高考数学专题04 立体几何的探索性问题(第三篇)(原卷版)

合集下载

立体几何中的探索性问题

立体几何中的探索性问题

立体几何中的探索性问题作者:徐勇来源:《理科考试研究·高中》2012年第10期立体几何中的探索性问题有利于考查学生的归纳、判断等各方面的能力,也有利于创新意识的培养,因此应注意高考中立几探索性命题的考查趋势.立体几何探索性命题的类型主要有:一、探索条件,即探索能使结论成立的条件是什么;二、探索结论,即在给定的条件下命题的结论是什么.而对命题条件的探索,在立体几何的题型更为常见,对命题条件的探索常采用以下三种方法:1.先猜(作)后证,即先观察与尝试给出条件再给出证明.2.先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.3.把几何问题转化为代数问题,探索出命题成立的条件.现例举如下例1 如图1,已知四面体ABCD四个面均为锐角三角形,E,F,G,H分别为边AB,BC,CD,DA上的点,BD∥平面EFGH,且(1)求证:HG∥平面ABC;(2)请在平面ABD内过点E作一条线段垂直于AC,并给出证明解析(1)因为BD∥平面EFGH,平面BDC∩平面EFGH=FG,所以BD∥同理BD∥EH,又因为EH=FG,所以四边形EFGH为平行四边形,所以HG∥又平面ABC,平面ABC,所以HG∥平面(2)如图2,在平面ABC内过点E作EP⊥AC,且交AC于P点,在平面ACD内过点P 作PQ⊥AC,且交AD于Q点,连结EQ,则EQ即为所求线段证明如下:因为EP⊥AC,PQ⊥AC,EP∩PQ=P,所以AC⊥平面又因为平面EPQ,所以EQ⊥例2 如图3,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面(1)求证:AE⊥BE;(2)求三棱锥D—AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面解析(1)因为AD⊥平面ABE,AD∥BC,所以BC⊥平面ABE,则AE⊥又因为BF⊥平面ACE,则AE⊥所以AE⊥平面又平面BCE,所以AE⊥(2)——(]1[]3[SX)]×2[KF(]2[KF)]×[KF(]2[KF)] (]4[]3[SX)(3)在三角形ABE中过M点作MG∥AE交BE于G点,在三角形BEC中过G点作GN∥BC交EC于N点,连MN,则由比例关系易得CN=[SX(]1[]3[SX)因为MG∥AE,平面ADE,平面ADE,所以MG∥平面同理GN∥平面所以平面MGN∥平面又平面MGN,所以MN∥平面所以N点为线段CE上靠近C点的一个三等分点例3 如图3,在四棱锥P—ABCD中,底面ABCD为菱形,∠ABD=60°,Q为AD的中点(1)若PA=PD,求证:平面PQB⊥平面PAD;(2)点M在线段PC上,PM=tPC,试确定实数t的值,使得PA∥平面解析(1)连因为四边形ABCD为菱形,所以又∠BAD=60°,所以△ABD为正三角形而Q为AD中点,所以AD⊥因为PA=PD,Q为AD中点,所以AD⊥又BQ∩PQ=Q,所以AD⊥平面而平面PAD,所以平面PQB⊥平面(2)当t=[SX(]1[]3[SX)]时,使得PA∥平面连AC交BQ于N,交BD于O,连MN,则O为BD的中点又BQ为正△ABD边AD上的中线,所以N为正△ABD的中心设菱形ABCD的边长为a,则AN=[SX(][KF(]3[KF)][]3[SX)]a,AC=[KF(]3[KF)由PA∥平面MQB,平面PAC,平面PAC∩平面MQB=MN,所以PA∥MN,[SX(]PM[]PC[SX)]=[SX(]AN[]AC[SX)]=[SX(][SX(][KF(]3[KF)][]3[SX)]a[][KF (]3[KF)]a[SX)]=[SX(]1[]3[SX)],即PM=[SX(]1[]3[SX)]PC,t=[SX(]1[]3[SX)例4 如图4,在四棱锥P—ABCD中,四边形ABCD是梯形,AD∥BC,∠ABC=90°,平面PAB⊥平面ABCD,平面PAD⊥平面ABCD.(1)求证:PA⊥平面ABCD;(2)若平面PAB∩平面PCD=l,问直线l能否与平面ABCD平行?请说明理由解析(1)∠ABC=90°,AD∥BC,所以AD⊥而平面PAB⊥平面ABCD,且平面PAB∩平面ABCD=AB,所以AD⊥平面PAB,所以AD⊥同理可得AB⊥由于AB,平面ABCD,且AB∩AD=C,所以PA⊥平面(2)不平行证明:假定直线l∥平面ABCD,由于平面PCD,且平面PCD∩平面ABCD=CD,同理可得l∥AB,所以AB∥这与AB和CD是直角梯形ABCD的两腰相矛盾,故假设错误,所以直线l与平面ABCD不平行例5 如图5所示,在四棱锥P—ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面(1)若G为AD边的中点,求证:EG⊥平面PAD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF平面ABCD,并证明你的结论解析(1)在菱形ABCD中,∠DAB=60°,G为AD的中点,所以BG⊥又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BG⊥平面(2)连结PG,由△PAD为正三角形,G为AD的中点,得PG⊥由(1)知BG⊥AD,PG∩BG=G,平面PGB,平面PGB,所以AD⊥平面因为平面PGB,(3)当F为PC的中点时,满足平面DEF⊥平面取PC的中点F,连结DE、EF、在△PBC中,FE∥PB,所以EF∥平面在菱形ABCD中,GB∥DE,所以DE∥平面平面DEF,平面DEF,EF∩DE=E,所以平面DEF∥平面由(1)得PG⊥平面ABCD,而平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面例6 如图6,边长为4的正方形ABCD所在平面与正△PAD所在平面互相垂直,M,Q分别为PC,AD的中点(1)求四棱锥P—ABCD的体积;(2)求证:PA∥平面MBD;(3)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?若存在,试指出点N的位置,并证明你的结论;若不存在,请说明理由解析(1)因为Q为AD的中点,△PAD为正三角形,因为平面PAD⊥平面ABCD,所以PQ⊥平面因为AD=4,所以PQ=2[KF(]3[KF)所以四棱锥P—ABCD的体积V=[SX(]1[]3[SX)=[SX(]1[]3[SX)(]3[KF)](]32[KF(]3[KF)][]3[SX)(2)连结AC交BD于点O,连结由正方形ABCD知点O为AC的中点,因为M为PC的中点,所以MO∥又平面MBD,平面MBD,所以PA∥平面(3)存在点N,当N为AB中点时,平面PQB⊥平面因为四边形ABCD是正方形,Q为AD的中点,所以BQ⊥由(1)知,PQ⊥平面ABCD,平面ABCD,所以PQ⊥又BQ∩PQ=Q,所以NC⊥平面因为平面PCN,所以平面PCN⊥平面。

立体几何中的探索性问题

立体几何中的探索性问题

立体几何中的探索性问题一、探索平行关系1.[2016·枣强中学模拟] 如图所示,在正四棱柱A 1C 中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件________,就有MN ∥平面B 1BDD 1.(注:请填上一个你认为正确的条件,不必考虑全部可能的情况)答案:M 位于线段FH 上(答案不唯一) [解析] 连接HN ,FH ,FN ,则FH ∥DD 1,HN ∥BD ,FH ∩HN =H ,DD 1∩BD =D ,∴平面FHN ∥平面B 1BDD 1,故只要M ∈FH ,则MN ?平面FHN ,且MN ∥平面B 1BDD 1.2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)求直线BE 和平面ABB 1A 1所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE 证明你的结论.解:(1)如图所示,取AA 1的中点M ,连接EM ,BM .因为E 是DD 1的中点,四边形ADD 1A 1为正方形,所以EM ∥AD .(2分)又在正方体ABCD -A 1B 1C 1D 1中,AD ⊥平面ABB 1A 1,所以EM ⊥平面ABB 1A 1,从而BM 为直线BE 在平面ABB 1A 1上的射影,∠EBM 为BE 和平面ABB 1A 1所成的角.(4分)设正方体的棱长为2,则EM =AD =2,BE =22+22+12=3.于是,在Rt △BEM 中,sin ∠EBM =EM BE =23,(5分) 即直线BE 和平面ABB 1A 1所成的角的正弦值为23.(6分) (2)在棱C 1D 1上存在点F ,使B 1F ∥平面A 1BE .事实上,如图(b)所示,分别取C 1D 1和CD 的中点F ,G ,连接B 1F ,EG ,BG ,CD 1,FG .因A 1D 1∥B 1C 1∥BC ,且A 1D 1=BC ,所以四边形A 1BCD 1是平行四边形,因此D 1C ∥A 1B .又E ,G 分别为D 1D ,CD 的中点,所以EG ∥D 1C ,从而EG ∥A 1B .这说明A 1,B ,G ,E 四点共面.所以BG ?平面A 1BE .(8分)因四边形C 1CDD 1与B 1BCC 1皆为正方形,F ,G 分别为C 1D 1和CD 的中点,所以FG ∥C 1C ∥B 1B ,且FG =C 1C =B 1B ,因此四边形B 1BGF 是平行四边形,所以B 1F ∥BG ,(10分)而B 1F ?平面A 1BE ,BG ?平面A 1BE ,故B 1F ∥平面A 1BE .(12分)3.如图,四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形,PD =DC =4,AD =2,E 为PC 的中点.(1)求三棱锥A -PDE 的体积;(2)AC 边上是否存在一点M ,使得P A ∥平面EDM 若存在,求出AM 的长;若不存在,请说明理由.解析:(1)∵PD ⊥平面ABCD ,∴PD ⊥AD .又∵ABCD 是矩形,∴AD ⊥CD .∵PD ∩CD =D ,∴AD ⊥平面PCD ,∴AD 是三棱锥A -PDE 的高.∵E 为PC 的中点,且PD =DC =4,∴S △PDE =12S △PDC =12×⎝⎛⎭⎫12×4×4=4. 又AD =2,∴V A -PDE =13AD ·S △PDE =13×2×4=83. (2)取AC 中点M ,连接EM ,DM ,∵E 为PC 的中点,M 是AC 的中点,∴EM ∥P A . 又∵EM ?平面EDM ,P A ?平面EDM ,∴P A ∥平面EDM .∴AM =12AC = 5.即在AC 边上存在一点M ,使得P A ∥平面EDM ,AM 的长为 5.4.如图所示,在三棱锥P - ABC 中,点D ,E 分别为PB ,BC 的中点.在线段AC 上是否存在点F ,使得AD ∥平面PEF 若存在,求出AF FC的值;若不存在,请说明理由. 解:假设在AC 上存在点F ,使得AD ∥平面PEF ,连接DC 交PE 于G ,连接FG ,如图所示.∵AD ∥平面PEF ,平面ADC ∩平面PEF =FG ,∴AD ∥FG .又∵点D ,E 分别为PB ,BC 的中点,∴G 为△PBC 的重心,∴AF FC =DG GC =12.故在线段AC 上存在点F ,使得AD ∥平面PEF ,且AF FC =12. 5.[2016·北京卷] 如图,在四棱锥P - ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC .(1)求证:DC ⊥平面P AC .(2)求证:平面P AB ⊥平面P AC .(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得P A ∥平面CEF 说明理由. 解:(1)证明:因为PC ⊥平面ABCD ,所以PC ⊥DC .又因为DC ⊥AC ,所以DC ⊥平面P AC .(2)证明:因为AB ∥DC ,DC ⊥AC ,所以AB ⊥AC .因为PC ⊥平面ABCD ,所以PC ⊥AB ,所以AB ⊥平面P AC ,所以平面P AB ⊥平面P AC .(3)棱PB 上存在点F ,使得P A ∥平面CEF .证明如下:取PB 的中点F ,连接EF ,CE ,CF .因为E 为AB 的中点,所以EF ∥P A .又因为P A ?平面CEF ,所以P A ∥平面CEF .6.[2016·四川卷] 如图,在四棱锥P - ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD . (1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由;(2)证明:平面P AB ⊥平面PBD .解:(1)取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点.理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM , 所以四边形AMCB 是平行四边形,从而CM ∥AB .又AB ?平面P AB ,CM ?平面P AB ,所以CM ∥平面P AB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明:由已知,P A ⊥AB ,P A ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以P A ⊥平面ABCD , 从而P A ⊥BD .因为AD ∥BC ,BC =12AD , 所以BC ∥MD ,且BC =MD ,所以四边形BCDM 是平行四边形,所以BM =CD =12AD ,所以BD ⊥AB . 又AB ∩AP =A ,所以BD ⊥平面P AB .又BD ?平面PBD ,所以平面P AB ⊥平面PBD .7. [2016·阳泉模拟] 如图7-41-10,在四棱锥P -ABCD 中,BC ∥AD ,BC =1,AD =3,AC ⊥CD ,且平面PCD ⊥平面ABCD .(1)求证:AC ⊥PD .(2)在线段P A 上是否存在点E ,使BE ∥平面PCD 若存在,求出PE P A的值;若不存在,请说明理由.解:(1)证明:∵平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,AC ⊥CD ,AC ?平面ABCD ,∴AC ⊥平面PCD ,∵PD ?平面PCD ,∴AC ⊥PD .(2)在线段P A 上存在点E ,使BE ∥平面PCD ,且PE P A =13.下面给出证明: ∵AD =3,BC =1,∴在△P AD 中,分别取P A ,PD 靠近点P 的三等分点E ,F ,连接EF ,BE ,CF . ∵PE P A =PF PD =13,∴EF ∥AD ,且EF =13AD =1. 又∵BC ∥AD ,∴BC ∥EF ,且BC =EF ,∴四边形BCFE 是平行四边形,∴BE ∥CF ,又∵BE ?平面PCD ,CF ?平面PCD ,∴BE ∥平面PCD .8.(10分)[2016·河南中原名校联考] 如图所示,在四棱锥S -ABCD 中,平面SAD ⊥平面ABCD ,AB ∥DC ,△SAD 是等边三角形,且SD =2,BD =23,AB =2CD =4.(1)证明:平面SBD ⊥平面SAD .(2)若E 是SC 上的一点,当E 点位于线段SC 上什么位置时,SA ∥平面EBD 请证明你的结论.(3)求四棱锥S -ABCD 的体积.解:(1)证明:∵△SAD 是等边三角形,∴AD =SD =2,又BD =23,AB =4,∴AD 2+BD 2=AB 2,∴BD ⊥AD ,又∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD .∴BD ⊥平面SAD .又BD ?平面SBD ,∴平面SBD ⊥平面SAD .(2)当E 为SC 的三等分点,即ES =2CE 时,结论成立.证明如下:连接AC 交BD 于点H ,连接EH .∵CD ∥AB ,CD =12AB , ∴CH HA =12=CE ES,∴HE ∥SA . 又SA ?平面EBD ,HE ?平面EBD ,∴SA ∥平面EBD .(3)过S 作SO ⊥AD ,交AD 于点O .∵△SAD 为等边三角形,∴O 为AD 的中点,∴SO = 3.易证得SO ⊥平面ABCD ,∴V 四棱锥S -ABCD =13S 梯形ABCD ·SO . ∵S 梯形ABCD =12×(2+4)×3=33, ∴V 四棱锥S - ABCD =3.二、探索垂直关系1.如图所示,在三棱锥P - ABC 中,已知P A ⊥底面ABC ,AB ⊥BC ,E ,F 分别是线段PB ,PC 上的动点,则下列说法错误的是( )A .当AE ⊥PB 时,△AEF 一定为直角三角形B .当AF ⊥PC 时,△AEF 一定为直角三角形C .当EF ∥平面ABC 时,△AEF 一定为直角三角形D .当PC ⊥平面AEF 时,△AEF 一定为直角三角形答案:B [解析] 已知P A ⊥底面ABC ,则P A ⊥BC ,又AB ⊥BC ,P A ∩AB =A ,则BC ⊥平面P AB ,BC ⊥AE .当AE ⊥PB 时,又PB ∩BC =B ,则AE ⊥平面PBC ,则AE ⊥EF ,A 正确.当EF ∥平面ABC 时,又EF ?平面PBC ,平面PBC ∩平面ABC =BC ,则EF ∥BC ,故EF ⊥平面P AB ,则AE ⊥EF ,故C 正确.当PC ⊥平面AEF 时,PC ⊥AE ,又BC ⊥AE ,PC ∩BC =C ,则AE ⊥平面PBC ,则AE ⊥EF ,故D 正确.用排除法可知选B.2.如图所示,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .答案:a 或2a [解析] 由题意易知,B 1D ⊥平面ACC 1A 1,所以B 1D ⊥CF .要使CF ⊥平面B 1DF ,只需CF ⊥DF 即可.当CF ⊥DF 时,设AF =x ,则A 1F =3a -x .由Rt △CAF ∽Rt △F A 1D ,得AC A 1F =AF A 1D ,即2a 3a -x =x a,整理得x 2-3ax +2a 2=0,解得x =a 或x =2a .3.如图所示,P A ⊥圆O 所在的平面,AB 是圆O 的直径,C 是圆O 上的一点,E ,F 分别是点A 在PB ,PC 上的正投影,给出下列结论:①AF ⊥PB ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC .其中正确结论的序号是________.答案:①②③ [解析] 由题意知P A ⊥平面ABC ,∴P A ⊥BC .又AC ⊥BC ,P A ∩AC =A ,∴BC ⊥平面P AC ,∴BC ⊥AF .∵AF ⊥PC ,BC ∩PC =C ,∴AF ⊥平面PBC ,∴AF ⊥PB ,AF ⊥BC .又AE ⊥PB ,AE ∩AF =A ,∴PB ⊥平面AEF ,∴PB ⊥EF .故①②③正确.4.如图所示,已知长方体ABCD -A 1B 1C 1D 1的底面ABCD 为正方形,E 为线段AD 1的中点,F 为线段BD 1的中点.(1)求证:EF ∥平面ABCD ;(2)设M 为线段C 1C 的中点,当D 1D AD的比值为多少时,DF ⊥平面D 1MB 并说明理由. 解析:(1)证明:∵E 为线段AD 1的中点,F 为线段BD 1的中点,∴EF ∥AB .∵EF?平面ABCD,AB?平面ABCD,∴EF∥平面ABCD.(2)当D1DAD=2时,DF⊥平面D1MB.∵ABCD是正方形,∴AC⊥BD.∵D1D⊥平面ABC,∴D1D⊥AC.∴AC⊥平面BB1D1D,∴AC⊥DF.∵F,M分别是BD1,CC1的中点,∴FM∥AC.∴DF⊥FM.∵D1D=2AD,∴D1D=BD.∴矩形D1DBB1为正方形.∵F为BD1的中点,∴DF⊥BD1.∵FM∩BD1=F,∴DF⊥平面D1MB.5.如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1)(2)(1)求证:DE∥平面A1CB.(2)求证:A1F⊥BE.(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ说明理由.解:(1)∵D,E分别为AC,AB的中点,∴DE∥BC.(2分)又∵DE?平面A1CB,∴DE∥平面A1CB.(4分)(2)由已知得AC⊥BC且DE∥BC,∴DE⊥AC.∴DE⊥A1D,DE⊥CD.∴DE⊥平面A1DC.而A1F?平面A1DC,(6分)∴DE⊥A1F.又∵A1F⊥CD,CD∩DE=D,∴A1F⊥平面BCDE,又BE?平面BCDE,∴A1F⊥BE.(9分)(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP.又DP∩DE=D,∴A1C⊥平面DEP.(12分)从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.(14分)6.如图,在正方体ABCD-A1B1C1D1中,E、F分别是CD、A1D1的中点.(1)求证:AB1⊥BF;(2)求证:AE⊥BF;(3)棱CC1上是否存在点P,使BF⊥平面AEP若存在,确定点P的位置,若不存在,说明理由.解析:(1)证明:连接A1B,则AB1⊥A1B,又∵AB1⊥A1F,且A1B∩A1F=A1,∴AB1⊥平面A1BF.又BF?平面A1BF,∴AB1⊥BF.(2)证明:取AD中点G,连接FG,BG,则FG⊥AE,又∵△BAG≌△ADE,∴∠ABG=∠DAE.∴AE⊥BG.又∵BG∩FG=G,∴AE⊥平面BFG.又BF?平面BFG,∴AE⊥BF.(3)存在.取CC1中点P,即为所求.连接EP,AP,C1D,∵EP∥C1D,C1D∥AB1,∴EP∥AB1.由(1)知AB1⊥BF,∴BF⊥EP.又由(2)知AE⊥BF,且AE∩EP=E,∴BF⊥平面AEP.7.如图(1)所示,在Rt△ABC中,∠ABC=90°,D为AC的中点,AE⊥BD于点E(不同于点D),延长AE交BC于点F,将△ABD沿BD折起,得到三棱锥A1-BCD,如图(2)所示.(1)若M是FC的中点,求证:直线DM∥平面A1EF.(2)求证:BD⊥A1F.(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直并说明理由.解:(1)证明:在题图(1)中,因为D,M分别为AC,FC的中点,所以DM是△ACF的中位线,所以DM∥EF,则在题图(2)中,DM∥EF,又EF?平面A1EF,DM?平面A1EF,所以DM∥平面A1EF.(2)证明:因为A1E⊥BD,EF⊥BD,且A1E∩EF=E,所以BD⊥平面A1EF.又A1F?平面A1EF,所以BD⊥A1F.(3)直线A1B与直线CD不能垂直.理由如下:因为平面A1BD⊥平面BCD,平面A1BD∩平面BCD=BD,EF⊥BD,EF?平面BCD,所以EF⊥平面A1BD.因为A1B?平面A1BD,所以A1B⊥EF,又EF∥DM,所以A1B⊥DM.假设A1B⊥CD,因为A1B⊥DM,CD∩DM=D,所以A1B⊥平面BCD,所以A1B⊥BD,这与∠A1BD为锐角矛盾,所以假设不成立,所以直线A1B与直线CD不能垂直.。

高考数学立体几何空间几何中的探索性问题

高考数学立体几何空间几何中的探索性问题

立体几何空间几何中的探索性问题大题拆解技巧【母题】(2021年全国甲卷)已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE.(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?【拆解1】已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC 和CC1的中点,D为棱A1B1上的点,BF⊥A1B1,证明:BA⊥BC.【解析】连接AF,∵E,F分别为直三棱柱ABC-A1B1C1的棱AC和CC1的中点,且AB=BC=2,∴CF=1,BF=√BC2+CF2=√22+12=√5,∵BF⊥A1B1,AB∥A1B1,∴BF⊥AB,∴AF=√AB2+BF2=√22+(√5)2=3,AC=√AF2-CF2=√32-12=2√2,∴AC2=AB2+BC2,即BA⊥BC.【拆解2】本例条件不变,证明:BF⊥DE.【解析】由拆解1可知BA⊥BC,故以B为原点,BA,BC,BB1所在的直线分别为x,y,z轴建立如图所示的空间直角坐标系,则A(2,0,0),B(0,0,0),C(0,2,0),E(1,1,0),F(0,2,1),设B 1D=m(0≤m≤2),则D(m,0,2), ∴BF ⃗⃗⃗⃗ =(0,2,1),DE ⃗⃗⃗⃗⃗ =(1-m,1,-2), ∴BF ⃗⃗⃗⃗ ·DE⃗⃗⃗⃗⃗ =0,即BF ⊥DE. 【拆解3】本例条件不变,问当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?【解析】∵AB ⊥平面BB 1C 1C,∴平面BB 1C 1C 的一个法向量为m=(1,0,0), 由(1)知,DE ⃗⃗⃗⃗⃗ =(1-m,1,-2),EF ⃗⃗⃗⃗ =(-1,1,1), 设平面DFE 的法向量为n=(x,y,z),则{n ·DE⃗⃗⃗⃗⃗ =0,n ·EF ⃗⃗⃗⃗ =0,即{(1-m )x +y -2z =0,-x +y +z =0, 令x=3,则y=m+1,z=2-m,∴n=(3,m+1,2-m), ∴cos m,n =m ·n |m |·|n |=1×√9+(m+1)+(2-m )=√2m 2-2m+14=√2(m -12) 2+272,∴当m=12时,平面BB 1C 1C 与平面DFE 所成的二面角的余弦值最大,为√63,此时正弦值最小,为√33. 小做 变式训练《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵ABC -A 1B 1C 1中,AB ⊥AC,AA 1=AB=AC=1,M,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.(1)若P 为A 1B 1的中点,求证:PN ∥平面AA 1C 1C.(2)是否存在点P,使得平面PMN 与平面ABC 所成的二面角为45°?若存在,试确定点P 的位置;若不存在,请说明理由.【拆解1】《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵ABC -A 1B 1C 1中,AB ⊥AC,AA 1=AB=AC=1,M,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.若P 为A 1B 1的中点,求证:PN ∥平面AA 1C 1C. 【解析】取A 1C 1的中点H,连接PH,HC,如图所示.在堑堵ABC -A 1B 1C 1中,四边形BCC 1B 1为平行四边形, 所以B 1C 1∥BC 且B 1C 1=BC.在△A 1B 1C 1中,P,H 分别为A 1B 1,A 1C 1的中点, 所以PH ∥B 1C 1且PH=12B 1C 1. 因为N 为BC 的中点,所以NC=12BC,从而NC=PH 且NC ∥PH,所以四边形PHCN 为平行四边形,于是PN ∥CH.因为CH ⊂平面A 1C 1CA,PN ⊄平面A 1C 1CA,所以PN ∥平面AA 1C 1C. 【拆解2】本例条件不变,求平面PMN 的法向量.【解析】以A 为原点,AB,AC,AA 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),N(12,12,0),M(0,1,12).假设满足条件的点P 存在,令P(λ,0,1)(0≤λ≤1),则NM ⃗⃗⃗⃗⃗⃗ =(-12,12,12),PN⃗⃗⃗⃗⃗ =(12-λ,12,-1,). 设平面PMN 的法向量为n=(x,y,z), 则{n ·NM⃗⃗⃗⃗⃗⃗ =0,n ·PN ⃗⃗⃗⃗⃗ =0,即{-12x +12y +12z =0,(12-λ)x +12y -z =0.令x=3,得y=1+2λ,z=2-2λ, 所以n=(3,1+2λ,2-2λ).【拆解3】本例条件不变,问是否存在点P,使得平面PMN 与平面ABC 所成的二面角为45°?若存在,试确定点P 的位置;若不存在,请说明理由.【解析】由拆解2知,平面PMN 的一个法向量为n=(3,1+2λ,2-2λ), 且易知平面ABC 的一个法向量为m=(0,0,1). 由题意得|cos <m,n>|=√9+(1+2λ)+(2-2λ)=√8λ2-4λ+14=√22,解得λ=-12,故点P 不在线段A 1B 1上.所以不存在.通法 技巧归纳解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x,y,z);②坐标平面内的点其中一个坐标为0,如平面xOy 上的点为(x,y,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z);④直线(线段)AB 上的点P,可设为AP⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,表示出点P 的坐标,或直接利用向量运算. 突破 实战训练 <基础过关>1.如图,在三棱锥P -ABC 中,△ABC 为直角三角形,∠ACB=90°,△PAC 是边长为4的等边三角形,BC=2√3,二面角P -AC -B 的大小为60°,点M 为PA 的中点.(1)请你判断平面PAB 垂直于平面ABC 吗?若垂直,请证明;若不垂直,请说明理由. (2)求CM 与平面PBC 所成的角的正弦值.【解析】(1)平面PAB ⊥平面ABC,理由如下:如图,分别取AC,AB 的中点D,E,连接PD,DE,PE, 则DE ∥BC.因为∠ACB=90°,BC=2√3. 所以DE ⊥AC,DE=√3.因为△PAC 是边长为4的等边三角形,所以PD ⊥AC,PD=2√3.所以∠PDE 为二面角P -AC -B 的平面角,则∠PDE=60°, 在△PDE 中,由余弦定理,得PE=√PD 2+DE 2-2PD ·DEcos 60°=3, 所以PD 2=PE 2+ED 2, 所以PE ⊥ED.因为ED ⊥AC,PD ⊥AC,ED∩PD=D,ED,PD ⊂平面PDE, 所以AC ⊥平面PED, 所以AC ⊥PE.又AC∩ED=D,DE,AC ⊂平面ABC,所以PE ⊥平面ABC, 因为PE ⊂平面ABC, 所以平面PAB ⊥平面ABC.(2)以点C 为原点,CA,CB 所在的直线分别为x,y 轴,过点C 且与PE 平行的直线为z 轴,建立空间直角坐标系,如图所示,则B(0,2√3,0),A(4,0,0),E(2,√3,0),P(2,√3,3),M(3,√32,32),CM ⃗⃗⃗⃗⃗⃗ =(3,√32,32),CB⃗⃗⃗⃗⃗ =(0,2√3,0),CP ⃗⃗⃗⃗ =(2,√3,3). 设平面PBC 的法向量为n=(x 1,y 1,z 1), 则{n ·CB⃗⃗⃗⃗⃗ =0,n ·CP ⃗⃗⃗⃗ =0,即{2√3y 1=0,2x 1+√3y 1+3z 1=0,取x 1=3,则n=(3,0,-2).所以CM 与平面PBC 所成的角的正弦值为sin θ=|cos<CM⃗⃗⃗⃗⃗⃗ ,n>|=2√3×√13=√3913.2.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E,F 分别是B 1B,BC 的中点. (1)求证:A 1E,AB,DF 三线共点.(2)线段CD 上是否存在一点G,使得直线FG 与平面A 1EC 1所成的角的正弦值为√33?若存在,请指出点G 的位置,并求二面角E -A 1C 1-G 的平面角的余弦值大小;若不存在,请说明理由.【解析】(1)连接EF,AD,∵EF ∥A 1D 且EF≠A 1D,∴A 1E,DF 共面,设A 1E∩DF=P,则点P ∈A 1E,而A 1E ⊂平面AA 1B 1B, ∴点P ∈平面AA 1B 1B. 同理可得点P ∈平面ABCD,∴点P 在平面ABCD 与平面AA 1B 1B 的公共直线AB 上, 即A 1E,AB,DF 三线共点.(2)根据题意可知,AA 1,AB,AD 两两垂直,以A 为原点,AB,AD,AA 1所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系,由图可得A 1(0,0,2),E(2,0,1),C 1(2,2,2),F(2,1,0), 故A 1E ⃗⃗⃗⃗⃗⃗⃗ =(2,0,-1),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2,0), 假设满足条件的点G 存在, 设G(a,2,0),a ∈[0,2],则FG ⃗⃗⃗⃗ =(a -2,1,0), 设平面A 1EC 1的法向量为m=(x,y,z), 则由{m ·A 1E ⃗⃗⃗⃗⃗⃗⃗ =0m ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{2x -z =0,2x +2y =0,不妨取z=2,则x=1,y=-1,所以平面A 1EC 1的一个法向量为m=(1,-1,2), 设直线FG 与平面A 1EC 1的平面角为θ,则sin θ=|cos<m,FG ⃗⃗⃗⃗ >|=|m ·FG⃗⃗⃗⃗⃗|m ||FG ⃗⃗⃗⃗⃗ ||=|√(a -2)+12+02×√12+(-1)+22|=√33,解得a=1,故G 为CD 的中点. 则GC 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,2),设平面A 1GC 1的法向量为n=(x,y,z),由{n ·GC 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{x +2z =0,2x +2y =0,取x=-2,则z=1,y=2,则平面A 1GC 1的一个法向量为n=(-2,2,1), |cos<m,n>|=|m ·n|m ||n ||=|√6×3|=√69, 所以二面角E -A 1C 1-G 的平面角的余弦值为√69.3.如图,C 是以AB 为直径的圆O 上异于A,B 的点,平面PAC ⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB 的中点,记平面AEF 与平面ABC 的交线为直线l.(1)求证:直线l ⊥平面PAC.(2)直线l 上是否存在点Q,使直线PQ 分别与平面AEF 、直线EF 所成的角互余?若存在,求出|AQ|的长;若不存在,请说明理由.【解析】(1)∵E,F 分别是PC,PB 的中点,∴BC ∥EF,又EF ⊂平面EFA,BC ⊄平面EFA,∴BC ∥平面EFA,又BC ⊂平面ABC,平面EFA∩平面ABC=l,∴BC ∥l,又BC ⊥AC,平面PAC∩平面ABC=AC,平面PAC ⊥平面ABC,∴BC ⊥平面PAC,∴l ⊥平面PAC.(2)以C 为坐标原点,CA,CB 所在的直线分别为x,y 轴,过点C 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,可得A(2,0,0),B(0,4,0),P(1,0,√3),E(12,0,√32),F(12,2,√32),AE ⃗⃗⃗⃗⃗ =(-32,0,√32),EF ⃗⃗⃗⃗ =(0,2,0), 设Q(2,y,0),平面AEF 的法向量为m=(x,y,z),则{AE⃗⃗⃗⃗⃗ ·m =-32x +√32z =0,EF⃗⃗⃗⃗ ·m =2y =0,取z=√3,得m=(1,0,√3),PQ ⃗⃗⃗⃗⃗ =(1,y,-√3), |cos<PQ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗ >|=|2√4+y 2|=√4+y 2,|cos PQ⃗⃗⃗⃗⃗ ,m |=|2√4+y 2|=√4+y 2,依题意得|cos PQ ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗ |=|cos PQ ⃗⃗⃗⃗⃗ ,m |, ∴y=±1,∴直线l 上存在点Q,使直线PQ 分别与平面AEF 、直线EF 所成的角互余,此时|AQ|=1. 4.在图1所示的平面图形ABCD 中,△ABD 是边长为4的等边三角形,BD 是∠ADC 的平分线,且BD ⊥BC,M 为AD 的中点,以BM 为折痕将△ABM 折起得到四棱锥A -BCDM(如图②所示).(1)设平面ABC 和平面ADM 的交线为l,在四棱锥A -BCDM 的棱AC 上求一点N,使直线BN ∥l;(2)若二面角A -BM -D 的大小为60°,求平面ABD 和平面ACD 所成的锐二面角的余弦值. 【解析】(1)延长CB,DM,设其交点为E,如图所示,因为点A,E 既在平面ABC 内,又在平面AMD 内, 所以直线AE 为平面ABC 与平面AMD 的交线l,因为BD 为∠MDC 的平分线,且BD ⊥BC,所以B 为EC 的中点, 取AC 的中点N,连接BN,则BN 为△AEC 的中位线, 所以直线BN ∥AE,即BN ∥l, 故N 为棱AC 的中点.(2)因为BM ⊥AM,BM ⊥MD,所以∠AMD=60°, 又因为AM=MD,所以△AMD 为等边三角形,取MD 的中点O 为坐标原点,以OM 所在的直线为x 轴,在平面BCDM 内过点O 且和MD 垂直的直线为y 轴,以OA 所在的直线为z 轴,建立如图所示的空间直角坐标系,所以D(-1,0,0),A(0,0,√3),C(-5,4√3,0),B(1,2√3,0), 所以DA ⃗⃗⃗⃗⃗ =(1,0,√3),DC ⃗⃗⃗⃗⃗ =(-4,4√3,0),DB ⃗⃗⃗⃗⃗ =(2,2√3,0), 设平面ACD 的法向量为m=(x,y,z),则{m ·DA ⃗⃗⃗⃗⃗ =0,m ·DC ⃗⃗⃗⃗⃗ =0,即{x +√3z =0,-4x +4√3y =0,令z=-√3,则x=3,y=√3, 所以m=(3,√3,-√3),设平面ABD 的法向量为n=(a,b,c),则{n ·DA⃗⃗⃗⃗⃗ =0,n ·DB ⃗⃗⃗⃗⃗ =0,即{a +√3c =0,2a +2√3b =0,令c=-√3,则a=3,b=-√3, 所以n=(3,-√3,-√3),设平面ABD 和平面ACD 所成的锐二面角的大小为θ, 所以cos θ=|m ·n ||m ||n |=√3×√3)√3)√3)|√32+(√3)+(-√3)·√32+(-√3)+(-√3)=35,所以平面ABD 和平面ACD 所成的锐二面角的余弦值为35.<能力拔高>5.已知四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,且BC=BD,DD 1⊥平面ABCD,AA 1=1,BE ⊥CD 于点E.(1)试问在线段A 1B 1上是否存在一点F,使得AF ∥平面BEC 1?若存在,求出点F 的位置;若不存在,请说明理由.(2)在(1)的条件下,求平面ADF 和平面BEC 1所成的锐二面角的余弦值.【解析】(1)当F 为线段A 1B 1的中点时,AF ∥平面BEC 1. 下面给出证明:取AB 的中点G,连接EG,B 1G,则FB 1∥AG,且FB 1=AG, 所以四边形AGB 1F 为平行四边形,所以AF ∥B 1G.因为BC=BD,BE ⊥CD,所以E 为CD 的中点,又G 为AB 的中点,AB ∥CD,AB=CD,所以BG ∥CE,且BG=CE,所以四边形BCEG 为平行四边形,所以EG ∥BC,且EG=BC,又BC ∥B 1C 1,BC=B 1C 1, 所以EG ∥B 1C 1,且EG=B 1C 1,所以四边形EGB 1C 1为平行四边形, 所以B 1G ∥C 1E,所以AF ∥C 1E,又AF ⊄平面BEC 1,C 1E ⊂平面BEC 1,所以当F 为线段A 1B 1的中点时,AF ∥平面BEC 1. (2)连接DG,因为BD=BC=AD,G 为AB 的中点,所以DG ⊥AB,又AB ∥CD,所以DG ⊥CD, 因为DD 1⊥平面ABCD,DC,DG ⊂平面ABCD,所以DD 1⊥DC,DD 1⊥DG,所以DG,DC,DD 1两两垂直,以D 为原点,DG,DC,DD 1所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系D -xyz,由题意知BD=BC=CD=AB=AD=2,所以∠DAB=∠BDC=60°,又AA 1=1,所以D(0,0,0),A(√3,-1,0),D 1(0,0,1),E(0,1,0),C 1(0,2,1),B(√3,1,0),F(√3,0,1), 所以EB ⃗⃗⃗⃗⃗ =(√3,0,0),EC 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),DA ⃗⃗⃗⃗⃗ =(√3,-1,0),DF ⃗⃗⃗⃗⃗ =(√3,0,1).设平面BEC 1的法向量为n=(x,y,z),则{EB ⃗⃗⃗⃗⃗ ·n =0,EC 1⃗⃗⃗⃗⃗⃗⃗ ·n =0,即{√3x =0,y +z =0,令z=1,得平面BEC 1的一个法向量为n=(0,-1,1).设平面ADF 的法向量为m=(a,b,c),则{DA ⃗⃗⃗⃗⃗ ·m =0,DF ⃗⃗⃗⃗⃗ ·m =0,即{√3a -b =0,√3a +c =0,令a=1,得b=√3,c=-√3,平面ADF 的一个法向量m=(1,√3,-√3).设平面ADF 和平面BEC 1所成的锐二面角的大小为θ, 则cos θ=|m ·n ||m |·|n |=√3√7×√2=√427.所以平面ADF 和平面BEC 1所成的锐二面角的余弦值为√427. 6.在正三棱柱ABC -A 1B 1C 1中,已知AB=2,AA 1=3,M,N 分别为AB,BC 的中点,P 为线段CC 1上一点.平面ABC 1与平面ANP 的交线为l.(1)是否存在点P 使得C 1M ∥平面ANP?若存在,请指出点P 的位置并证明;若不存在,请说明理由.(2)若CP=1,求二面角B -l -N 的余弦值.【解析】(1)当CP=2时,C 1M ∥平面ANP. 证明如下:连接CM 交AN 于点G,连接GP,因为CG GM =CPPC 1=2,所以C 1M ∥GP,又GP ⊂平面ANP,C 1M ⊄平面ANP, 所以C 1M ∥平面ANP.(2)取AC 的中点O,连接BO,易证OB ⊥平面ACC 1A 1,如图,分别以OB,OC 所在的直线为x,y 轴,以过点O且平行于AA 1的直线为z轴建立空间直角坐标系,A(0,-1,0),B(√3,0,0),C 1(0,1,3),N (√32,12,0),P(0,1,1),则AB ⃗⃗⃗⃗⃗ =(√3,1,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,3),AN ⃗⃗⃗⃗⃗ =(√32,32,0),AP ⃗⃗⃗⃗⃗ =(0,2,1). 设平面ABC 1的法向量为n 1=(x 1,y 1,z 1),平面APN 的法向量为n 2=(x 2,y 2,z 2), 由{n 1·AB ⃗⃗⃗⃗⃗ =0,n 1·AC 1⃗⃗⃗⃗⃗⃗⃗ =0得{√3x 1+y 1=0,2y 1+3z 1=0,令x 1=√3得n 1=(√3,-3,2),由{n 2·AP ⃗⃗⃗⃗⃗ =0,n 2·AN ⃗⃗⃗⃗⃗ =0得{2y 2+z 2=0,√32x 2+32y 2=0,令x 2=√3得n 2=(√3,-1,2), 设二面角B -l -N 的平面角为θ,则cos θ=|n 1·n 2|n 1||n 2||=4×√8=5√28. <拓展延伸>7.如图,在△ABC 中,AB=BC=2,∠ABC=90°,E,F 分别为AB,AC 边的中点,以EF 为折痕把△AEF 折起,使点A 到达点P 的位置,且PB=BE.(1)证明:EF ⊥平面PBE.(2)设N 为线段PF 上的动点,求直线BN 与平面PCF 所成角的正弦值的最大值.【解析】(1)因为E,F 分别为AB,AC 边的中点,所以EF ∥BC. 又因为∠ABC=90°,所以EF ⊥BE,EF ⊥PE. 又因为BE∩PE=E,所以EF ⊥平面PBE. (2)取BE 的中点O,连接PO,由(1)知EF ⊥平面PBE,EF ⊂平面BCFE, 所以平面PBE ⊥平面BCFE. 因为PB=BE=PE,所以PO ⊥BE.又因为PO ⊂平面PBE,平面PBE∩平面BCFE=BE, 所以PO ⊥平面BCFE .过点O 作OM ∥BC 交CF 于点M,分别以OB,OM,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则P (0,0,√32),C (12,2,0),F (-12,1,0),B(12,0,0),PC ⃗⃗⃗⃗ =(12,2,-√32),PF ⃗⃗⃗⃗ =(-12,1,-√32),N 为线段PF 上一动点,设PN ⃗⃗⃗⃗⃗ =λPF ⃗⃗⃗⃗ (0≤λ≤1), 则N (-λ2,λ,√32(1-λ)),BN⃗⃗⃗⃗⃗ =(-λ+12,λ,√32(1-λ)), 设平面PCF 的法向量为m=(x,y,z),则{PC ⃗⃗⃗⃗ ·m =0,PF ⃗⃗⃗⃗ ·m =0,即{12x +2y -√32z =0,-12x +y -√32z =0,取m=(-1,1,√3).设直线BN 与平面PCF 所成的角为θ, 则sin θ=|cos<BN ⃗⃗⃗⃗⃗ ,m>|=|BN ⃗⃗⃗⃗⃗⃗·m ||BN ⃗⃗⃗⃗⃗⃗||m |=√5×√2λ2-λ+1=√5×√2(λ-14)2+78≤√5×√78=4√7035,当且仅当λ=14时取等号.故直线BN 与平面PCF 所成角的正弦值的最大值为4√7035.8.如图,矩形ABCD中,AB=3,BC=1,E、F是边DC的三等分点.现将△DAE,△CBF分别沿AE,BF 折起,使得平面DAE、平面CBF均与平面ABFE垂直.(1)若G为线段AB上一点,且AG=1,求证:DG∥平面CBF.(2)求二面角A-CF-B的正弦值.【解析】(1)(法一)如图,分别取AE,BF的中点M,N,连接DM,CN,MG,MN..因为AD=DE=1,所以DM⊥AE,且DM=√22.因为BC=CF=1,所以CN⊥BF,且CN=√22因为平面DAE⊥平面ABFE,平面DAE∩平面ABFE=AE,DM⊥AE,DM⊂平面DAE,所以DM ⊥平面ABFE.同理可得CN⊥平面ABFE,所以DM∥CN,且CN=DM.又DM⊄平面CBF,CN⊂平面CBF,所以DM∥平面CBF,在矩形ABCD中,∠DAE=45°,故∠EAB=45°,同理可得∠FBA=45°,,所以MG2+AM2=AG2,所以在几何体ABFEDC中,因为MG=√AM2+AG2-2AM·AGcos45°=√22∠AMG=90°,所以△AMG是以AG为斜边的等腰直角三角形,故∠MGA=45°.而∠FBA=45°,且MG与FB共面于平面EFBA,故MG∥FB.又MG⊄平面CBF,FB⊂平面CBF,所以MG∥平面CBF.又MG∩DM=M,MG,DM⊂平面DMG,所以平面DMG∥平面CBF.因为DG⊂平面DMG,所以DG∥平面CBF.(法二)如图,分别取AE,BF 的中点M,N,连接DM,CN,MG,MN. 因为AD=DE=1,∠ADE=90°,所以DM ⊥AE,且DM=√22. 因为BC=CF=1,∠BCF=90°,所以CN ⊥BF,且CN=√22.因为平面DAE ⊥平面ABFE,平面DAE∩平面ABFE=AE,DM ⊥AE,DM ⊂平面DAE,所以DM ⊥平面ABFE.同理可得CN ⊥平面ABFE,所以DM ∥CN,且CN=DM, 所以四边形CDMN 是矩形,所以CD MN. 又MN 是等腰梯形ABFE 的中位线,所以CD=MN=1+32=2.又GB=2,所以CD ∥GB,CD=GB,所以四边形CDGB 是平行四边形,所以CB ∥DG. 又CB ⊂平面CBF,DG ⊄平面CBF,所以DG ∥平面CBF.(2)如图,以G 为坐标原点,分别以AB,GE 所在直线为x 轴,y 轴,以过点G 并垂直于平面ABFE 的直线为z 轴建立空间直角坐标系, 则A(-1,0,0),B(2,0,0),E(0,1,0),F(1,1,0),C (32,12,√22), 则AF ⃗⃗⃗⃗⃗ =(2,1,0),FC ⃗⃗⃗⃗ =(12,-12,√22),BF ⃗⃗⃗⃗ =(-1,1,0),GF ⃗⃗⃗⃗ =(1,1,0), 所以GF ⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ =(1,1,0)·(-1,1,0)=0,所以GF ⊥BF. 由(1)得CN ⊥平面ABFE,所以GF ⊥CN.而BF,CN ⊂平面CBF,BF∩CN=N,故GF ⊥平面CBF, 从而GF ⃗⃗⃗⃗ =(1,1,0)是平面CBF 的一个法向量. 设n=(x,y,z)为平面AFC 的法向量, 则{n ·AF⃗⃗⃗⃗⃗ =0,n ·FC⃗⃗⃗⃗ =0,即{2x +y =0,x -y +√2z =0,解得{y =-2x ,z =-3√22x , 取x=-2,则y=4,z=3√2,即n=(-2,4,3√2),所以cos<GF ⃗⃗⃗⃗ ,n>=√2)√2×√38=√1919,故所求二面角的正弦值为√1-119=3√3819。

立体几何中的探索性问题求解策略(原卷版)

立体几何中的探索性问题求解策略(原卷版)

专题35 立体几何中的探索性问题求解策略【高考地位】立体几何中的探索性问题是高考几何的一个难点,尤常见于新高考的多选题中,其题目特点是灵活性较强,需要相对丰富的空间想象能力及计算能力,对所研究几何体进行深入的剖析与推理,其常见类型有两种:一、空间中位置关系的探索;二、空间角的探索.类型一空间中位置关系的探索方法一几何法-的所有棱长均为E,F分别是PC,AB的中点,M为棱PB上异于P,例1已知正四棱锥P ABCDB的一动点,现有以下结论:①线段EF的长度是△②EMF③存在点M使得PB⊥平面MEF;④EMF∠始终是钝角.其中不正确的结论共有()A.1个B.2个C.3个D.4个【来源】河北省沧州市2021届高三三模数学试题【变式演练1】(多选)在直角三角形ABC 中,∠B =2π,AC =2BC =4,D 为线段AC 的中点,如图,将∠ABD 沿BD 翻折,得到三棱锥P ﹣BCD (点P 为点A 翻折到的位置),在翻折过程中,下列说法正确的是( )A .∠PBD 的外接圆半径为2B .存在某一位置,使得PD ∠BDC .存在某一位置,使得PB ∠CDD .若PD ∠DC ,则此时三棱锥P ﹣BCD 的外接球的体积为323π 【来源】山东省百师联盟2021届高三二轮联考数学试题(二)方法二 向量法例2、3.已知长方体1111ABCD A B C D -中,12BB AB BC ==,点E 在线段1CC 上,()101CC λλ=≤≤平面α过线段1AA 的中点以及点1B 、E ,现有如下说法: (1)[]0,1λ∃∈,使得1BE B E ⊥;(2)若12,23λ⎡⎤∈⎢⎥⎣⎦,则平面α截长方体1111ABCD A B C D -所得截面为平行四边形;(3)若0λ=,2AB =,则平面α截长方体1111ABCD A B C D -所得截面的面积为以上说法正确的个数为( ) A .0B .1C .2D .3【来源】全国一卷2021届高中毕业班考前热身联合考试理科数学试题例3、(多选)在棱长固定的正方体1111ABCD A B C D -中,点E ,F 分别满足AE AB λ=,([0,1],[0,1])BF BC μλμ=∈∈,则( )A .当12μ=时,三棱锥11A B EF -的体积为定值 B .当12μ=时,存在λ使得1BD ⊥平面1B EF C .当12λ=时,点A ,B 到平面1B EF 的距离相等 D .当λμ=时,总有11A F C E ⊥【来源】江苏省苏州市2021-2022学年高三上学期期初调研数学试题【变式演练2】(多选)在棱长为1的正方体1111ABCD A B C D -中,点E 为线段1CD 上一动点(不包含端点),则下列说法正确的有( )A .1AB ⊥平面11A D EB .1DE A E +的最小值为1C .存在点E 使得1DE AD ⊥D .点D 到平面11A DE 【来源】全国新高考2021届高三数学方向卷试题(A )【变式演练3】如图所示,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AB AD ⊥,//AB CD ,24AB AD PA CD ====,G 为PD 的中点.(1)求证AG ⊥平面PCD ;(2)若点F 为PB 的中点,线段PC 上是否存在一点H ,使得平面GHF ⊥平面PCD ?若存在,请确定H 的位置;若不存在,请说明理由.【来源】湖北省恩施州2021-2022学年高三上学期第一次教学质量监测数学试题类型二 空间角的探索 方法一 几何法例3.如图,矩形ABCD 中,已知2,4,AB BC E ==为BC 的中点.将ABE △沿着AE 向上翻折至MAE 得到四棱锥M AECD -.平面AEM 与平面AECD 所成锐二面角为α,直线ME 与平面AECD 所成角为β,则下列说法错误的是( )A .若F 为AD 中点,则ABE △无论翻折到哪个位置都有平面AEM ⊥平面MBFB .若Q 为MD 中点,则ABE △无论翻折到哪个位置都有//CQ 平面AEM Csin αβ=Dcos αβ=【来源】湖北省武汉市华中师范大学第一附属中学2021届高三下学期5月高考押题卷文科数学试题 【变式演练4】(多选)在棱长为1的正方体1111ABCD A B C D -中,点P 满足1DP DD DA λμ=+,[0,1]λ∈,[0,1]μ∈,则以下说法正确的是( )A .当λμ=时,//BP 平面11CB D B .当12μ=时,存在唯一点P 使得DP 与直线1CB 的夹角为3π C .当1λμ+=时,CPD .当1λμ+=时,CP 与平面11BCC B 所成的角不可能为3π 【来源】湖北省恩施州2021-2022学年高三上学期第一次教学质量监测数学试题方法二 向量法例4.如图1,菱形ABCD 中120ABC ∠=︒,动点E ,F 在边AD ,AB 上(不含端点),且存在实数λ使EF BD λ→→=,沿EF 将AEF 向上折起得到PEF ,使得平面PEF ⊥平面BCDEF ,如图2所示.(1)若BF PD ⊥,设三棱锥P BCD -和四棱锥P BDEF -的体积分别为1V ,2V ,求12V V ;(2)试讨论,当点E 的位置变化时,二面角E PF B --是否为定值,若是,求出该二面角的余弦值,若不是,说明理由.【来源】重庆市南开中学2021届高三下学期第六次质量检测数学试题【变式演练5】O 中,平行四边形ABCD 是圆O 的内接四边形,AD ,点P 是半球面上的动点,且四棱锥P ABCD -的体积为83.(1)求动点P 的轨迹T 围成的面积;(2)是否存在点P 使得二面角P AD B --的大小为3π?请说明理由. 【来源】山西省临汾市2021届高三下学期二模数学(理)试题【高考再现】1.(2018年全国卷Ⅲ文数高考试题)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【反馈练习】1.(多选)已知梯形ABCD ,112AB AD BC ===,//AD BC ,AD AB ⊥,P 是线段BC 上的动点;将ABD △沿着BD 所在的直线翻折成四面体A BCD ',翻折的过程中下列选项中正确的是( )A .不论何时,BD 与A C '都不可能垂直B .存在某个位置,使得A D '⊥平面A BC ' C .直线A P '与平面BCD 所成角存在最大值 D .四面体A BCD '的外接球的表面积的最小值为4π【来源】广东省佛山市五校联盟2021届高三5月数学模拟考试试题2.(多选)已知某正方体的平面展开图如图所示,点E ,G 分别是棱BC ,BQ 的中点,F 是棱CR (不包含端点)上的动点,则下列说法正确的是( )A .四面体AEFP 的体积为定值B .存在点F 使得PC ⊥平面AEF C .存在点F 使得//PG 平面AEFD .当F 为棱CR 的中点时,平面AEF 截正方体所得上、下两个几何体的体积之比为17:7 【来源】2021新高考高考最后一卷数学第三模拟3.(多选)在棱长为1的正方体1111ABCD A B C D -中,已知E 为线段1B C 的中点,点F 和点P 分别满足111D F DC λ=,11D P D B μ=,其中,[0,1]λμ∈,则下列说法正确的是( ) A .当λ=12时,三棱锥P -EFD 的体积为定值 B .当µ=12时,四棱锥P -ABCD 的外接球的表面积是34πC .PE PF +D.存在唯一的实数对(,)λμ,使得EP∠平面PDF【来源】广东省2022届高三上学期新高考普通高中联合质量测评摸底数学试题4.如图,矩形BDEF所在平面与正方形ABCD所在平面互相垂直,2DB DE=,点P在线段EF上.给出下列命题:①直线PD⊥直线AC;②直线PD与平面ABCD所成角的正弦值的取值范围是⎤⎥⎣⎦;③存在点P,使得直线PD⊥平面ACF;④存在点P,使得直线//PD平面ACF.其中所有真命题的序号是______.【来源】四川省大数据精准联盟2021届高三第三次统一监测文科数学试题5.七面体玩具是一种常见的儿童玩具.在几何学中,七面体是指由七个面组成的多面体,常见的七面体有六角锥、五角柱、正三角锥柱、Szilassi多面体等.在拓扑学中,共有34种拓扑结构明显差异的凸七面体,它们可以看作是由一个长方体经过简单切割而得到的.在如图所示的七面体EABCFD中,EA⊥平面,//,//,,2, 4.ABCD EA FC AD BC AD AB AD AB BC FC EA⊥=====(1)在该七面体中,探究以下两个结论是否正确.若正确,给出证明;若不正确,请说明理由:①//EF平面ABCD;②AF⊥平面EBD;(2)求该七面体的体积.【来源】广东省珠海市第二中学2021届考前模拟数学试题6.如图,ABC 为正三角形,半圆O 以线段BC 为直径,D 是圆弧BC 上的动点(不包括B ,C 点)平面ABC ⊥平面BCD .(1)是否存在点D ,使得BD AC ⊥?若存在,求出点D 的位置,若不存在,请说明理由; (2)30CBD ∠︒=,求直线AC 与平面ABD 所成角的正弦值. 【来源】百强名校2021届高三5月模拟联考(A 卷)理科数学试题7.在滨海文化中心有天津滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体1111ABCD A B C D -中,14,2AB AD AA ===,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于,E F ,圆台上底的圆心1O 在11A B 上,直径为1.(1)求1A C 与平面1A ED 所成角的正弦值; (2)求二面角1E A D F --的余弦值;(3)圆台上底圆周上是否存在一点P 使得1FP AC ⊥,若存在,求点P 到直线11A B 的距离,若不存在则说明理由.【来源】天津市河东区2021届高三下学期一模数学试题8.如图,已知矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面,且2AB BP ==,1AD AE ==,AE AB ⊥,且//.AE BP(1)设点M 为棱PD 中点,求证//EM 平面ABCD ;(2)线段PD 上是否存在一点N ,使得直线BN 与平面PCD ?若存在,试求出线段PN 的长度;若不存在,请说明理由.【来源】湖北省新高考联考协作体2021-2022学年高三上学期新起点考试数学试题9.如图,在三棱柱111ABC A B C -中,1AA ⊥平面111A B C ,12AB BC AC A A ====,E ,F 分别为11A C ,11B C 的中点.(∠)在四边形11ABB A 内是否存在点G ,使平面//GEF 平面1ABC ?若存在,求出该点的位置;若不存在,请说明理由;(∠)设D 是1CC 的中点,求DA 与平面1ABC 所成角θ的正弦值.【来源】“超级全能生”2021届高三3月份高考数学(理)联考试题(丙卷)10.在四棱锥S ABCD -中,底面ABCD 为菱形,60BAD ∠=︒,平面SAD ⊥平面ABCD ,SAD 是边长为2的正三角形,E ,F 分别为AD ,SB 的中点. (∠)证明://EF 平面SCD ;(∠)在棱SA 上是否存在一点P ,使得锐二面角P BC S --若存在,求出SP SA 的值;若不存在,请说明理由.【来源】2021届高三数学临考冲刺原创卷(三)。

立体几何中的探索性问题

立体几何中的探索性问题
向量
求得法向量 ― ― → 结果 运算
[解 ]
(1)证明:因为 AE⊥ A1B1, A1B1∥ AB,
所以 AB⊥ AE,又因为 AB⊥ AA1, AE∩ AA1= A, 所以 AB⊥平面 A1ACC1,又因为 AC⊂平面 A1ACC1, 所以 AB⊥ AC.
以 A 为原点建立如图所示的空间直角坐标系 Axyz, 1 1 1 则 A(0,0, 0), E 0,1,2 , F 2,2, 0 , A1(0, 0, 1), B1(1,0,1). → → 设 D(x,y,z), A1D= λA1B1且 λ∈ [0,1],则(x,y,z-1)= λ(1, 0,0),所以 D(λ, 0, 1), 1 → 1 所以DF= 2- λ,2,-1 ,
(3)假设在 AB 上存在点 E,使得 AC1∥平面 CEB1, 设 AE =t AB =(-3t,4t,0),其中 0≤t≤1. 则 E(3-3t,4t,0), B1 E =(3-3t,4t-4,-4), B1C =(0,-4,-4). 又因为 AE=m B1 E +n B1C 成立, 所以 m(3-3t)=-3,m(4t-4)-4n=0, -4m-4n=4, 1 解得 t= . 2 所以在 AB 上存在点 E,使得 AC1∥平面 CEB1,这时点 E 为 AB 的中点.
由题可知平面 ABC 的一个法向量 m=(0, 0, 1). 14 因为平面 DEF 与平面 ABC 所成锐二面角的余弦值为 , 14 所以 |cos〈 m, n〉 |= 即 |m· n| 14 = , 14 |m||n | = 2 14 , 14
|2( 1- λ) | 9+( 1+ 2λ) 2+4(1-λ)
则 C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4). 因为 AC =(-3,0,0), BC1 =(0,-4,4), 所以 AC · BC1 =0,所以 AC ⊥ BC1 ,即 AC⊥BC1. (2)假设在 AB 上存在点 D,使得 AC1⊥CD. 设 AD =λ AB =(-3λ,4λ,0),其中 0≤λ≤1. 则 D(3-3λ,4λ,0),于是 CD =(3-3λ,4λ,0), 由于 AC1 =(-3,0,4),且 AC1⊥CD, 所以-9+9λ=0,解得 λ=1. 所以在 AB 上存在点 D 使得 AC1⊥CD, 这时点 D 与点 B 重合.

2022年新高考数学总复习:立体几何中的探索性问题

2022年新高考数学总复习:立体几何中的探索性问题

2022年新高考数学总复习:立体几何中的探索性问题例(2021·陕西省西安中学模拟)如图所示,四棱锥P -ABCD 中,底面ABCD 为菱形,且PA ⊥平面ABCD ,∠ABC =60°,E 是BC 中点,F 是PC 上的点.(1)求证:平面AEF ⊥平面PAD ;(2)若M 是PD 的中点,当AB =AP 时,是否存在点F ,使直线EM 与平面AEF 的所成角的正弦值为15?若存在,请求出PF PC的值;若不存在,请说明理由.【分析】①利用面面垂直的判定定理,证AE ⊥平面PAD 或证AD ⊥平面AEF 即可;②建立空间直角坐标系,假设符合条件的点F 存在,且PF →=λPC →,利用向量法求解λ回答.【标准答案】——规范答题步步得分(1)连接AC ,因为底面ABCD 为菱形,∠ABC =60°,所以△ABC 是正三角形,∵E 是BC 的中点,∴AE ⊥BC ,又AD ∥BC ,∴AE ⊥AD ,∵PA ⊥平面ABCD ,AE ⊂平面ABCD ,∴PA ⊥AE ,又PA ∩AD =A ,∴AE ⊥平面PAD ,又AE ⊂平面AEF ,所以平面AEF ⊥平面PAD .(2)又PA ⊥AD ,∴PA 、AE 、AD 两两垂直,以A 为坐标原点建立如图所示空间直角坐标系,不妨设AB =AP =2,则AE =3,则A (0,0,0),C (3,1,0),D (0,2,0),P (0,0,2),E (3,0,0),M (0,1,1),7分得分点⑦设PF →=λPC →=λ(3,1,-2),0≤λ≤1,则AF →=AP →+PF →=(0,0,2)+λ(3,1,-2)=(3λ,λ,2-2λ),又AE →=(3,0,0),设n =(x ,y ,z )是平面AEF 的一个法向量,n ·AE →=3x =0n ·AF →=3λx +λy +(2-2λ)z =0,取z =λ,得n =(0,2λ-2,λ),设直线EM 与平面AEF 所成角为θ,由EM →=(-3,1,1),得:sin θ=|cos 〈EM →,n 〉|=|EM →·n ||EM →|·|n |=|3λ-2|5·(2λ-2)2+λ2=15.化简得:10λ2-13λ+4=0,解得λ=12或λ=45,故存在点F 满足题意,此时PF PC 为12或45.【评分细则】①证出△ABC 是正三角形得1分.②证出AE ⊥AD 得1分.③由线面垂直性质证出PA ⊥AE 得1分,不写AE ⊂平面ABCD 不得分.④由线面垂直的判定证出AE ⊥平面PAD 得1分.⑤证出平面AEF ⊥平面PAD 得1分,条件不全不得分.⑥建出空间直角坐标系得1分.⑦设出PF →=λPC →得1分.⑧求出平面AEF 的法向量得3分,算错但写出AE →,AF →坐标得1分.⑨求出λ得2分,算错但写出sin θ=|cos 〈EM →,n 〉|=|EM →·n ||EM →||n |得1分.⑩得出正确结论得1分.【名师点评】1.核心素养:本题考查线面的位置关系及线面角,考查学生转化与化归的思想,考查的核心素养是逻辑推理、直观想象、数学运算.2.解题技巧:(1)写全得分步骤:对于解题过程中得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写,如第(1)问中AE ⊂平面ABCD .(2)写明得分关键:对于解题过程中的关键点,有则给分,无则没分,所以在解答时一定要写清得分关键点,如第(2)问中空间直角坐标系的建立;再如AF →=AP →+PF →等.(3)思维发散:也可通过证AD ⊥PA 、AD ⊥AE 证得AD ⊥平面AEF ,进而证得平面AEF ⊥平面PAD .〔变式训练4〕(2021·陕西省质检)如图所示,等腰梯形ABCD 的底角∠BAD =∠ADC =60°,直角梯形ADEF 所在的平面垂直于平面ABCD ,且∠EDA =90°,ED =AD =2AF =2AB =2.(1)证明:平面ABE ⊥平面EBD ;(2)点M 在线段EF 上,试确定点M 的位置,使平面MAB 与平面ECD 所成的锐二面角的余弦值为34.[解析](1)证明:∵平面ABCD ⊥平面ADEF ,平面ABCD ∩平面ADEF =AD ,ED ⊥AD ,∴ED ⊥平面ABCD ,AB ⊂平面ABCD ,∴ED ⊥AB ,∵AB =1,AD =2,∠BAD =60°,∴BD =1+4-2×1×2cos 60°=3,∴AB 2+BD 2=AD 2,∴AB ⊥BD ,又∴BD ⊂平面BDE ,BD ∩ED =D ,AB ⊥平面BDE ,AB ⊂平面ABE ,∴平面ABE ⊥平面EBD .(2)以B 为坐标原点,以BA ,BD 为x 轴,y 轴建立如图所示的空间直角坐标系B -xyz ,则A (1,0,0),B (0,0,0),-12,32,D (0,3,0),E (0,3,2),F (1,0,1),则CD →,32,DE →=(0,0,2),BA →=(1,0,0),EF →=(1,-3,-1),设EM →=λEF →=(λ,-3λ,-λ),(0≤λ≤1),则BM →=BE →+EM →=(λ,3-3λ,2-λ),设平面CDE 的法向量为m =(x 1,y 1,z 1),平面ABM 的法向量为n =(x 2,y 2,z 2),·CD →=12x 1+32y 1=0,·DE →=2z 1=0,1=-3y 1,1=0,不妨取y 1=1,则m =(-3,1,0),·BA →=x 2=0,·BM →=λx 2+(3-3λ)y 2+(2-λ)z 2=0不妨取y 2=2-λ,则n =(0,2-λ,3λ-3),∴|cos θ|=|m ·n ||m |·|n |=|2-λ|24λ2-10λ+7=34,即λ=12或λ=54(舍),即点M 为线段EF 的中点时,平面MAB 与平面ECD 所成的锐二面角的余弦值为34.。

立体几何中的探索性问题

立体几何中的探索性问题

平面B1BC1的法向量n2=(x2,y2,z2).
y
∴AA→→11CB1·n·n11==00,⇒43xy11-=40z,1=0,
x
∴取向量n1=(0,4,3).
直击高考
(2016·北京卷改编)如图,在三棱柱 ABC-A1B1C1 中,AA1C1C 是边 长为 4 的正方形.平面 ABC⊥平面 AA1C1C,AB=3,BC=5. (1)求证:AA1⊥平面 ABC;(2)求二面角 A1-BC1-B1 的余弦值;
为 36?若存在,求出QPQD的值;若不存在,请说明理由.
解 (1)在△PAD中,PA=PD,O为AD中点, 所以PO⊥AD, 又侧面PAD⊥底面ABCD, 平面PAD∩平面ABCD=AD,PO⊂平面PAD, 所以PO⊥平面ABCD. 又在直角梯形ABCD中,连接OC, 易得OC⊥AD,
(2017·衡水二模)如图,在四棱锥 P-ABCD 中,侧面 PAD⊥底面 ABCD,侧棱 PA=PD= 2,PA⊥PD,底面 ABCD 为直角梯形, 其中 BC∥AD,AB⊥AD,AB=BC=1,O 为 AD 中点. (1)求直线 PB 与平面 POC 所成角的余弦值; (2)求 B 点到平面 PCD 的距离; (3)线段 PD 上是否存在一点 Q,使得二面角 Q-AC-D 的余弦值
为 36?若存在,求出QPQD的值;若不存在,请说明理由.
cos〈P→B,O→A〉=|PP→→BB|·|OO→→AA|= 33. ∴直线 PB 与平面 POC 所成角的余弦值为 36.
z y
x
(2017·衡水二模)如图,在四棱锥 P-ABCD 中,侧面 PAD⊥底面
ABCD,侧棱 PA=PD= 2,PA⊥PD,底面 ABCD 为直角梯形, 其中 BC∥AD,AB⊥AD,AB=BC=1,O 为 AD 中点. (1)求直线 PB 与平面 POC 所成角的余弦值; (2)求 B 点到平面 PCD 的距离; (3)线段 PD 上是否存在一点 Q,使得二面角 Q-AC-D 的余弦值

微专题4:+立体几何中的探索问题+2022-2023学年高一下学期数学人教A版(2019)必修第二册

微专题4:+立体几何中的探索问题+2022-2023学年高一下学期数学人教A版(2019)必修第二册
若 BE =1,在折叠后的线段 AD 上是否存在一点 P,使得 CP ∥平面 ABEF?若存在,求出λ的值,若不存在,说明理由.
解:AD 上存在一点 P,AP=λPD,使得 CP
∥平面 ABEF,此时λ=3. 2
理由如下: 当λ=32时,AP=32PD,可知AADP=35,如图,过点 P 作 MP∥FD 交 AF 于点 M,连接 EM,PC,则有MFDP=AADP=35, 又 BE=1,可得 FD=5,故 MP=3, 又 EC=3,MP∥FD∥EC,故有 MP 綊 EC, 故四边形 MPCE 为平行四边形,所以 CP∥ME,
变式:如图,直三棱柱 ABC A1B1C1中,D,E分别是棱BC , AB的中点,点F在棱 CC1 上,已知AB=AC,AA1 3 , BC=CF=2.
(1)求证: C1E//平面ADF; (2)在棱 BB1 上是否存在点M,使平面 CAM 平面ADF ,若存在,试求出BM的值; 若不存在,请说明理由.
又BM=1,BC=2,CD=1,FC=2, Rt△CBM≌Rt△FCD
故 CM DF
DF . AD=D DF,AD
易证CM ,又

平面ADF,
故CM 平面ADF .
CAM
又 平面 CAM ,故平面
平面ADF.
翻折中的位置关系探索问题
例 3:如图,四边形 ABCD 中,AB⊥AD,AD∥BC,AD=6, BC=4,E,F 分别在 BC,AD 上,EF∥AB.现将四边形 ABCD 沿 EF 折起,使平面 ABEF⊥平面 EFDC.
证明如下:因为AB=AC, AD 平面ABC,故 AD BC.
在直三棱柱 ABC
中, A1B1C1
BB1
平面
ABC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战2020年高考数学大题精做之解答题题型全覆盖高端精品
第三篇 立体几何
专题04 立体几何的探索性问题
【典例1】【2020届江苏巅峰冲刺卷】
如图,在四棱锥P ABCD 中,P A ⊥平面ABCD ,∠ABC =∠BAD =90°,AD =AP =4,AB =BC =2,M 为PC 的中点.
(1)求异面直线AP ,BM 所成角的余弦值;
(2)点N 在线段AD 上,且AN =λ,若直线MN 与平面PBC 所成角的正弦值为4
5
,求λ的值. 【典例2】【2020届江西省赣州市高三上学期期末考试】
如图,在平行四边形ABCD 中,2,4,60AB AD BAD ︒==∠=,平面EBD ⊥平面ABD ,且
,EB CB ED CD ==.
(1)在线段EA 上是否存在一点F ,使//EC 平面FBD ,证明你的结论; (2)求二面角A EC D --的余弦值. 【典例3】【北京市昌平区2020届高三期末】
如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,1
2
BC CD AD ==
.
(Ⅰ)求证:CD ⊥PD ; (Ⅰ)求证:BD ⊥平面P AB ;
(Ⅰ)在棱PD 上是否存在点M ,使CM ∥平面P AB ,若存在,确定点M 的位置,若不存在,请说明理由. 【典例4】【2019届陕西省西安中学高三下学期第十二次重点考试】
在三棱锥P—ABC 中,PB ⊥平面ABC ,AB ⊥BC ,AB=PB =2,BC E 、G 分别为PC 、P A 的中点.
(1)求证:平面BCG ⊥平面P AC ;
(2)假设在线段AC 上存在一点N ,使PN ⊥BE ,求
AN
NC
的值; (3)在(2)的条件下,求直线BE 与平面PBN 所成角的正弦值 【典例5】【浙江省丽水市2020届模拟】
如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,90ABC ∠=︒,1AB BC ==,2PA AD ==.
(1)求证:CD ⊥平面PAC ;
(2)在棱PC 上是否存在点H ,使得AH ⊥平面PCD ?若存在,确定点H 的位置;若不存在,说明理由. 【典例6】【江苏省苏州市实验中学2020届高三月考】
直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,
E 、
F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:
(1)//EF 平面11AAC C ;
(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【典例7】【山东省临沂市2019年普通高考模拟】
如图,底面ABCD 是边长为3的正方形,平面ADEF ⊥平面ABCD ,AF ∥DE ,AD ⊥DE ,AF =DE =
(1)求直线CA 与平面BEF 所成角的正弦值;
(2)在线段AF 上是否存在点M ,使得二面角M ­BE ­D 的大小为60°?若存在,求出AM
AF
的值;若不存在,说明理由.
1.【2020届盐城市高三年级模拟考试】
如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面四边形ABCD 为菱形,A 1A =AB =2,∠ABC =3
π
,E ,F 分别是BC ,A 1C 的中点.
(1)求异面直线EF ,AD 所成角的余弦值;
(2)点M 在线段A 1D 上,
11A M
A D
λ= .若CM ∥平面AEF ,求实数λ的值. 2.【四川省棠湖中学2020届高三月考】
如图,在四棱锥P -ABCD 中,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=1
2
AD .E 为棱AD 的中点,异面直线PA 与CD 所成的角为90°.
(I )在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由; (II)若二面角P -CD -A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值. 3.【河南省郑州市2019届高中毕业年级第一次(1月)质量预测】
已知四棱锥中P ABCD -,底面ABCD 为菱形,60ABC ∠
=
︒,PA ⊥平面ABCD ,E 、M 分别是BC 、
PD 上的中点,直线EM 与平面PAD F 在PC 上移动.
(Ⅰ)证明:无论点F 在PC 上如何移动,都有平面AEF ⊥平面PAD ; (Ⅰ)求点F 恰为PC 的中点时,二面角C AF E --的余弦值. 4.【2020届四川省巴中市高三第一次诊断】
如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA PD =,PA AB ⊥,N 是棱AD 的中点.
(1)求证:PN ^平面ABCD ;
(2)在棱BC 上是否存在点E ,使得//BN 平面DEP ?并说明理由. 5.【湖北省2019届高三1月联考测试】
如图所示,在四棱锥P ABCD -中,AB PC ⊥,AD BC ∕∕,AD CD ⊥,且2PC BC AD ==2CD ==2PA =.
(1)PA ⊥平面ABCD ;
(2)在线段PD 上,是否存在一点M ,使得二面角M AC D --的大小为60︒?如果存在,求PM
PD
的值;如果不存在,请说明理由.
6.【2020届广东省东莞市高三期末调研测试】
如图,在四棱锥S ABCD -中,已知四边形ABCD 的正方形,点S 在底面ABCD 上的射影为底面ABCD 的中心点O ,点P 在棱SD 上,且SAC V 的面积为1.
(1)若点P 是SD 的中点,求证:平面SCD ⊥平面PAC ;
(2)在棱SD 上是否存在一点P 使得二面角P AC D --?若存在,求出点P 的位置;若不存在,说明理由.
7.【2020届山西省太原市第五中学高三11月阶段性考试】如图,在三棱锥A BCD -中,顶点A 在底面BCD
上的投影O 在棱BD 上,AB AD ==
2BC BD ==,90CBD ∠=︒,E 为CD 的中点.
(1)求证:AD ⊥平面ABC ; (2)求二面角B AE C --的余弦值;
(3)已知点Q 为AE 的中点,在棱BD 上是否存在点P ,使得PQ ⊥平面ABE ,若存在,求BP
BD
的值;若不存在,说明理由.
8.【河南省开封市五县2020届模拟】
如图,AC 是O e 的直径,点B 是O e 上与A ,C 不重合的动点,PO ⊥平面ABC .
(1)当点B 在什么位置时,平面OBP ⊥平面PAC ,并证明之;
(2)请判断,当点B 在O e 上运动时,会不会使得BC AP ⊥,若存在这样的点B ,请确定点B 的位置,若不存在,请说明理由.。

相关文档
最新文档