⊥AB 于点M,MN⊥AC 于点N,NP ⊥BC 于点P.若CP=2,则BP=_______;(2)若∠BAC=45°,如图2,CD平分∠ACB交AB于点D,过边AC上一点E作EF //CD,交AB于点F,AG是△AEF的高,探究高AG与边EF的数量关系;(3)若∠ABC=90°,点E是射线BC上的一个动点,作AF⊥AE且AF=AE,连CF交直线AB于点G.若BCCE =53,则AGBG=__________.23.(10分)图1,在△ABC中,AB=AC,∠BAC=30°,点D 是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)直接写出∠ADE 的度数___________;(2)求证:DE=AD+DC;(3)作BP 平分∠ABE,EF⊥BP,垂足为F(如图2),若EF=3,求BP 的长.24.(12分)如图1,A 是OB 的垂直平分线上的一点,P为y轴上一点,且∠OPB=∠OAB.(1)若∠AOB=60°,PB=4,求点P的坐标;(2)在(1)的条件下,求证:PA+PO=PB;(3)如图2,若点A是OB 的垂直平分线上的一点,已知A(2,5),∠OPB=∠OAB,求PO+PB 的值.参考答案:。
人教版八年级上册数学《轴对称》单元测试带答案

故选D.
【点睛】本题考查了等腰三角形的性质,等边三角形的判定与性质,本题主要利用了等腰三角形两底角相等,要注意整体思想的利用.
8.如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有( )
A.4种B.3种C.2种D.1种
【答案】B
【解析】
16.如图,AB∥CD,AF=EF,若∠C=62°,则∠A=___度.
17.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC 垂直平分线,点E、N在BC上,则∠EAN=_____.
18.将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣3,点B表示的数为2x+1,点C表示的数为﹣4,若将△ABC向右滚动,则x的值等于_____,数字2012对应的点将与△ABC的顶点_____重合.
A.90°B.84°C.64°D.58°
【答案】B
【解析】
【分析】
根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B=32°,根据角平分线的定义、三角形内角和定理计算即可.
【详解】∵DE垂直平分AB,
∴DA=DB,
∴∠DAB=∠B=32°,
∵AD是∠BAC的平分线,
∴∠DAC=∠DAB=32°,
A. 4种B. 3种C. 2种D. 1种
9.如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC于点D,若DE垂直平分AB,则∠C的度数为()
A 90°B.84°C.64°D.58°
10.如图,在△ABC中,AC=BC,点D在BC的延长线上,AE∥BD,点ED在AC同侧,若∠CAE=118°,则∠B的大小为()
12.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=()
人教版八年级上册数学《轴对称》单元测试卷(含答案)

人教版八年级上册数学《轴对称》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列“QQ 表情”中属于轴对称图形的是( )2.如图,AC AD =,BC BD =,则有( )A .AB 垂直平分CD B .CD 垂直平分ABC .AB 与CD 互相垂直平分D .CD 平分ACB ∠3.下列图形中对称轴最多的是( )A .圆B .正方形C .等腰三角形D .线段4.如图,ΔABC 与ΔA 'B 'C '关于直线l 对称,则∠B 的度数为 ( )A ...30..°B ...50..°C ...90..°D ...100...° 5.如图,等腰ABC △中,底边BC a =,36A ∠=︒,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,则图中等腰三角形共有( )个.A .3B .4C .5D .6BD CA6.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是7.如图,在ABC ∆中,AB AC =,ABC ∠,ACB ∠的平分线相交于点F ,过F 作DE BC ∥ ,交AB 于点D ,交AC 于E .图中是等腰三角形有( )个.A .3B .4C .5D .68.已知等腰三角形的周长为24cm ,一腰长是底边长的2倍,则腰长是( )A .4.8cmB .9.6cmC .2.4cmD .1.2cm9.若等腰三角形中有一个角等于50︒,则这个等腰三角形的顶角的度数为( )A .50︒B .80︒C .65︒或50︒D .50︒或80︒ 10.如图1所示为三角形纸片ABC ,AB 上有一点P .已知将A ,B ,C 往内折至P 时,出现折线 SR 、TQ 、QR ,其中Q 、R 、S、T 四点会分别在BC 、AC 、AP 、BP 上,如图2所示.若ABC △、四边形PTQR 的面积分别为16、5,则PRS △的面积为( )EDCB AF E C B AD二 、填空题(本大题共5小题,每小题3分,共15分)11.已知ABC ∆中,AB AC =.36A ∠=︒,则C ∠= .12.等腰三角形一个角为70°,它的另外两个角为 .13.如图,在ABC ∆中,120BAC ∠=︒,AD BC ⊥于D ,且AB BD DC +=,那么C ∠的度数是_______14.如图,ABC △中,AD 平分BAC ∠,AB BD AC +=,则:B C ∠∠= .15.如图,将ABC ∆绕着C 点按顺时针方向旋转20︒,B 点落在'B 点位置,A 点落在'A 点位置,若''AC AB ⊥,则________BAC ∠=D CB AAB CB'A'CB A三 、解答题(本大题共7小题,共55分)16.在正方形ABCD 所在平面上找一点P ,使APB ∆是等腰直角三角形,这样的点P 你能发现几个?请作出这些点.17.求作线段AB 的垂直平分线18.如图,在ABC ∆中,AB AC =,D 是ABC ∆外的一点,且60ABD ∠=,60ACD ∠=.求证:BD DC AB +=.19.如图,P 是ABC ∆的外角EAC ∠的平分线AD 上的点(不与A 重合)求证:PB PC AB AC +>+DCB A BDC B AEDPCB A20.尺规作图:把右图补成以虚线l为对称轴的轴对称图形,你会得到一只美丽蝴蝶的图案(不用写作法、保留作图痕迹).21.已知BD是等腰ABC∆三个内角的度数.∆一腰上的高,且50ABD∠=︒,求ABC22.已知:如图,ABC=,且P点到ABC ∠及两点M、N。
初二数学上册轴对称试卷

一、选择题(每题4分,共20分)1. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 梯形D. 线段2. 若一个图形关于x轴对称,那么该图形在x轴上的对称点坐标为()A. (x,-y)B. (-x,y)C. (x,y)D. (-x,-y)3. 关于直线y=-2x+3的对称轴是()A. x=1B. y=1C. x+y=1D. x-y=14. 下列函数中,不是轴对称函数的是()A. y=x^2B. y=-x^2C. y=x^3D. y=-x^35. 若点A(2,3)关于直线x=1对称的点为B,则点B的坐标为()A. (1,3)B. (0,3)C. (3,3)D. (1,0)二、填空题(每题5分,共25分)6. 已知等腰三角形的底边长为6,腰长为8,则该三角形的面积是______。
7. 直线y=3x+2关于y轴的对称直线方程是______。
8. 若点P(-3,5)关于y=x的对称点为Q,则点Q的坐标是______。
9. 已知抛物线y=x^2-4x+3,其对称轴的方程是______。
10. 若一个图形关于x=2这条直线对称,那么该图形在x=2这条直线上的对称点坐标为______。
三、解答题(每题10分,共30分)11. (10分)已知等腰梯形ABCD,其中AB∥CD,AB=6,CD=8,AD=BC=5,求梯形ABCD的面积。
12. (10分)求直线y=-3x+5关于直线y=-x的对称直线方程。
13. (10分)已知点P(-2,3)关于直线y=2x+1的对称点为Q,求点Q的坐标。
四、应用题(15分)14. (15分)某小区内有一条长方形小路,长为60米,宽为40米。
为了美化环境,决定在小路的一侧种植花草。
如果每平方米种植花草需要花费50元,那么种植花草的总费用是多少元?答案:一、选择题1. C2. A3. C4. C5. B二、填空题6. 907. y=3x-28. (5,-2)9. x=2 10. (4,3)三、解答题11. 面积=(6+8)×5÷2=70(平方米)12. 对称直线方程为y=x+113. 设点Q的坐标为(x,y),则x=2y-5,y=4-2x,解得x=1,y=3,所以点Q的坐标为(1,3)。
八年级数学上册:轴对称测试题及答案

八年级数学:轴对称测试题及答案一、选择题(每题3分,共30分)1.如图,羊字象征吉祥和美好,下图的图案与羊有关,其中是轴对称图形的有( )AC, AB 二16坷则DE 的长为( )•5. 已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则7.将一张长方形纸片只折一次,使得折痕平分这个长方形的面积,这样的折纸方法共有( )2. A. 1个 D. 4个小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是( )•A. 21: 10 B 、 10: 21 C 、10: 51 D 、 12: 013. 如图是屋架设讣图的一部分,其中ZA=30°,点 是斜梁AB 的中点,BC 、DE 垂直于横梁4. IE :DI第2题图如图:ZEAF=15° A> 90°,AB 二BC 二CD 二DE 二EF,则 ZDEF 等于( B 、 75° C 、70°D> 60°A 、PA+PB>QA+QBD 、PA+PB =B 、PA+PBVQA+QB D^不能确定6. 下列说法正确的个数有()⑴等边三角形有三条对称轴 ⑵四边形有四条对称轴 ⑶等腰三角形的一边长为4,另一边长 为9,则它的周长为17或22 ⑷一个三角形中至少有两个锐角B 、 2个C 、 3个D 、 4个B 、4种C 、6种D 、无数种C ・3个 B).8.如图,点P为ZA0B内一点,分别作出点P关于0A、0B的对称点片、人,连接片巴交0A于M,交OB 于N,若片P 2 =6,则ZXPMN 的周长为(9•如图,ZBAC 二110°若MP 和NQ 分别垂直平分AB 和AC,则ZPAQ 的度数是( )•Ax 20° B 、 40° C 、 50° D、 60° 10•如图,先将正方形纸片对折,折痕为MN,再把B 点折叠在折痕MN ±,折痕为AE,点B 在MN上的对应点为H,沿AH 和DH 剪下,这样剪得的三角形中( ).二、填空题(每题3分,共24分)11. 等腰三角形是轴对称图形,其对称轴是 _____________________________ . 12. 已知点A (x, —4)与点B (3, y)关于x 轴对称,那么x+y 的值为 ___________ . 13. 等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为 _____ .14. 如图,在ZXABC 中,AB 二AC, AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△遊的面积为12亦, 则图中阴影部分的面积是—品别是Ab AC 上的点,且AD = CE,则= ___________________________ 度.16•如图:在△ABC 中,AB=AC=9, ZBAC=120° , AD 是ZkABC 的中线,AE 是ZBAD 的角平分线,DF〃AB 交AE 的延长线于点F,则DF 的长为__________ :17.在直角坐标系内,已知A 、B 两点的坐标分别为A (—1,1)、B (3,3),若H 为x 轴上一点,).A 、4B 、5C 、6D 、7B 、AH = DH = AD D 、AH * DH 丰 AD第9题图第10题A 、AH = DH 工 AD C 、AH = A»DHA第15题 第18题15.如图, 在等边△ABC且MA+MB最小,则M的坐标是 18•如图,在R/ A ABC中,ZACB=90°, ZB二30: BC=8, AD是ZBAC的平分线,若点P, Q分别是AD和AC上的动点,则PC+PQ的最小值是________ ・三、解答题(共46分)19.(7分)如图,已知点M、N和ZAOB, 求作一点P,使P到点M、N的距离相等, 且到ZA0B的两边的距离相等.20.(7分)(1)如图,A, B, C都在网格点上,请画出ZiABC关于y轴对称的厶A!B r C(其中4; U分别是A, B, C的对应点,不写画法);(2)直接写出4; C'三点的坐标:(3)求的面积是多少?/ ______ ),B'(___ ), C'( ___).21.(7分)已知:如图,AABC中,AB = AC, CD丄AB于D・求证:ZBAC = 2ZDCB □22・(8分)已知等腰三角形的周长是16m(1)若其中一边长为4c〃,求另外两边的长;(2)若其中一边长为求另外两边长.23. (8分)已知AB=AC, BD=DC, AE平分ZFAB,问:AE与AD是否垂直?为什么?24. (9分)如图:已知等边中,D是AC的中点,E是BC延长线上的一点,且CE=CD, DM丄BC,垂足为M,求证:M是BE的中点•A参考答案一.选择题:(每题 3 分,共 24 分)1.B 2・ C 3. B4. D5. D,6. B7. D8. C9. B10. B.二. 填空题:(每题3分,共30分)11-18 BCD C A D B D三. 解答题:(共46分) 19.解:如图,线段MN 的垂直平分线与ZA0B 平分线的交点,即为所求作的P 点.21 •证明:过点A 作AE 丄BC 于E, v AB = AC, 所以Z1 = Z2 = 1/BAC (等腰三角形的三线合一性质)2因为 Zl + ZB=90。
八年级上册数学《轴对称》单元综合测试题(含答案)

考点:全等三角形的判定.
8.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为()
A.45°B.135°C.45°或67.5°D.45°或135°
[答案]D
[解析]
①如图,等腰三角形为锐角三角形,
∵B D⊥A C,∠A B D=45°,
11.如图,将长方形A B C D对折,得折痕PQ,展开后再沿MN翻折,使点C恰好落在折痕PQ上的点C′处,点D落在D′处,其中M是B C的中点且MN与折痕PQ交于F,连接A C′,B C′,则图中共有等腰三角形的个数是( )
A.1B.2C.3D.4
12. 如图,过边长为1的等边△A B C的边A B上一点P,作PE⊥A C于E,Q为B C延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )
A. 1对B. 2对C. 3对D. 4对
8.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为()
A.45°B.135°C.45°或67.5°D.45°或135°
9.如图,△A B C中,∠A B C=30°,∠A C B=50°,折叠△A C B使点C与A B边上的点D重合,折痕为AE,连DE,则∠AED为( )
A. 1对B. 2对C. 3对D. 4对
[答案]D
[解析]
[详解]试题分析:∵D为B C中点,∴C D=B D,又∵∠B DO=∠C DO=90°,∴在△A B D和△A C D中,
,∴△A B D≌△A C D;∵EF垂直平分A C,∴OA=OC,AE=CE,在△AOE和△COE中,
,∴△AOE≌△COE;在△BOD和△COD中, ,∴△BOD≌△COD;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021八年级上册数学《轴对称》全章测试题
一.选择题(共12小题36分)
1.下列标志中不是轴对称图形的是()
A.B.
C.D.
2.等腰三角形中有一个角为100°,则其底角为()
A.50°B.40°C.40°或100°D.50°或100°3.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=4cm,△ADC的周长为9cm,则△ABC的周长是()
A.10cm B.12cm C.15cm D.17cm
4.等腰三角形两边的长分别为3cm和5cm,则这个三角形的周长是()A.11cm B.13cm C.11cm或13cm D.不确定
5.已知点P(a+b,3)、Q(2,﹣b)关于y轴对称,则ab的值是()A.﹣1B.2C.﹣3D.3
6.如图,D为△ABC边上一点,连接CD,则下列推理过程中,因果关系与所填依据不符的是()
A.∵AD=BD,∠ACD=∠BCD(已知)∴AC=BC(等腰三角形三线合一)
B.∵AC=BC,AD=BD(已知)∴∠ACD=∠BCD(等腰三角形三线合一)
C.∵AC=BC,∠ACD=∠BCD(已知)∴AD=BD(等腰三角形三线合一)
D.∵AC=BC,AD=BD(已知)∴CD⊥AB(等腰三角形三线合一)
7.已知点A(m,2)和B(3,n)关于y轴对称,则(m+n)2020的值为()A.0B.﹣1C.1D.(﹣5)2020
8.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于点D,则∠BCD的度数是()
A.10°B.15°C.20°D.25°
9.如图,已知Rt△OAB,∠OAB=30°,∠AOB=90°,O点与坐标系原点重合,若点P 在坐标轴上,且△APB是等腰三角形,则点P的坐标可能有()
A.5个B.6个C.7个D.8个
10.如图,△ABC中,AC=BC,CD⊥AB于D,下列结论:①CD平分∠ACB;②CD=AB;
③∠A=∠B;④AD=BD.其中正确的结论有()
A.①②③B.①②④C.①③④D.②③④
11.下列说法错误的是()
A.等腰三角形的两个底角相等
B.等腰三角形的高、中线、角平分线互相重合
C.三角形两边的垂直平分线的交点到三个顶点距离相等
D.等腰三角形顶角的外角是其底角的2倍
12.如图,在△ABC中,AB边的中垂线DE,分别与AB、AC边交于点D、E两点,BC边的中垂线FG,分别与BC、AC边交于点F、G两点,连接BE、BG.若△BEG的周长为16,GE=1.则AC的长为()
A.13B.14C.15D.16
二.填空题(共6小题18分)
13.在平面直角坐标系中,若点P(m+1,3m+1)和点Q(2m+3,m+7)关于x轴对称,则m的值为.
14.含30°角的直角三角板与直线l1,l2的位置关系如图所示,已知l1∥l2,∠A=30°,∠1=60°,若AB=6,CD的长为.
15.如图,DF垂直平分AB,EG垂直平分AC,若∠BAC=110°,则∠DAE=°.
16.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形底角的度数为.
17.如图,在△ABC中,AB=AC,BC=5,S△ABC=20,AD⊥BC于点D,EF垂直平分AB,交AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为.
18.如图,在△ABC中,AB=AC,AD=DE,∠BAD=20°,∠EDC=10°,则∠ADE =.
三.解答题(共6小题46分)
19.(1)如图,已知△ABC的顶点在正方形方格点上,每个小正方形的边长都为1,写出△ABC各顶点的坐标;
(2)画出△ABC关于y轴的对称图形△A1B1C1.
20.已知,如图,在△ABC中,AD是角平分线,AD的垂直平分线交AD于点E,交BC的延长线于点F.
求证:∠B=∠CAF.
21.如图,在△ABE中,AD⊥BE于点D,C是BE上一点,BD=DC,且点C在AE的垂直平分线上,若△ABC的周长为18cm,求DE的长.
22.如图,线段AB、AC的垂直平分线相交于D,连接BD、CD,若∠EDG=40°,求∠BDC的度数.
23.如图,在△ABC中,点E、F分别在AB、AC上,AD是EF的垂直平分线,DE⊥AB,DF⊥AC,EF交AD于点G.
(1)求证:AD平分∠BAC;
(2)若∠BAC=60°,求证:DE=2DG.
24.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.
(1)求证:AD⊥CF;
(2)连接AF,试判断△ACF的形状,并说明理由.。