苏教版八年级上册轴对称图形知识点
数学八年级苏科版(上册)第二章轴对称图形电子课件

苏科八年级 上册
【探究活动2】 观察下面图形,它们有什么共同特点?
苏科八年级 上册
【探究活动2】
把一个图形沿一条直线折叠,如果直 线两旁的部分能互相重合,那么这个图形叫 _轴__对__称__图__形___._
苏科八年级 上册
【探究活动2】
联系实际,你能举出一个轴对称图形的 实例吗?
你能正确地完成课本P41页第1题的练习吗?
l
l
AO ●
A′
●
●
苏科八年级 上册
l
12
A●
o
● A′
∵ 把纸沿折痕 l 折叠时,点A、A′重合,
∴ 线段OA、OA′重合, ∴ O是AA′的中点. ∵ ∠1=∠2 且 ∠1+∠2=180°, ∴ ∠1=∠2=90°. ∴ l 垂直且平分AA′.
苏科八年级 上册
【归纳概括】
垂直并且平分一条线段的直线,叫做这条线 段的垂直平分线.
苏科八年级 上册
【归纳总结】
问题1: 根据课本图形2-1和2-4进行比较,轴对 称与轴对称图形之间有什么区别吗?
苏科八年级 上册
【归纳总结】
问题2: 如果把一个轴对称图形沿对称轴分成两 个图形,那么这两个图形成轴对称吗?如果把两个 成轴对称的图形看成一个整体,它是一个轴对称图 形吗?
苏科八年级 上册 【归纳总结】
【活动四】 小明取一张纸,用小针在纸上扎出“4”,然后
将纸放在镜子前. ((11))图你中能两画个出“镜4”子有所什在么直关线系l的?位置吗?
方方法法((21))
l
●A
E●
C●
● D H●
●F
●B
G●
苏科八年级 上册
(2)图中点A、B、C、D的对称点分
初二知识点总结苏教版

初二知识点总结苏教版
轴对称图形:这一章主要介绍了轴对称图形的定义和性质,包括轴对称、中心对称等概念,以及对称轴和对称中心的判定方法。
勾股定理与平方根:
勾股定理:直角三角形两直角边的平方和等于斜边的平方。
同时,也介绍了勾股定理的逆定理,即如果一个三角形的三边满足勾股定理的条件,那么这个三角形是直角三角形。
平方根与实数:学习了平方根的概念和性质,包括算术平方根和负数的平方根(即虚数单位i)。
同时,也涉及了实数的大小比较和实数的运算。
三角形全等:
全等三角形的定义与性质:能够完全重合的两个三角形称为全等三角形。
全等三角形的对应边和对应角相等,周长和面积也相等。
全等三角形的判定条件:如SAS、ASA、AAS、SSS等,这些是证明两个三角形全等的重要依据。
分式:
分式的定义:如果A和B表示两个整式,并且B中含有字母,那么代数式A/B称为分式。
分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
分式的约分与最简分式:与分数的约分类似,根据整式的性质将分式的分子和分母分别除以它们的公因式,得到最简分式。
此外,初二数学还可能涉及其他内容,如一次函数、二元一次方程组等知识点。
请注意,这只是一个大致的总结,具体的教材内容可能会因版本和地区而有所不同。
因
此,建议学生以实际使用的教材为准,结合老师的讲解和课后练习来全面理解和掌握这些知识点。
除了数学,初二还涉及其他学科如语文、英语、物理、化学、生物、历史、地理和政治等,每个学科都有其独特的知识点和学习方法。
学生应该根据自己的学习情况和兴趣,合理安排学习计划,全面提升自己的学科素养。
八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结
八年级上册数学轴对称的知识点总结如下:
1. 轴对称图形:如果一个图形可以折叠成两半,使得两半完全重合在一起,则这个图形是轴对称的。
轴对称图形具有轴对称轴,也称为镜像轴。
2. 轴对称图形的性质:
- 图形的每个点关于轴对称轴对应有另一个点。
- 图形的每一对对称点与轴对称轴的距离相等。
- 图形的任意两点关于轴对称轴的连线垂直于轴对称轴。
3. 轴对称图形的判断方法:
- 观察图形是否可以折叠成两半,使得两半完全重合。
- 观察图形是否和它自己的镜像一样。
4. 轴对称图形的绘制方法:
- 给出轴对称轴,沿着轴对称轴将图形折叠。
- 给定部分图形的对称点,通过连接对称点来绘制完整的轴对称图形。
5. 轴对称图形的性质的应用:
- 可以通过找到轴对称图形的对称点来绘制完整的图形。
- 可以通过轴对称图形的性质来解决有关对称点的问题,如求解距离、面积等。
这些都是八年级上册数学轴对称的知识点的总结,希望对你有所帮助!。
苏教版八年级上册数学[轴对称与轴对称图形--知识点整理及重点题型梳理](基础)
](https://img.taocdn.com/s3/m/1c42498c69dc5022aaea00f1.png)
苏教版八年级上册数学重难点突破知识点梳理及重点题型巩固练习轴对称与轴对称图形--知识讲解(基础)【学习目标】1.通过具体实例了解两个图形成轴对称的概念,能找出对称轴和对称点.2.了解两个图形关于某直线成轴对称和轴对称图形的联系与区别,理解图形成轴对称的性质,会画一些简单的关于某直线对称的图形.3.欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的应用和文化价值.4. 理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及判定,会画已知线段的垂直平分线,能运用线段的垂直平分线的性质解决简单的数学问题及实际问题.5.通过学习,体验数学的对称美,激发学习数学的兴趣.【要点梳理】要点一、轴对称与轴对称图形1.轴对称的定义把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴. 折叠后重合的点是对应点,也叫做对称点.要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称图形的定义把一个图形沿着某直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形,这条直线就是对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.3.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.要点二、轴对称的性质轴对称的性质:成轴对称的两个图形中,对应点的连被对称轴垂直平分;成轴对称的两个图形的任何对应部分也成轴对称;成轴对称的两个图形全等.要点三、线段的垂直平分线定义:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.【典型例题】类型一、判断轴对称图形1、(2016•邵阳)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【思路点拨】我们将图中的图形分别沿着某条直线对折,看看图形的两边能否重合,若重合则是轴对称图形,否则就不是.【答案】D;【解析】轴对称图形即能找到对称轴,使对称轴两边的图形重合.【总结升华】找对称轴要注意从不同的角度去观察,做到不重复、不遗漏.举一反三:【变式】下列图形中,对称轴最少的对称图形是 ( )【答案】A;提示:A一条对称轴,B四条对称轴,C五条对称轴,D三条对称轴.类型二、轴对称的应用2、将一个正方形纸片依次按图,a b的方式对折,然后沿图c中的虚线裁剪,成图d样式,将纸展开铺平,所得到的图形是图中的()【答案】D;【解析】【总结升华】只需要根据对称轴补全图形就找能到答案.举一反三:【变式】将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()【答案】A;3、(2015春·启东市校级月考)如图,点P在∠AOB内,M、N分别是点P关于AO、BO 的对称点,MN分别交AO,BO于点E、F,若△PEF的周长等于20cm,求MN的长.【思路点拨】根据轴对称的性质可得ME=PE,NF=PF,然后求出MN=△PEF的周长.【答案与解析】解:∵M、N分别是点P关于AO、BO的对称点,∴ME=PE,NF=PF,∴MN=ME+EF+FN=PE+EF+PF=△PEF的周长,∵△PEF的周长等于20cm,∴MN=20cm.【总结升华】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.举一反三:【变式1】如图,△ABC中,AB=BC,△ABC沿DE折叠后,点A落在BC边上的A'处,若点D为AB边的中点,∠A=70°,求∠BD A'的度数.【答案】100°;∵AB =BC ,∴∠A =∠C =70°,∠B =40°又∵ΔABC 沿DE 折叠后,点A 落在BC 边上的A '处,点D 为AB 边的中点, ∴BD =D A ',∠B =∠D A 'B =40°,∴∠BD A '=180°-40°-40°=100°.【变式2】将矩形ABCD 沿AE 折叠,得到如图所示图形. 若'CED ∠=56°,则∠AED 的大小是_______.【答案】62°;类型三、轴对称的作图4、如图,△ABC 和△'''A B C 关于直线MN 对称,△'''A B C 和△''''''A B C 关于直线EF 对称.(1)画出直线EF ;(2)直线MN 与EF 相交于点O ,试探究∠''BOB 与直线MN 、EF 所夹锐角α之间的数量关系.【答案与解析】(1)如图;(2)∠''BOB =2α;(2)∵△ABC 和△'''A B C 关于直线MN 对称,△'''A B C 和△''''''A B C 关于直线EF 对称.∴∠BOM =∠'B OM ,∠'B OE =∠''B OE ,∵∠'B OM +∠'B OE =α∴∠''BOB =2α【总结升华】在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上. 举一反三:【变式】(2015· 聊城)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(﹣3,﹣1).(1)将△ABC 沿y 轴正方向平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1坐标;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.【答案】解:(1)如图所示:△A 1B 1C 1,即为所求;点B 1坐标为:(﹣2,﹣1);(2)如图所示:△A 2B 2C 2,即为所求,点C 2的坐标为:(1,1).。
苏教版八年级第一章轴对称图形

第一章轴对称图形1.1 轴对称和轴对称图形教学目标:1、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念;2、能够认识轴对称和轴对称图形,并能找出对称轴;3、知道轴对称和轴对称图形的区别和联系;4、欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛应用和它的丰富的文化价值。
教学重点:正确辨认轴对称图形,画出它们的对称轴;教学难点:设计简单轴对称图案;教学过程:一、创设情境:动手操作:用一张正方形的纸片,二、新课讲解:1、观察、思考:(投影片)P4 4幅图,观察下列四幅图形,你能发现它们有什么共同特征,说出来与同学交流。
如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2、动手试一试:观察课本第4页几幅图中,画出它们对称轴。
3、探索思考:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
动手画出第5页几幅图片的对称轴。
说说你所熟悉的图形是否是轴对称图形,对称轴是什么?与同学讨论、交流,同小组互相补充。
轴对称图形:圆、正方形、长方形、菱形、等腰梯级、等腰三角形、角、线段等。
学生口述对称轴的位置。
4、讨论、交流:轴对称与轴对称图形的区别与联系。
区别:轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分能完全重合。
联系:两部分都完全重合,都有对称轴,都有对称点。
5、观察、思考:镜像特征:哪些字母在镜中的像与原字母一样?哪些发生了改变?说说它们的对称轴;手在镜中的像有什么变化?说说生活中的轴对称和轴对称图形。
6、欣赏大自然风景(倒影)并说说它们的对称轴的位置。
三、课堂练习:1、P1 22、动手制作一轴对称标志(校运会)四、本节课的收获:1、什么是轴对称和轴对称图形;2、如何画出对称轴、如何找对称点?3、生活中的轴对称和轴对称图形。
苏教八年级数学上册《轴对称图形》课件

等腰三角形: 性质定理 :
1、等腰三角形的两底角相等. 简称 “等边对等角”
2、等腰三角形 底边上的高 、中线 及 顶角平分线重合.
判定定理:
简称 “三线合一”
有两个角相等的三角形是等腰三角形。 简称 “等角对等边”
等边三角形:
性质: 等边三角形的三条边相等,三个角都等于60°
判定定理 :
1、三个角都相等的三角形是等边三角形。 2、有一个角是60°的等腰三角形是等边三角形。
反馈交流:
5.垂直平分线、角平分线、等腰三角形、直角三角形分 别有哪些性质?
直角三角形: 性质定理 :
1、直角三角形的两个锐角互余 2、直角三角形斜边上的中线等于斜边的一半
补充:直角三角形中,30度的角所对的直角边等于斜边的一半。
判定定理: 有两个角互余的三角形是直角三角形
基础检测:
1、判断
(1)如果一个图形沿着某条直线对折,两侧的图形
能够完全重合,这个图形就是轴对称图形( )
(2)全等图形不一定是轴对称图形。 ( )
(3)线段的垂直平分线是它的对称轴
()
(4)等边三角形有3条对称轴。
()
(5)一个角的角平分线就是这个角的对称轴 ( )
(6)正方形只有两条对称轴
()
2、如图,在△ABC中,AB=AC,D是BC的中点, AC的垂直平分线分别交AC、AD、AB于点E、F、G,那么,点F到△ABC的 边_____和_____的距离相等,点F到△ABC的点_____和_____的距离相等。
谢谢观赏
You made my day!
我们,还在路上……
学科网
反馈交流:
2、轴对称有哪些性质?
a、成轴对称的两个图形全等。
苏科初中数学八上 轴对称图形 01 美妙的对称知识拓展
美妙的对称闹钟、飞机、电扇、屋架等的功能、属性完全不同,但是它们的形状却有一个共同特性——对称.在闹钟、屋架、飞机等的外形图中,可以找到一条线,线两边的图形是完全一样的.也就是说,当这条线的一边绕这条线旋转180°后,能与另一边完全重合.在数学上把具有这种性质的图形叫作轴对称图形,这条线叫作对称轴.电扇的扇叶不是轴对称图形,不管怎么画线,都无法找到这条直线.但电扇的一个扇叶,如果绕这电扇中心旋转180°后,会与另一个扇叶原来所在位置完全重合.这种图形数学上称为中心对称图形,这个中心点称为对称中心.显然闹钟也是一个中心对称图形.所有轴对称和中心对称图形,统称为对称图形.人们把闹钟、飞机、电扇制造成对称形状,不仅为了美观,而且还有一定的科学道理:闹钟的对称保证了走时的均匀性,飞机的对称使飞机能在空中保持平衡.对称也是艺术家们创造艺术作品的重要准那么.像中国古代的近体诗中的对仗,民间常用的对联等,都有一种内在的对称关系.如果说建筑也是一种艺术的话,那么建筑艺术中对称的应用就更广泛了.中国北京整个城市的布局也是以故宫、天安门、人民英雄纪念碑、前门为中轴线〔对称轴〕两边对称的.对称还是自然界的一种生物现象,不少植物、动物都有自己的对称形式.比方人体就是以鼻尖、肚脐眼的连线为对称轴的对称形体,眼、耳、鼻、手、脚、乳房都是对称生长的.眼睛的对称使人观看物体能够更加准确;双耳的对称能使所听到的声音具有较强的立体感,确定声源的位置;双手、双脚的对称能保持人体的平衡.对称是数学研究的重要内容,但数学中的对称概念不仅限于图形的对称,也把数对〔3,4〕与〔-3,4〕称为平面上关于y轴对称;把数对〔3,4〕与〔-3,-4〕称为平面上关于坐标原点对称;又如把多项式x2+y2、x3+3x2y+3xy2+y3称为关于x、y对称的多项式.另外还有对称方程、对称行列式、对称矩阵等概念.9.1 单项式乘单项式力.教学重点:理解单项式相乘的法那么,会进行单项式的乘法运算.教学难点:能运用单项式乘以单项式的法那么解决实际问题.【情景创设】用6个边长为a的小正方体拼成一个长方体,并用不同的方法表示你所拼出来的长方体的体积,从不同的表示方法中,你能发现些什么?〔1〕体积的表示方法;〔2〕面对你的侧面积的表示方法.探索新知让学生在交流的根底上思考以下问题:〔1〕体积的表示方法:①3a·2a·a=________________=6a3,②3a·2a·b=________________=6a2b.侧面积的表示方法:3a·2a=________________=6a2.〔2〕从不同的表示中你发现了什么?〔3〕通过下面两个计算我们来进一步的探讨:〔2a2b〕〔3ab2〕=[2 ×3]•〔a2•a〕〔b•b2〕=6a3b3系数相乘相同字母相同字母〔4ab2〕〔5b〕=[4×5]•〔b2•b〕•a=20ab3系数相乘相同字母只在一个单项式中出现的字母你能告诉大家你算出的结果吗?你是怎样来思考的呢?通过探索得到单项式乘单项式的计算法那么:〔1〕将它们的系数相乘;〔2〕相同字母的幂相乘;〔3〕只在一个单项式中出现的字母,那么连同它的指数一起作为积的一个因式.【展示交流】例 1 计算:① -13a 2·(-6ab ); ② 6x 2·(-2x 2y ).注:教师强调格式标准,板书过程.〔通过计算引导学生发现单项式与单项式相乘时,一找系数,二找相同字母的幂,三找只在一个单项式里出现的字母.〕 练习1: 判断正误:〔1〕3x 3·(-2x 2)=5x 3; 〔2〕3a 2·4a 2=12a 2; 〔3〕3b 3·8b 3=24b 9; 〔4〕-3x ·2xy =6x 2y ; 〔5〕3ab +3ab =9a 2b 2. 练习2:课本练一练 第1、2题.例 2 计算:〔1〕(2x )3·(-3xy 2); 〔2〕(-2a 2b )·(-a 2)·14bc .注:遇到乘方形式先用积的乘方公式展开,然后转化为单项式乘以单项式的形式,再根据今天所学内容计算. 练习3:计算:〔1〕(a 2)2·(-2ab ); 〔2〕-8a 2b ·(-a 3b 2) ·14b 2 ;〔3〕(-5an +1b ) ·(-2a )2;〔4〕[-2(x -y )2]2·(y -x )3.【盘点收获】【课后作业】 补充习题和同步练习。
苏科版八年级上册 轴对称图形 知识点总结讲解
轴对称图形轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称;注意:其中这条直线叫对称轴;两个图形的对应点叫对称点;轴对称图形:如果把一个图形沿一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形;注意:轴对称图形也有对称轴和对称点;轴对称和轴对称图形的区别于联系:区别:1、轴对称是指两个图形折叠重合。
轴对称图形是指本身折叠重合,2、轴对称对称点在两个图形上;轴对称图形对称点在一个图形上;3、轴对称只有一条对称轴;轴对称图形至少有一条对称轴;联系:若把成轴对称的两个图形看作一个整体,那么这个整体是一个轴对称图形; 若把一个轴对称图形位于对称轴的两部分看作两个图形,那么这两个图形 就成轴对称。
图文解释:△ABC 和△DEF 关于直线MN 对称, △ABC 关于直线MN 对称 MN 是对称轴,我们称这两个三角形关于 MN 为对称轴,我们称 直线MN 成轴对称,点C 点F 为对称点, △ABC 为轴对称图形。
点B 点E 为对称点,点A 点D 为对称点。
CABMNFEDMNAB C轴对称的性质:1、成轴对称的两个图形全等;2、成轴对称的两个图形,对应点的连线被对称轴垂直平分;垂直平分线:作点关于直线的对称点,连接这两点的线段。
我们定义:垂直并且平分一条线段的直线,叫作这条线段的垂直平分线。
又称“中垂线”注意:判断一条直线是否是线段的垂直平分线,必须满足两个条件。
1、这条直线过线段的中点;2、这条直线垂直于线段;通过研究线段或者某个图形关于直线的对称:轴对称还有如下的性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分。
注意:这个性质其实告诉如何确定对称轴:即成轴对称的两个图形,对称轴是对应点连线的垂直平分线。
画一个图形关于一条直线对称的图形步骤:首先我们要明白一个事实:点构成线,线构成面。
1、关键是确定某些点关于这条直线的对称点。
苏教版八年级上册数学[《轴对称图形》全章复习与巩固--知识点整理及重点题型梳理](提高)
苏教版八年级上册数学重难点突破知识点梳理及重点题型巩固练习《轴对称图形》全章复习与巩固—知识讲解(提高)【学习目标】1. 认识轴对称、轴对称图形,理解轴对称的基本性质及它们的简单应用;2. 了解线段、角的轴对称性,并掌握与其相关的性质;3. 了解等腰三角形、等边三角形的有关概念,并掌握它们的性质以及判定方法.【知识网络】【要点梳理】要点一、轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别: 轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.3.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.4.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).要点二、线段、角的轴对称性1.线段的轴对称性(1)线段是轴对称图形,线段的垂直平分线是它的对称轴.(2)线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;(3)线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线2.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴.(2)角平分线上的点到角两边的距离相等.(3)角的内部到角两边距离相等的点在角的平分线上.要点三、等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为 60°的等腰三角形是等边三角形.3.直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.【典型例题】类型一、轴对称的性质与应用1、(2016秋•苏州期中)如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有个.【思路点拨】因为顶点都在小正方形上,故可以分别以大正方形的两条对角线AB、EF及MN、CH为对称轴进行寻找.【答案与解析】分别以大正方形的两条对角线AB、EF及MN、CH为对称轴图形,则△ABM、△ANB、△EHF、△EFC都是符合题意的三角形,故答案为:4.【总结升华】本题考查了轴对称的性质;确定对称轴然后找出成轴对称的三角形是解题的关键.举一反三:【变式】如图,△ABC的内部有一点P,且D,E,F是P分别以AB,BC,AC为对称轴的对称点.若△ABC的内角∠A=70°,∠B=60°,∠C=50°,则∠ADB+∠BEC+∠CFA=()A.180°B.270°C.360°D.480°【答案】C;解:连接AP,BP,CP,∵D,E,F是P分别以AB,BC,AC为对称轴的对称点∴∠ADB=∠APB,∠BEC=∠BPC,∠CFA=∠APC,∴∠ADB+∠BEC+∠CFA=∠APB+∠BPC+∠APC=360°.2、茅坪民族中学八(2)班举行文艺晚会,桌子摆成两直条(如图中的AO,BO),AO 桌面上摆满了桔子,OB桌面上摆满了糖果,站在C处的学生小明先拿桔子再拿糖果,然后回到C处,请你在下图帮助他设计一条行走路线,使其所走的总路程最短?【思路点拨】本题意思是在OA上找一点D,在OB上找一点E,使△CDE的周长最小.如果设点C关于OA的对称点是M,关于OB的对称点是N,当点D、E在MN上时,△CDE的周长为CD+DE+EC=MN,此时周长最小.【答案与解析】解:①分别作点C关于OA、OB的对称点是M、N,②连接MN,分别交OA于D,OB于E.则C→D→E→C为所求的行走路线.【总结升华】灵活运用对称性解决生活中的最短距离问题.举一反三:【变式】如图,在五边形ABCDE 中,∠BAE =120°,∠B =∠E =90°,AB =BC ,AE =DE ,在BC ,DE 上分别找一点M ,N ,使得△AMN 的周长最小时,则∠AMN +∠ANM 的度数为( ).A .100°B .110°C . 120°D . 130°【答案】C ;提示:找A 点关于BC 的对称点1A ,关于ED 的对称点2A ,连接12A A ,交BC 于M 点,ED 于N 点,此时△AMN 周长最小. ∠AMN +∠ANM =180°-∠MAN ,而2∠BAM = ∠AMN ,2∠EAN =∠ANM ,∠BAM +∠EAN +∠MAN =120°,所以∠AMN +∠ANM =120°.3、如图,△ABC 关于平行于x 轴的一条直线对称,已知A 点坐标是(1,2),C 点坐标是(1,-4),则这条平行于x 轴的直线是( )A.直线x =-1B.直线x =-3C.直线y =-1D.直线y =-3【思路点拨】根据题意,可得A 、C 的连线与该条直线垂直,且两点到此直线的距离相等,从而可以解出该直线.【答案】C ;【解析】解:由题意可知,该条直线垂直平分线段AC又A点坐标是(1,2),C点坐标是(1,-4)∴AC=6∴点A,C到该直线的距离都为3即可得直线为y=-1【总结升华】本题考查了坐标与图形的变化一一对称的性质与运用,解决此类题应认真观察图形,由A与C的纵坐标求得对称轴.举一反三:''【变式1】如图,若直线m经过第二、四象限,且平分坐标轴的夹角,Rt△AOB与Rt△A OB 关于直线m对称,已知A(1,2),则点'A的坐标为()A.(-1,2)B.(1,-2)C.(-1,-2)D.(-2,-1)【答案】D;''关于直线m对称,所以通过作图可知,A'的提示:因为Rt△AOB与Rt△A OB坐标是(-2,-1).【变式2】如图,ΔABC中,点A的坐标为(0,1),点C的坐标为(4,3),点B的坐标为(3,1),如果要使ΔABD与ΔABC全等,求点D的坐标.【答案】解:满足条件的点D的坐标有3个(4,-1);(-1,-1);(-1,3).类型二、等腰三角形的综合应用4、如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP .∵PE⊥AB,PF⊥AC,CH⊥AB,∴ABP S △=12AB•PE,ACP S △=12AC•PF,ABC S △=12AB•CH. 又∵ABP ACP ABC S S S +=△△△, ∴12AB•PE+12AC•PF=12AB•CH.∵AB=AC,∴PE+PF=CH. (1)如图②,P 为BC 延长线上的点时,其它条件不变,PE 、PF 、CH 又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC 的面积为49,点P 在直线BC 上,且P 到直线AC 的距离为PF ,当PF=3时,则AB 边上的高CH=______.点P 到AB 边的距离PE=________.【答案】7;4或10;【解析】解:(1)如图②,PE=PF+CH .证明如下:∵PE⊥AB,PF⊥AC,CH⊥AB,∴ABP S △=12AB•PE,ACP S △=12AC•PF,ABC S △=12AB•CH, ∵ABP S △=ACP S △+ABC S △, ∴12AB•PE=12AC •PF+12AB•CH, 又∵AB=AC,∴PE=P F+CH ;(2)∵在△ACH 中,∠A=30°,∴AC=2CH.∵ABC S △=12AB•CH,AB=AC , ∴12×2CH•CH=49, ∴CH=7.分两种情况:①P 为底边BC 上一点,如图①.∵PE+PF=CH,∴PE=CH -PF=7-3=4;②P 为BC 延长线上的点时,如图②.∵PE=PF+CH,∴PE=3+7=10.故答案为7;4或10.【总结升华】本题考查了等腰三角形的性质与三角形的面积,难度适中,运用面积证明可使问题简便,(2)中分情况讨论是解题的关键.举一反三:【变式】如图,△AB C 是等腰三角形,D ,E 分别是腰AB 及AC 延长线上的一点,且BD=CE ,连接DE 交底BC 于G .求证GD=GE .【答案】证明:过E 作EF∥AB 交BC 延长线于F .∵AB=AC,∴∠B=∠ACB,∵EF∥AB,∴∠F=∠B,∵∠ACB=∠FCE,∴∠F=∠FCE,∴CE=EF,∵BD=CE,∴BD=EF,在△DBG 与△GEF 中,,∴△DGB≌△EGF(AAS ),∴GD=GE.类型三、等边三角形的综合应用5、已知,如图,∠1=12°,∠2=36°,∠3=48°,∠4=24°. 求ADB ∠的度数.【答案与解析】解:将ABD △沿AB 翻折,得到ABE △,连结CE ,则ABD ABE △≌△,∴,,BD BE ADB AEB =∠=∠∠1=∠5=12°.∴125EBC ∠=∠+∠+∠=60°∵3ABC ∠=∠=48°∴AB AC =.又∵∠2=36°,34BCD ∠=∠+∠=72°,∴,BDC BCD BD BC ∠=∠=∴BE =BC∴BCE △为等边三角形.∴.BE CE =又,AB AC AE =∴垂直平分BC .∴AE 平分BEC ∠. ∴12AEB BEC ∠=∠=30° ∴∠ADB =30°【总结升华】直接求ADB 很难,那就想想能不能通过翻折或旋转构造一个与ABD △全等的三角形,从而使其换个位置,看看会不会容易求.举一反三:【变式】在△ABC 中,AB =AC ,∠BAC =80°,D 为形内一点,且∠DAB =∠DBA =10°,求∠ACD 的度数.【答案】解:作D 关于BC 中垂线的对称点E ,连结AE ,EC ,DE∴△ABD ≌△ACE∴AD =AE, ∠DAB =∠EAC =10°∵∠BAC=80°,∴∠DAE =60°,△ADE 为等边三角形∴∠AED =60°∵∠DAB =∠DBA =10°∴AD =BD =DE =EC∴∠AEC =160°,∴∠DEC =140°∴∠DCE =20°∴∠ACD =30°6、如图所示,已知等边三角形ABC 中,点D ,E ,F 分别为边AB ,AC ,BC 的中点,M 为直线BC 上一动点,△DMN 为等边三角形.(1)如图(1)所示,当点M 在点B 左侧时,请你判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?(2)如图(2)所示,当点M 在BC 上时,其他条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立,请利用图(2)证明;若不成立,请说明理由.【答案与解析】解:(1)EN =MF ,点F 在直线NE 上.证明:连接DF ,DE ,∵ △ABC 是等边三角形,∴ AB =AC =BC .又∵ D ,E ,F 是△ABC 三边的中点,∴ DE ,DF ,EF 为三角形的中位线.∴ DE =DF =EF ,∠FDE =60°.又∠MDN +∠NDF =∠MDF ,∠NDF +∠FDE =∠NDE ,∵△DMN 为等边三角形,DM =DN ,∠MDN =60°∴ ∠MDF =∠NDE .在△DMF 和△DNE 中,DF DE MDF NDE DM DN =⎧⎪∠=∠⎨⎪=⎩,∴ △DMF ≌△DNE ,∴ MF =NE ,∠DMF =∠DNE.∵∠DMF +60°=∠DNE +∠MFN∴∠MFN =60°∴FN ∥AB ,又∵EF ∥AB ,∴E 、F 、N 在同一直线上.(2)成立.证明:连结DE ,DF ,EF ,∵ △ABC 是等边三角形,∴ AB =AC =BC .又∵ D ,E ,F 是△ABC 三边的中点,∴ DE ,DF ,EF 为三角形的中位线.∴ DE =DF =EF ,∠FDE =60°.又∠MDF +∠FDN =60°,∠NDE +∠FDN =60°,∴ ∠MDF =∠NDE .在△DMF和△DNE中,DF DEMDF NDE DM DN=⎧⎪∠=∠⎨⎪=⎩,∴△DMF≌△DNE,∴ MF=NE.【总结升华】此题综合应用了等边三角形的性质和判定,全等三角形的性质和判定.全等是证明线段相等的重要方法.(2)题的证明可以沿用(1)题的思路.。
苏教版初二数学上册知识点归纳
这篇关于苏教版初⼆数学上册知识点归纳的⽂章,是特地为⼤家整理的,希望对⼤家有所帮助!第⼀章轴对称图形⼀、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形沿某直线对折能够完全重合,是两个图形之间的⼀种关系,⽽轴对称图形是两部分能完全重合的⼀个图形。
联系:两者都有完全重合的特征,都有对称轴,都有对称点。
⼆、轴对称的性质1、定义——垂直并且平分⼀条线段的直线,叫做这条线段的垂直平分线。
2、把⼀个图形沿着⼀条直线折叠,如果它能够与另⼀个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
3、把⼀个图形沿着⼀条某直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。
4、成轴对称的两个图形全等。
如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
三、线段、⾓的轴对称性1、线段是轴对称图形,线段的垂直平分线是它的对称轴。
线段的垂直平分线上的点到线段两端的距离相等;2、到线段两端距离相等的点,在这条线段的垂直平分线上;线段的垂直平分线是到线段两端距离相等的点的集合。
3、⾓是轴对称图形,⾓平分线所在直线是它的对称轴。
⾓平分线上的点到⾓的两边距离相等;⾓的内部到⾓的两边距离相等的点,在这个⾓的平分线上。
四、等腰三⾓形的轴对称性1、等腰三⾓形是轴对称图形,顶⾓平分线所在直线是它的对称轴。
2、等腰三⾓形的两个底⾓相等(简称“等边对等⾓”)。
等腰三⾓形的顶⾓平分线、底边上的中线、底边上的⾼互相重合。
3、如果⼀个三⾓形有两个⾓相等,那么这两个⾓所对的边也相等(简称“等⾓对等边”)。
4、直⾓三⾓形斜边上的中线等于斜边的⼀半。
5、直⾓三⾓形中30°⾓所对的直⾓边是斜边的⼀半。
6、三边相等的三⾓形叫做等边三⾓形或正三⾓形。
等边三⾓形是轴对称图形,并且有3条对称轴。
等边三⾓形的每个⾓都等于60°。
7、三条边都相等的三⾓形是等边三⾓形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称
知识点总结
1、轴对称图形:
一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:
两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系:
(1)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
4、轴对称的性质:
(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、线段的垂直平分线:
(1)定义。
经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
如图2,
∵CA=CB,
直线m⊥AB于C,
∴直线m是线段AB的垂直平分线。
(2)性质。
线段垂直平分线上的点与线段
两端点的距离相等。
如图3,
∵CA=CB,
直线m⊥AB于C,
点P是直线m上的点。
∴PA=PB 。
(3)判定。
与线段两端点距离相等的点在线段的垂直平分线上。
如图3,∵PA=PB,
直线m是线段AB的垂直平分线,
∴点P在直线m上。
6、等腰三角形:
(1)定义。
有两条边相等的三角形,叫做等腰三角形。
①相等的两条边叫做腰。
第三条边叫做底。
②两腰的夹角叫做顶角。
③腰与底的夹角叫做底角。
说明:顶角=180°- 2底角
底角=
顶角
顶角
2
1
-
90
2
180
︒
=
-
︒
可见,底角只能是锐角。
(2)性质。
①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线”,只有一条。
②等边对等角。
如图5,在△ABC中
∵AB=AC
∴∠B=∠C 。
③三线合一。
(3)判定。
①有两条边相等的三角形是等腰三角形。
如图5,在△ABC中,
∵AB=AC
∴△ABC是等腰三角形。
②有两个角相等的三角形是等腰三角形。
如图5,在△ABC中
图1 图2
图3
底边
底角底角
顶
角
腰
腰
D
C
B
A
图5
图4
∵∠B=∠C
∴△ABC是等腰三角形。
7、等边三角形:
(1)定义。
三条边都相等的三角形,叫做等边三角形。
说明:等边三角形就是腰和底相等的等腰三角形,因此,等边三角形是特殊的等腰三角形。
(2)性质。
①等边三角形是轴对称图形,其对称轴是“三边的垂直平分线”,有三条。
②三条边上的中线、高线及三个内角平分线都相交于一点。
③等边三角形的三个内角都等于60°。
如图6,在△ABC中
∵AB=AC=BC
∴∠A=∠B=∠C=60°。
(3)判定。
①三条边都相等的三角形是等边三角形。
如图6,在△ABC中∵AB=AC=BC
∴△ABC是等边三角形。
②三个内角都相等的三角形是等边三角形。
如图6,在△ABC中
∵∠A=∠B=∠C
∴△ABC是等边三角形。
③有一个内角是60°的等腰三角形是等边三角形。
如图6,在△ABC中
∵AB=AC(或AB=BC,AC=BC)
∠A=60°(∠B=60°,∠C=60°)
∴△ABC是等边三角形。
(4)重要结论。
在Rt△中,30°角所对直角边等于斜边的一半。
如图7,
∵在Rt△ABC中,
∠C=90°,∠A=30°∴BC=2
1
AB 或AB=2BC
8、平面直角坐标系中的轴对称:
(1)
)
,
(
)
,
(b
a
x
b
a-
横不变,纵反向
轴对称
关于
(2)
)
,
(
)
,
(b
a
y
b
a-
横反向,纵不变
轴对称
关于
说明:要作出一个图形关于坐标轴(或直线)成轴对称的图形,只需根据作出各顶点的对称点,再
顺次连结各对称点。
对称点的作法见11(1)。
9、对称轴的画法:
在一个轴对称图形或成轴对称的两个图形中,连结其中一对对应点并作出所得线段的垂直平分线。
注意:①有的轴对称图形只有一条对称轴,有的不止一条,要画出所有的对称轴。
②成轴对称的两个图形只有一条对称轴。
10、常见的轴对称图形:
(1)英文字母。
A B D E H I K M O T U V W X Y
(2)中文。
日,目,木,土,十,士,中,一,二,三,六,米,山,甲,由,田,天,又,只,
支,圭,凹,凸,出,兰,合,全,仝,人,关,甘,等等。
(3)数字。
0 3 8
(4)图形。
说明:①圆有无数条对称轴。
②正n边形有n条对称轴。
11、掌握几个作图:
(1)作出点A关于直线m对称的点A/ 。
作法:如图
①以点A为圆心,适当的长为半径画圆弧。
使圆弧与直线MN交于两
点C、D。
②分别以点C,D为圆心,大于
CD
2
1
的长为半径画圆弧,
设两条圆弧交于点E。
③作射线AE,设交直线mn于点F。
○4在射线AE上截取FA/=FA,点A/即为所求。
图7 图6
A
B C。