原子物理学杨福家第六章习题答案

合集下载

最新原子物理学答案(杨福家-高教第四版)(第一章)无水印-打印版

最新原子物理学答案(杨福家-高教第四版)(第一章)无水印-打印版

原子物理学课后答案(第四版)杨福家著高等教育出版社第一章:原子的位形:卢瑟福模型第二章:原子的量子态:波尔模型第三章:量子力学导论第四章:原子的精细结构:电子的自旋第五章:多电子原子:泡利原理第六章:X射线第七章:原子核物理概论第八章:超精细相互作用原子物理学——学习辅导书吕华平刘莉主编(7.3元定价)高等教育出版社第一章习题答案1-1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为410-rad.解:设碰撞以后α粒子的散射角为θ,碰撞参数b 与散射角的关系为2cot 2θa b =(式中Ee Z Z a 02214πε=)碰撞参数b 越小,则散射角θ越大。

也就是说,当α粒子和自由电子对头碰时,θ取得极大值。

此时粒子由于散射引起的动量变化如图所示,粒子的质量远大于自由电子的质量,则对头碰撞后粒子的速度近似不变,仍为,而电子的速度变为,则粒子的动量变化为v m p e 2=∆散射角为410*7.21836*422-=≈≈∆≈v m v m p p e αθ 即最大偏离角约为410-rad.1-2 (1)动能为5.00MeV 的α粒子被金核以︒90散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚为1.0um ,则入射α粒子束以大于︒90散射(称为背散射)的粒子是全部入射粒子的百分之几? 解:(1)碰撞参数与散射角关系为:2cot 2θa b =(式中Ee Z Z a 02214πε=)库伦散射因子为:Ee Z Z a 02214πε==fm MeV MeV fm 5.45579*2**44.1= 瞄准距离为: fm fm a b 8.2245cot *5.45*212cot 2===︒θ(2)根据碰撞参数与散射角的关系式2cot 2θa b =,可知当︒≥90θ时,)90()(︒≤b b θ,即对于每一个靶核,散射角大于︒90的入射粒子位于)90(︒<b b 的圆盘截面内,该截面面积为)90(2︒=b c πσ,则α粒子束以大于︒90散射的粒子数为:π2Nntb N =' 大于︒90散射的粒子数与全部入射粒子的比为526232210*4.98.22*142.3*10*0.1*19788.18*10*02.6--===='πρπtb M N ntb N N A 1—3 试问:4.5Mev 的α粒子与金核对心碰撞时的最小距离是多少?若把金核改为Li 7核,则结果如何? 解:(1)由式4—2知α粒子与金核对心碰撞的最小距离为=m r Ee Z Z a 02214πε==fm MeV MeV fm 6.505.479*2**44.1=(2)若改为Li 7核,靶核的质量m '不再远大于入射粒子的质量m ,这时动能k E 要用质心系的能量c E ,由式3—10,3—11知,质心系的能量为:)(212mm mm m v m E u u c +''==式中 得k k k Li He Li k u c E E E A A A E m m m v m E 117747212=+=+≈+''==α粒子与Li 7核对心碰撞的最小距离为:=m r Ee Z Z a 02214πε==fm MeV MeV fm 0.37*5.411*3*2**44.1=1—4 (1)假定金核半径为7.0fm ,试问:入射质子需要多少能量,才能在对头碰撞时刚好到达金核的表面?(2)若金核改为铝核,使质子在对头碰撞时刚好到达铝核的表面,那么,入射质子的能量应为多少?设铝核半径为4.0fm 。

原子物理学课后习题答案

原子物理学课后习题答案

第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。

散射物质是原子序数79Z =的金箔。

试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

原子物理第六章课后习题

原子物理第六章课后习题

hv,
hv c
,静止的自由电子具有能量
E0

碰撞后电子能量,动量为 E, p ,由能量守恒有: hv E0 E Ek E0 , (1)
由动量守恒有:hv p, (2) ,碰撞后电子的速度可接近光速,应用相对论关系式, c
第4页共6页
式(1),(2)可改写成: hv
E
E0
mc 2
m0c 2 ,
6.5.Prove that for most of the elements,the intensities of the K1 x-rays are double the intensities of the K 2 x-rays.
证明:对大多数元素, K1 射线的强度为 K 2 射线的两倍。
K 系激发机理:K 层电子被击出时,K 壳层形成空位,原子系统能量由基态升到 K 激发态, 原子系统能量升高,使体系处于不稳定的激发态,按能量最低原理,L、M、N 层中的电子 会跃迁到 K 层的空位,为保持体系能量平衡,在跃迁的同时,这些电子会将多余的能量以 X 射线光量子的形式释放。高能级电子向 K 层空位填充时产生 K 系辐射,L 层电子填充空位时,
第2页共6页
hv p 2
E0
p
hv E 2 2 p
p
hv Ek cos
p
E0 , (1) 2, (2)
由相对论关系式:
E2
p2c2
E
2 0
,
(3)
E0 m0c2 , (4)
式(3),(4)代入式(1)有:
h v v m0c 2 2 p 2c 2 (m0c 2 )2 , (5)
, (13)
第3页共6页
Ek hv

原子物理第六章习题答案

原子物理第六章习题答案

第六章 磁场中的原子6.1 已知钒原子的基态是2/34F 。

(1)问钒原子束在不均匀横向磁场中将分裂为几束?(2)求基态钒原子的有效磁矩。

解:(1)原子在不均匀的磁场中将受到力的作用,力的大小与原子磁矩(因而于角动量)在磁场方向的分量成正比。

钒原子基态2/34F 之角动量量子数2/3=J ,角动量在磁场方向的分量的个数为4123212=+⨯=+J ,因此,基态钒原子束在不均匀横向磁场中将分裂为4束。

(2)J J P meg2=μ h h J J P J 215)1(=+= 按LS 耦合:52156)1(2)1()1()1(1==++++-++=J J S S L L J J gB B J h m e μμμ7746.0515215252≈=⋅⋅⋅=∴ 6.2 已知He 原子0111S P →跃迁的光谱线在磁场中分裂为三条光谱线,其间距厘米/467.0~=∆v,试计算所用磁场的感应强度。

解:裂开后的谱线同原谱线的波数之差为:mcBeg m g m vπλλ4)(1'1~1122-=-=∆ 氦原子的两个价电子之间是LS 型耦合。

对应11P 原子态,1,0,12-=M ;1,1,0===J L S ,对应01S 原子态,01=M ,211.0,0,0g g J L S =====。

mc Be vπ4/)1,0,1(~-=∆ 又因谱线间距相等:厘米/467.04/~==∆mc Be vπ。

特斯拉。

00.1467.04=⨯=∴emcB π 6.3 Li 漫线系的一条谱线)23(2/122/32P D →在弱磁场中将分裂成多少条谱线?试作出相应的能级跃迁图。

解:在弱磁场中,不考虑核磁矩。

2/323D 能级:,23,21,2===j S l54)1(2)1()1()1(123,21,21,232=++++-++=--=j j s s l l j j g M2/122P 能级:,21,21,2===j S l 32,21,211=-=g ML v)3026,3022,302,302,3022,3026(~---=∆ 所以:在弱磁场中由2/122/3223P D →跃迁产生的光谱线分裂成六条,谱线之间间隔不等。

《原子物理学》部分习题解答(杨福家)

《原子物理学》部分习题解答(杨福家)
Bz dD z m v
gJ
2
z g J B
氢原子基态 氯原子基态
2
3 2 3
S1/ 2 P3 / 2

1 S ( S 1) L ( L 1) 2 2 J ( J 1)
两束
四束
2
gJ
1 S ( S 1) L ( L 1) 4 2 2 J ( J 1) 3
pc
E k ( E k 2m0c ) E k
2
所以
E k m in p m in c 6 2 M eV
4-2 解: 原子态
2
D3/2
1 2 , J 3 2
可得
gJ 3 2
L 2, S
mJ
1 2
,
3 2
1 S ( S 1) L ( L 1) 4 2 J ( J 1) 5
Ek Ek
3.1keV 0.0094keV
3-3 解:
Ek m0 c 0.511MeV
2
若按非相对论处理
Ek 1 2 m0 v ,有
2
1 2
m0 v m0 c
2
2
v 2c
显然不合理,需要用相对论来处理。
E Ek m0 c 2m0c
2 2
又E mc m0 c
有磁场
m mg
1 2
3
S
1
0
1
0
2
g 2
h 0
3
P0
0
0
m 2 g 2 m1 g 1
2
0
2
相邻谱线的频率差
c

(整理)原子物理学杨福家1-6章 课后习题答案

(整理)原子物理学杨福家1-6章 课后习题答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。

电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。

α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。

1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。

《原子物理学》杨福家第四版课后答案

《原子物理学》杨福家第四版课后答案

《原子物理学》杨福家第四版课后答案目录第一章原子的位形 ...................................... - 1 - 第二章原子的量子态:波尔模型 ............................ - 7 - 第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋 ............................ 16 第五章多电子原理:泡利原理 (23)第六章 X 射线 ............................................. 28 第七章原子核物理概论 ................... 没有错误!未定义书签。

第一章原子的位形 1-1)解:α粒子与电子碰撞,能量守恒,动量守恒,故有:+'='+=e e v m v M v M v M mv Mv ρρρ222212121='-='-?222e e v M m v v v Mm v v ρρρ e v m p ρρ=?e p=mv p=mv ∴??,其大小: (1) 222(')(')(')e m v v v v v v v M-≈+-=近似认为:(');'p M v v v v ?≈-≈22e m v v v M∴??=有 212e p p Mmv ??=亦即: (2)(1)2/(2)得22422210e e m v m p Mmv M-?===p亦即:()ptg rad pθθ?≈=-4~10 1-2) 解:① 22a b ctg Eθπε=228e ;库仑散射因子:a=4)2)(4(420202E Z e E Ze a πεπε==22279()() 1.44()45.545eZ a fmMev fm E Mev πε?=== 当901θθ=?=时,ctg2122.752b a fm ∴== 亦即:1522.7510b m -=?② 解:金的原子量为197A =;密度:731.8910/g m ρ=? 依公式,λ射α粒子被散射到θ方向,d Ω立体角的内的几率: nt d a dP 2sin16)(42θθΩ=(1)式中,n 为原子核数密度,()AA m n n N ρ∴=?= 即:A V n Aρ=(2)由(1)式得:在90o→180 o范围内找到α粒子得几率为:(θP 18022490a nt 2sin ()164sin 2d a nt πθθπρθθ?==?将所有数据代入得)(θP 5()9.410ρθ-=?这就是α粒子被散射到大于90o范围的粒子数占全部粒子数得百分比。

原子物理学杨福家第六章习题答案

原子物理学杨福家第六章习题答案

练习六习题1-2解6-1 某一X 射线管发出的连续X 光谱的最短波长为0.0124nm ,试问它的工作电压是多少?解:依据公式答:它的工作电压是100kV .6-2莫塞莱的实验是历史上首次精确测量原子序数的方法.如测得某元素的K α)(10Z ;将值代入上式,10246.0101010)⨯⨯===1780 Z =43即该元素为43号元素锝(Te). 第六章习题3,46-3 钕原子(Z=60)的L 吸收限为0.19nm ,试问从钕原子中电离一个K 电子需作多少功?6-4 证明:对大多数元素K α1射线的强度为K α2射线的两倍. 第六章习题5,6参考答案6-5 已知铅的K 吸收限为0.014 1nm,K 线系各谱线的波长分别为:0.016 7nm(K α);0.0146nm(K β);0.0142nm(K γ),现请: (1) 根据这些数据绘出有关铅的X 射线能级简图; (2) 计算激发L 线系所需的最小能量与L α线的波长.分析要点:弄清K 吸收限的含义. K 吸收限指在K 层产生一个空穴需要能量. 即K 层电子的结合能或电离能.解: (1)由已知的条件可画出X 射线能级简图.K K α L α K β K γ (2)激发L 线系所需的能量:K在L 壳层产生一个空穴所需的能量E LK = φK -φL φL =φK - E LK =87.94 keV -84.93keV=3.01 keV φ为结合能.或即有m 即L α线的波长为0.116nm.6-6 一束波长为0.54 nm 的单色光入射到一组晶面上,在与入射束偏离为120︒的方向上产生一级衍射极大,试问该晶面的间距为多大?︒的方向上产生一级衍射极大sin θn=1解得 d =0.312 nm 第六章习题8参考答案6-7 在康普顿散射中,若入射光子的能量等于电子的静止能,试求散射光子的最小能量及电子的最大动量.6-8 在康普顿散射中,若一个光子能传递给一个静止电子的最大能量为10 keV ,试求入射光子的能量.(1)其中c m光子去的能量为电子获得的能量 k E h h ='-νν依题意,如果电子获得最大能量,则出射光子的能量为最小,(1)式E由此可算出: νγγh E E 22=+E c E00=+ 2)(2cm EE h h o =-νν代入数据.010⨯=-光E 2解之: E 光=55.9 keV 第六章习题9参考答案6-9 若入射光子与质子发生康普顿散射,试求质子的康普顿波长.如?则 依6-8m EE =可得出:6-10 康普顿散射产生的散射光子,再与原子发生相互作用,当散射角θ>60°时,无论入射光子能量多么大,散射光子总不能再产生正负电子偶.试证明之. 第六章习题11,126-11 证明:光子与自由电子相碰,不可能发生光电效应. 6-12 证明:在真空中不可能发生“光子一电子对”过程. 第六章习题13、14参考答案6-13已知铑(Z=45)的电子组态为1s 22s 22p 63s 23p 63d 104s 24p 64d 85s I ,现请:(1)确定它的基态谱项符号;(2)用它的K αX 射线作康普顿散射实验,当光子的散射角为60°时,求反冲电子的能量(已知K α的屏蔽系数b =0.9);(3)在实验装置中用厚为0.30cm 的铅屏蔽该射线.如果改用铝代替铅,为达到同样的屏蔽效果,需要用多少厚的铝?(μpb =52.5 cm -I ;μAl =0.765cm -1)解:(1)电子组态中4d 85s 1未填满,所以为基态的电子组态4d 25s l 1= l 2=2,l 3=0其原子态计算先2d 电子耦合,得出最低态3F 4,3,2.找出基态3F 4,再与s 耦合,得4F 9/2.为基态.(2)因为X K α射线的能量为:216)(10248.0b z h h K -⨯=αν9.0≈b反冲电子的能量为:60=θ 代入上式得eV E K 384=(3)由郎伯-比耳定律可得: 用Pb 屏蔽时 10Pbx e I I μ-= (1)用Al 屏蔽时 20Alx e I I μ-= (2)比较(1)(2)式可得: 21x x Al Pb μμ=其中 15.52-=cm Pb μ1765.0-=cm Al μx 1=0.3cm得: x 2=20.59cm6-14已知铜和锌的K αX 射线的波长分别为0.015 39 nm ,和0.014 34 nm ,镍的K 吸收限为0.148 9 nm ,它对铜和锌的K αX 射线的质量吸收系数分别为48 cm 2/g 和325 cm 2/g .试问:为了使铜的K α射线与锌的K α射线的相对强度之比提高10倍,需要多厚的镍吸收片? 解: 按朗伯-比耳定律经镍吸收片吸收后,铜的强度 ρ-=x e I I 480锌的强度 23250''ρx e I I -=由于 I 0所以2mg/cm 31.8=x ρ 镍的密度为 ρ=8.9g/cm 3所以 x =9.3 μm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习六习题1-2解
6-1 某一X 射线管发出的连续X 光谱的最短波长为0.0124nm ,试
问它的工作电压是多少?解:依据公式
答:它的工作电压是100kV .
6-2莫塞莱的实验是历史上首次精确测量原子序数的方法.如测得某元素的K α
)(10Z ;将值代入上式,
10
246.0101010
)⨯⨯=
=
=1780 Z =43
即该元素为43号元素锝(Te). 第六章习题3,4
6-3 钕原子(Z=60)的L 吸收限为0.19nm ,试问从钕原子中电离一个K 电子需作多少功?
6-4 证明:对大多数元素K α1射线的强度为K α2射线的两倍. 第六章习题5,6参考答案
6-5 已知铅的K 吸收限为0.014 1nm,K 线系各谱线的波长分别为:0.016 7nm(K α);0.0146nm(K β);0.0142nm(K γ),现请: (1) 根据这些数据绘出有关铅的X 射线能级简图; (2) 计算激发L 线系所需的最小能量与L α线的波长.
分析要点:弄清K 吸收限的含义. K 吸收限指在K 层产生一个空穴需要能量. 即K 层电子的结合能或电离能.
解: (1)由已知的条件可画出X 射线能级简图.
K K α L α K β K γ (2)
激发L 线系所需的能量:
K
在L 壳层产生一个空穴所需的能量
E LK = φK -φL φL =φK - E LK =87.94 keV -84.93keV=3.01 keV φ为结合能.

即有
m 即L α线的波长为0.116nm.
6-6 一束波长为0.54 nm 的单色光入射到一组晶面上,在与入射束偏离为120︒的方向上产生一级衍射极大,试问该晶面的间距为多大?
︒的方向上产生一级衍射极大sin θ
n
=1
解得 d =0.312 nm 第六章习题8参考答案
6-7 在康普顿散射中,若入射光子的能量等于电子的静止能,试求散射光子的最小能量及电子的最大动量.
6-8 在康普顿散射中,若一个光子能传递给一个静止电子的最大能量为10 keV ,试求入射光子的能量.
(1)其中c m
光子去的能量为电子获得的能量 k E h h ='-νν
依题意,如果电子获得最大能量,则出射光子的能量为最小,(1)式E
由此可算出: ν
γγh E E 22=+
E c E
00=+ 2)(2c
m E
E h h o =-νν
代入数据.010⨯=-光E 2解之: E 光=55.9 keV 第六章习题9参考答案
6-9 若入射光子与质子发生康普顿散射,试求质子的康普顿波长.如?
则 依6-8m E
E =可得出:6-10 康普顿散射产生的散射光子,再与原子发生相互作用,当散射角θ>60°时,无论入射光子能量多么大,散射光子总不能再产生正负电子偶.试证明之. 第六章习题11,12
6-11 证明:光子与自由电子相碰,不可能发生光电效应. 6-12 证明:在真空中不可能发生“光子一电子对”过程. 第六章习题13、14参考答案
6-13已知铑(Z=45)的电子组态为1s 22s 22p 63s 23p 63d 104s 24p 64d 85s I ,现请:
(1)确定它的基态谱项符号;
(2)用它的K αX 射线作康普顿散射实验,当光子的散射角为60°时,求反冲电子的能量(已知K α的屏蔽系数b =0.9);
(3)在实验装置中用厚为0.30cm 的铅屏蔽该射线.如果改用铝代替铅,为达到同样的屏蔽效果,需要用多少厚的铝?(μpb =52.5 cm -I ;μAl =0.765
cm -1)
解:(1)电子组态中4d 85s 1未填满,所以为基态的电子组态4d 25s l 1= l 2=2,l 3=0
其原子态计算先2d 电子耦合,得出最低态3F 4,3,2.找出基态3F 4,再与s 耦合,得4F 9/2.为基态.
(2)因为X K α射线的能量为:2
16)(10248.0b z h h K -⨯=αν
9.0≈b
反冲电子的能量为

60=θ 代入上式得
eV E K 384=
(3)由郎伯-比耳定律可得: 用Pb 屏蔽时 1
0Pbx e I I μ-= (1)
用Al 屏蔽时 20Alx e I I μ-= (2)
比较(1)(2)式可得: 21x x Al Pb μμ=
其中 15.52-=cm Pb μ
1765.0-=cm Al μ
x 1=0.3cm
得: x 2=20.59cm
6-14已知铜和锌的K αX 射线的波长分别为0.015 39 nm ,和0.014 34 nm ,镍的K 吸收限为0.148 9 nm ,它对铜和锌的K αX 射线的质量吸收系数分别为48 cm 2/g 和325 cm 2/g .试问:为了使铜的K α射线与锌的K α射线的相对强度之比提高10倍,需要多厚的镍吸收片? 解: 按朗伯-比耳定律
经镍吸收片吸收后,铜的强度 ρ
-=x e I I 480
锌的强度 23250''ρx e I I -=
由于 I 0
所以
2mg/cm 31.8=x ρ 镍的密度为 ρ=8.9g/cm 3
所以 x =9.3 μm。

相关文档
最新文档