电力电子器件的概念
电力电子器件概述

5. 反向恢复时间trr 6. 浪涌电流IFSM
1.2.4 主要类型
1. 普通二极管——又称整流二极管 1KHZ以下 数千安和数千伏以上
2. 快恢复二极管 5μs以下 3. 肖特二极管
1.3 半控型器件——晶闸管(SCR)
常用晶闸管的结构
螺栓型晶闸管
晶闸管模块
Id
1
2
3
Im
sin td
t
3
4
Im
0.24Im
I
1
2
Im
sin t
2
d
t
0.46Im
3
Kf
I Id
0.46 0.24
1.92
IT ( AV )
100 2
50
Id
1.57 50 1.92
41 A
Im
Id 0.24
41 0.24
171
A
⑵ 维持电流IH 使晶闸管维持通态所必需的最小主电流。 ⑶ 擎住电流IL ⑷ 浪涌电流ITSM
4. 光控晶闸管LTT
⑴又称光触发晶闸 管,是利用一定 波长的光照信号 触发导通的晶闸 管。
⑵光触发保证了主 电路与控制电路 之间的绝缘,且 可避免电磁干扰 的影响。
⑶在高压大功率的 场合占有重要地位。
1.4 典型全控型器件
门极可关断晶闸管——在晶闸管问世后不久出现。 20世纪80年代以来,电力电子技术进入了一个崭新时代。
不可控器件:电力二极管
半控型器件:晶闸管及其派生器件 全控型器件:功率场效应管、绝缘栅双极性晶体管、
门极可关断晶闸管
⑵ 按照控制信号性质可分为: 电流控制型 电压控制型:控制功率小
电力电子器件

3.电路如图所示 VT承受正向门级电压,画出负载R上的电压波
5.判断下列图形中何时灯亮,何时不亮? (1)u2为直流电源,上+下-,S未闭合前灯泡亮不亮? 答:不亮。晶闸管虽具有上+、下-导通的条件,但没有触发 电流,所以不能导通。 (2)u2为直流电源,上+、下-,S闭合后灯泡亮不亮?S闭合 后又断开了,灯泡亮不亮? 答:S闭合后灯泡亮。S闭合后又断开了灯泡照常亮。 (3)u2为直流电源,上-、下+,S未闭合前灯泡亮不亮?S 闭合后又断开了灯泡亮不亮? 答:不亮。u2上-、下+,不具备导通的条件。S闭合也不会亮。
IG2
IG1 IG=0 Ubo +UA
的反相漏电流流过。
当反向电压达到反向击穿电 压后,可能导致晶闸管发热
击穿
损坏。
-IA
• 1.1 使晶闸管导通的条件是什么? 答:使晶闸管导通的条件是:晶闸管承受 正向阳极电压,并在门极注入正向触发电 流。 • 1.2 维持晶闸管导通的条件是什么?怎样 才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管的 电流大于能保持晶闸管导通的最小电流 (即维持电流)。 要使晶闸管由导通变为关断,可通过外加 反向阳极电压或减小负载电流的办法,使 流过晶闸管的电流降到维持电流值以下。
UA IA 正向 导通IHOIG2IG1 IG=0 Ubo +UA
随着门极电流幅值的增大, 正向转折电压降低。 晶闸管本身的压降很小, 在1V左右。
击穿
-IA
晶闸管的伏安特性
IG2>IG1>IG
(2)反向特性
反向特性类似二极管的反向 特性。 反向阻断状态时,只有极小
IA 正向 导通
IH UA O
电力电子器件及其应用

宽禁带半导体材料的应用
总结词
宽禁带半导体材料(如硅碳化物和氮化 镓)在电力电子器件中的应用越来越广 泛。
VS
详细描述
宽禁带半导体材料具有高临界场强和高电 子饱和速度等优点,使得电力电子器件能 够承受更高的工作电压和更大的工作电流 ,同时减小器件的体积和重量,提高系统 的能效和可靠性。
电力电子系统集成化与模块化
压保护、过电流保护和过热保护等。
驱动电路与控制电路设计
总结词
驱动电路和控制电路是电力电子系统中的重要组成部 分,其设计的好坏直接影响到整个系统的性能。
详细描述
驱动电路负责提供足够的驱动信号,使电力电子器件 能够正常工作。在设计驱动电路时,需要考虑信号的 幅度、相位、波形等参数,以确保器件能够得到合适 的驱动信号。控制电路则负责对整个电力电子系统进 行控制和调节,以确保系统能够按照预设的方式运行 。控制电路的设计需要充分考虑系统的动态特性和稳 态特性,并能够根据实际情况进行实时调节。
要点一
总结词
要点二
详细描述
在选择电力电子器件时,电压和电流容量是关键参数。
需要根据电路的工作电压和电流来选择合适的器件,以确 保器件能够安全、有效地运行。选择电压和电流容量过小 的器件可能导致器件过载,影响其性能和寿命;而选择电 压和电流容量过大的器件则可能造成浪费,增加成本。
工作频率与散热设计
总结词
总结词
电力电子系统正朝着集成化和模块化的方向 发展。
详细描述
集成化和模块化可以提高电力电子系统的可 靠性和可维护性,减小系统的体积和重量, 降低制造成本。同时,集成化和模块化还有 利于实现电力电子系统的标准化和系列化, 方便不同系统之间的互连和互操作。
电力电子在分布式发电和微电网中的应用
2电力电子器件

37
晶闸管的派生器件
2.双向晶闸管
I+
I-
+
+
四种触发方式
I
+
-
-
-
IG = 0
0
U
-
-
+
Ⅲ-
+ +
Ⅲ+
触发灵敏度I+、Ⅲ-相对较高。 实际常用I+、Ⅲ-两种触发方式
38
晶闸管的派生器件
3.逆导晶闸管
K G
A I
0
I =0
G
U
是将晶闸管反并联一个二极管制作在同 一管芯上的功率集成器件。
电流驱动型
20
晶闸管的结构与工作原理
4.晶闸管的基本特点:
1) 晶闸管具有可控的单向导电性。
与二极管比较: 相同点——都具有单向导电性; 不同点——晶闸管的单向导电受门极控制。
2) 晶闸管属半控型器件。
门极只能用来控制晶闸管的导通,晶闸管导通后门极就失去控制作用。
3) 晶闸管具有开关作用。
导通——相当于开关闭合; 阻断——相当于开关断开。
能维持导通所需的最小阳极电流。 对同一晶闸管,通常IL约为IH的2~4倍。
30
2.电流定额
晶闸管的主要参数
正弦半波电流波形
通态平均电流IT(AV)
1
IT ( AV ) 2
0
Im
sin td (t )
Im
正弦半波电流的有效值
ITN
1
2
0
(Im
sint)2 d (t)
Im 2
波形系数Kf
有效值 Kf 平均值
电力电子器件概述

螺栓式晶闸管在安装和更换时比较方便,但散热效果较差。 平板式晶闸管的散热效果较好,但安装和更换时比较麻烦。
额定通态平均电流小于200A的一般不采用平板式结构
1. 反向阳极电压时,关断状态;
2. 关断—导通,正向阳极电压和正向门极电压二个条件。 3. 门极失去控制作用。 4. 晶闸管在导通情况下,当主回路电压(或电流)
5. 反向恢复时间trr 6. 浪涌电流IFSM
1.2.4 主要类型
1. 普通二极管——又称整流二极管 1KHZ以下 数千安和数千伏以上
2. 快恢复二极管 5μs以下 3. 肖特二极管
1.3 半控型器件——晶闸管(SCR)
常用晶闸管的结构
螺栓型晶闸管
晶闸管模块
平板型晶闸管外形及结构
1.3.1 晶闸管的结构与工作原理
4. 光控晶闸管LTT
⑴又称光触发晶闸 管,是利用一定 波长的光照信号 触发导通的晶闸 管。
⑵光触发保证了主 电路与控制电路 之间的绝缘,且 可避免电磁干扰 的影响。
⑶在高压大功率的 场合占有重要地位。
2. 双向晶闸管TRIAC
⑴可认为是一对反并 联联接的普通晶闸 管的集成。
⑵有两个主电极T1和 T2,一个门极G。
⑶在第I和第III象限 有对称的伏安特性。
⑷不用平均值而用有 效值来表示其额定 电流值。
3. 逆导晶闸管 RCT
正向压降小、关断时间短、 高温特性好、额定结温高。
元件数目减少、装置体积 缩小、重量减轻、价格降 低、配线简单、经济性好。
这个参数可用来作为设计保护电路的依据。
3. 动态参数 断态电压临界上升率du/dt: 不导致从断态到通态转换的最大主电压上升率。 通态电流临界上升率di/dt: 晶闸管能承受而无有害影响的最大通态电流上升率。
电力电子器件与系统

电力电子器件与系统电力电子器件与系统是电力工程领域的一个重要分支,涉及到电力转换、控制和保护等方面的技术研究与应用。
本文将从电力电子器件和系统的概念、应用领域、工作原理以及发展趋势等方面进行论述,以帮助读者全面理解和掌握电力电子技术的基本知识。
一、电力电子器件的基本概念电力电子器件是指能够实现电能的整流、变换、控制和保护等功能的电子器件。
常见的电力电子器件包括晶闸管、可控硅、MOSFET、IGBT等。
这些器件通过控制电压或电流的开关状态,将电能从一种形式转换成另一种形式,以满足不同的电力需求。
电力电子器件具有高效、可靠、灵活等特点,在工业、农业、交通、通信等领域得到了广泛的应用。
二、电力电子器件的应用领域1. 电力系统电力电子器件在电力系统中的应用十分广泛。
它们可以用于电力输配电、电力负荷控制、电力变换和调节等方面。
比如,柔性交流输电技术就是利用大功率晶闸管和换流变换技术实现的,能够提高输电效率,降低线路损耗。
另外,电力电子器件还能实现对电力系统的稳定控制和保护,提高系统的可靠性和安全性。
2. 新能源随着新能源的快速发展,电力电子器件在风电、太阳能等新能源发电系统中的应用也越来越广泛。
电力电子器件可以将不稳定的新能源输出电能转换为稳定的交流电能,并通过逆变器等设备实现对新能源发电系统的功率调节和并网运行控制。
这种技术不仅可以提高新能源发电系统的利用率和可靠性,还可以减少对传统能源的依赖,具有重要意义。
3. 电动汽车电力电子器件在电动汽车领域的应用也十分重要。
电力电子器件可以实现电动汽车电池充电、电能变换和电机控制等功能。
通过电力电子器件的控制,可以实现对电动汽车电池的快速充电和有效管理,提高电动汽车的运行效率和续航里程。
此外,电力电子器件还可以控制电动汽车电机的转速和扭矩,提高汽车的操控性能。
三、电力电子系统的工作原理电力电子系统是由多个电力电子器件和控制电路组成的复杂系统。
这些器件和电路通过合理的连接和控制方式,实现对电能的转换和控制。
电力电子技术-电力电子器件的原理与特性

IR
Vo
VS +
-
IZ
DZ
RL
(a)整流
(b)续流
(c)限幅
(d)钳位
图2.6 二极管的整流、续流、限幅、钳位和稳压应用
(e)稳压
本章内容
2.3 晶闸管(SCR)
2. 3 晶闸管
一、名称 ➢晶闸管 (Thyristor) ➢可控硅
(SCR)
二、外形与符号 ➢螺栓式结构 (<200A) ➢平板式结构 (>200A)
• N型半导体: 掺入微量5价元素(磷、锑、鉮等)
自由电子为多数载流子,空穴为少数载流子。 • P型半导体:
掺入微量3价元素(硼、镓、铟等) 空穴为多数载流子,自由电子为少数载流子。
半导体基础知识
器件原理
• PN结(异型半导体接触现象) • (1)扩散运动(多数载流子)
自由电子由 N区 向 P区 空 穴由 P区 向 N区 (2)漂移运动(少数载流子) 与扩散运动相反
三、SCR的工作原理(续)
(2)按晶体管原理可得:
IA
2 I G I CBO1 I CBO2 1 ( 1 2 )
其中: α1、α2分别是晶 体管T1、T2的共基极电 流增益; ICBO1、ICBO2分 别是晶体管T1、T2的共 基极漏电流。
❖双极型器件:有两种载流子参与导电,如二 极管、 晶闸管、GTO、GTR、IGCT、SITH等。
❖复合型器件:由MOSFET与晶体管、晶闸管复 合而成,如IGBT、IPM、MCT等。
➢ 按门极驱动信号的种类(电流、电压)分类: ❖电流控制型器件 如晶闸管、GTO、GTR、 IGCT、SITH等
❖电压控制型器件 如MOSFET、IGBT、IPM、 SIT、MCT等
电力系统中常用电力电子器件

全控型器件(IGBT,MOSFET)
——通过控制信号既可控制其导通又可控制其关断,又 称自关断器件。
不可控器件(Power Diode)
——不能用控制信号来控制其通断, 因此也就不需要驱动 电路。
6
电力电子器件的分类
按照驱动电路信号的性质,分为两类:
电流驱动型
——通过从控制端注入或者抽出电流来实现导通或者 关断的控 制。
式中 1 和 2 分别是晶体管 V1 和 V2 的 共基极电流增益; ICBO1 和 ICBO2 分别 是 V1 和 V2 的共基极漏电流。由以上 式可得 :
IA
2 I G I CBO1 I CBO2
1 ( 1 2 )
图1-7 晶闸管的双晶体管模型及其工作原理 a) 双晶体管模型 b) 工作原理
有效值相等:工作中实际波形的电流与正向平均电 流所造成的发热效应相等。
15
电力二极管的主要参数
2)正向压降UF
在指定温度下,流过某一指定的稳态正向电流时对应的正向 压降。
3) 反向重复峰值电压URRM
对电力二极管所能重复施加的反向最高峰值电压。 使用时,应当留有两倍的裕量(按照电路中电力二极管可能 承受的反向最高峰值电压的两倍来选定)。
12
电力二极管的基本特性
2) 动态特性
——二极管的电压-电流特性随时间变 化的 ——结电容的存在
F
diF dt td tF t0
trr t1
UF
tf t2 UR t
diR dt IRP U a) RP iF
延迟时间:td= t1- t0,
电流下降时间:tf= t2- t1 反向恢复时间:trr= td+ tf
电压驱动型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力电子器件的概念:
直接承担电能的变换或控制的电路称为主电路。
可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件称为电力电子器件。
电力电子器件的特征:
(1)、电力电子器件所能处理电功率的大小,所能承受的电压、电流的能力是其重要参数,一般都大于信息电子器件。
(2)、电力电子器件为减小自身损耗,提高效率,一般都工作在开关状态,通态阻搞接近于短路,电流由外电路决定;断态阻搞接近于断路,电流几乎为零,电压决定于外电路。
(3)、电力电子器件往往需要由信息电子电路来控制。
(4)、自由功率损耗远大于信息电子电路,需要良好的散热导热设计。
电力电子器件的系统组成:
一般由控制电路、驱动电路和以电力电子器件为核心的主电路组成。
电力电子器件的分类:
1、按能够被控制信号所控制的程度来分类:
全控型:既可控制其导通,又可控制其关断(绝缘栅
双极晶体管,电力MOSFET)
半控型:可以控制其导通,不能控制其关断(晶闸管、其大部分派生器件)
不可控型:导通与关断取决于所承受的电流、电压(电
力二极管)
2、按照驱动电路加在器件控制端的信号性质分类:电压
驱动型、电流驱动型
3、根据驱动电路加在器件控制端有效信号的波形分类:
脉冲触发型、电平控制型
4、按照器件内部电子的空穴参与导电的情况:单极型、
双极型、复合型
电力二极管
特征:能承受高电压和大电流(垂直导电结构、低掺杂N区)静态特征:伏安特征
动态特征:零偏、正偏、反偏时的过滤过程(图)
主要参数:
1、正向平均电流I F(AV),正向压降VF,反向重复峰值电
压V RRM,最高工作结温T JM,反向恢复时间,浪涌电流。
主要类型:普通二极管(整流二极管)、快恢复二极管、有特基二极管
电导调制效应:PN结通过大电流,大量空穴被注入基区,它们来不及和基区中的电子中和就到达负极,使基区电子浓度大幅增加。
——使原始基片的电阻率下降。
晶闸管:
正常导通条件:晶闸管承受正向阳极电压,向门极施加触发电流。
关断条件:。