高频电子线路实验报告高频小信号调谐放大器
高频电子线路实验报告

实验一 高频小信号放大器1.1 实验目的1、 掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
2、 熟悉谐振回路的调谐方法及测试方法。
3、 掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
1.2、实验容1.2.1 单调谐高频小信号放大器仿真1、根据电路中选频网络参数值,计算该电路的谐振频率ωp 。
MHz CLw p 936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。
,708.356uV V I = ,544.1mV V O = 电压增益===357.0544.10I O v V V A 4.3253、利用软件中的波特图仪观察通频带,并计算矩形系数。
波特图如下:4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v 相应的图,f(KHz)65 75 165 265 365 465 1065 1665 2265 2865 3465 4065U0 (mv) 0.9771.0641.3921.4831.5281.5481.4571.2821.0950.4790.840.747A V 2.7362.9743.8994.1544.284.3364.0813.5913.0671.3412.3522.092BW0.7=6.372MHz-33.401kHz5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。
1.2.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益A v0。
,285.28mV V I =,160.5V V O =33.1820283.0160.50===I O v V V A 输入端波形:输出端波形1、利用软件中的波特图仪观察通频带,并计算矩形系数。
BW0.7=11.411MHz-6.695MHz BW0.1=9.578MHz-7.544MHz 矩形系数K=0.431实验二高频功率放大器2.1 实验目的1、掌握高频功率放大器的电路组成与基本工作原理。
高频实验实验一高频小信号调谐放大器

实验一高频小信号调谐放大器一、实验目的1.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算。
2.掌握信号源内阻及负载对谐振回路Q值的影响。
3.掌握高频小信号放大器动态范围的测试方法。
二、实验内容1.调测小信号放大器的静态工作状态。
2.用示波器观察放大器输出与偏置及回路并联电阻的关系。
3.观察放大器输出波形与谐振回路的关系。
4.调测放大器的幅频特性。
5.观察放大器的动态范围。
三、基本原理:小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1所示。
该电路由晶体管VT7、选频回路CP2二部分组成。
它不仅对高频小信号放大,而且还有一定的选频作用。
本实验中输入信号的频率fs=10MH。
R67、R68和射极电阻决定晶体管的静态工作点。
拨码开关S7改变回路并联电阻,即改变回路Q值,从而改变放大器的增益和通频带。
拨码开关S8改变射极电阻,从而改变放大器的增益。
四、实验步骤:熟悉实验板电路和各元件的作用,正确接通实验箱电源。
1.静态测量将开关S8的2,3,4分别置于“ON”,测量对应的静态工作点,将短路插座J27断开,用直流电流表接在J27C.DL两端,记录对应I c值,计算并填入表1.1。
将S8“l”置于“ON”,调节电位器VR15,观察电流变化。
2.动态测试(1)将10MHZ高频小信号(<50mV)输入到“高频小信号放大”模块中J30(XXH.IN)。
(2)将示波器接入到该模块中J31(XXH.OUT)。
(3)J27处短路块C.DL连到下横线处,拨码开关S8必须有一个拨向ON,示波器上可观察到已放大的高频信号。
(4)改变S8开关,可观察增益变化,若S8“ l”拨向“ON”则可调整电位器VR15,增益可连续变化。
(5)将S8其中一个置于“ON”,改变输出回路中周或半可变电容使增益最大,即保证回路谐振。
(6)将拨码开关S7逐个拨向“ON”,可观察增益变化,该开关是改变并联在谐振回路上的电阻,即改变回路Q值。
高频电子线路实验报告高频小信号调谐放大器

太原理工大学现代科技学院高频电子线路课程实验报告专业班级测控1001班学号姓名指导教师实验一高频小信号调谐放大器一、实验目的小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号微弱信号的线性放大。
在本实验中,通过对谐振回路的调试,对放大器处于谐振时各项技术指标的测试(电压放大倍数、通频带、矩形系数),进一步掌握高频小信号调谐放大器的工作原理。
学会小信号调谐放大器的设计方法。
二、实验仪器1.BT-3(G)型频率特性测试仪(选项)一台2.20MHz模拟示波器一台3.数字万用表一块4.调试工具一套三、实验原理图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。
它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。
在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率和相位。
晶体管的静态工作点由电阻RB1,RB2及RE决定,其计算方法与低频单管放大器相同。
图1 小信号调谐放大器该放大电路在高频情况下的等效为如图1-2所示,晶体管的4个y参数y ie,y oe,y fe 及y re分别为:输入导纳(1-1)输出导纳(1-2)正向传输导纳(1-3)反向传输导纳(1-4)图1-2 放大器的高频等效回路式中,gm——晶体管的跨导,与发射极电流的关系为(1-5) gb’e——发射结电导,与晶体管的电流放大系数β及IE有关其关系为(1-6)rb’b——基极体电阻,一般为几十欧姆; Cb’c——集电极电容,一般为几皮法;Cb’e——发射结电容,一般为几十皮法至几百皮法。
由此可见,晶体管在高频情况下的分布参数除了与静态工作电流IE,电流放大系数β关外,还与工作频率ω有关。
晶体管手册中给出的分布参数一般是在测试条件一定的情况下测得的。
如在f0=30MHz,I E=2mA,U CE=8V条件下测得3DG6C的y参数为:如果工作条件发生变化,上述参数则有所变动。
高频小信号放大器实验报告

实验1高频小信号放大器幅频特性曲线为:带宽:8.0*0.7=5.6Bw1=6.6-6.1=0.5MHz2、观察集电极负载对单调谐回路谐振放大器幅频特性的影响当放大器工作于放大状态下,运用上步点测法测出接通与不接通1R3的幅频特性曲线。
既令2K1置“on”,重复测量并与上步图表中数据作比较。
f/MHz 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1U/mV 1.7 1.9 2.0 2.4 2.6 3.2 3.6 4.0 5.2 5.6 5.6 5.2 4.4 3.8 3.2 2.6 2.4 2.0幅频特性曲线为:5.6*0.7=3.92;Bw2=6.65-6.1=0.55MHz3、双调谐回路谐振放大器幅频特性测量(保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性。
)2K2往上拨,接通2C6(80P),2K1置off。
高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。
2K03往下拨,使高频信号送入放大器输入端。
示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。
反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。
按照下表改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入下表中。
f/MHz 4.8 5.0 5.2 5.4 5.7 5.8 5.9 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 U/mV 0.8 1.4 2.6 4.2 8.0 8.8 8.0 8.0 8.0 8.2 8.4 6.4 4.8 3.2 2.0 1.8 1.4 1.2 幅频特性曲线:8*0.7=5.6V;Bw3=6.55-5.5-1.05MHz4、放大器动态范围测量2K1置off,2K2置单调谐,接通2C6.高频信号源输出接双调谐放大器的输入端(IN),调整高频信号源频率为6.3MHz,幅度为100mV。
高频电子线路_小信号调谐放大器和高频功放_实验报告

1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。
二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。
三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。
2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。
利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。
按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。
显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。
用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。
高频小信号调谐放大器实验结论

高频小信号调谐放大器实验结论高频小信号调谐放大器是一种常见的电路,在无线通信中起到了至关重要的作用。
我们进行了一系列实验,研究了这种电路的性能和特点,得出了以下结论。
首先,高频小信号调谐放大器的主要作用是放大高频小信号。
在实验中,我们使用了两个变容二极管,一个电感和一个晶体管来构建这个电路。
当输入的高频小信号经过变容二极管调谐后,经由电感和晶体管放大后输出。
其次,调谐电路的参数非常重要,对电路性能有重要影响。
我们通过改变两个变容二极管的电容值和电感器的电感值,调整电路的谐振频率,从而得到最佳的放大效果。
在调整电路参数时,我们需要注意电路共振的问题,以防止电路失稳。
第三,晶体管的选择也非常关键。
我们选择了高频放大器专用的双极晶体管,能够提供更高的放大倍数和更好的线性度。
在实验中,我们还尝试了改变晶体管的偏置电压和失谐度对电路性能的影响。
第四,我们还研究了高频小信号调谐放大器的频率响应特性。
实验结果表明,电路在其工作频率范围内,输出信号的增益随着频率的变化而变化。
我们根据实验结果绘制了频率响应曲线,从而对电路的性能有了更深刻的了解。
最后,我们还针对不同的应用场景,进行了一系列的实际测试。
实验结果表明,在不同的频段和输入信号功率下,电路的增益和性能均有不同程度的变化。
因此,在实际应用中,需要根据具体情况进行参数调整和电路优化。
总之,高频小信号调谐放大器是一种非常实用的电路,在无线通信、雷达和电视等行业有着广泛的应用。
通过本次实验,我们对这种电路的特点、性能和应用有了更深入的了解,并可以为实际应用提供指导意义。
实验一 高频小信号调谐放大器

实验一 高频小信号调谐放大器一、实验目的小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号或微弱信号的线性放大。
在本实验中,通过对谐振回路的调试,对放大器处于谐振时各项技术指标的测试(电压放大倍数,通频带,矩形系数),进一步掌握高频小信号调谐放大器的工作原理。
学会小信号调谐放大器的设计方法。
二、实验原理图1所示电路为共发射极接法的晶体管高频小信号调谐放大器。
它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC 并联谐振回路。
在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率和相位。
晶体管的静态工作点由电阻R B1,R B2 及R E决定,其计算方法与低频单管放大器相同。
三、调谐放大器的性能指标及测量方法 表征高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A v0,放大器的通频带BW 及选择性(通常用矩形系数K r0.1 来表示)等。
放大器各项性能指标及测量方法如下:1、谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1所示电路, ∑=LC f 10其中L 为调谐回路电感线圈的电感量;C Σ 为调谐回路的总电容。
谐振频率f 0 的测量方法是:用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。
2、电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。
A V0 的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1中R L 两端的电压u 0及输入信号u i 的大小,则电压放大倍数A V0 由下式计算:A V0 = u 0 / u i 或 A V0 = 20 lg (u 0 / u i ) dB3、通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0 的21倍(0.707)时所对图1 高频小信号放大器应的频率偏移称为放大器的通频带B W 。
通信电子电路高频实验报告

实验一高频小信号谐振放大器一、实验目的1.高频小信号谐振放大器的工作原理及电路构成和电路元器件的作用。
2.了解高频小信号的质量指标和谐振放大器的性能。
3.掌握L,C参数对谐振频率的影响。
4.分析单调谐回路放大器的质量指标,测量电压增益,测量功率增益;测量放大器的频率。
二、预习要求1.复习高频小信号放大器的功用。
答:高频小信号放大器主要用于放大高频小信号, 属于窄带放大器。
由于采用谐振回路作负载,解决了放大倍数、通频带宽、阻抗匹配等问题,高频小信号放大器又称为小信号放谐振放大器。
就放大过程而言,电路中的晶体管工作在小信号放大区域中,非线性失真很小。
一方面可以对窄带信号实现不失真放大,另一方面又对带外信号滤除, 有选频作用。
2.高频小信号放大器,按有源器件分可分为:_以分立元件为主的集中选频放大器__,_以集成元件为主的集中选频放大器_;按频带宽度可分为:_窄带放大器_,宽带放大器。
三、实验内容1.参照电路原理图1-1连线。
,计算回路电容和回路2.图1-1为一单调谐回路中频放大器,已知工作频率f电感。
图1-1 小信号谐振放大器1.在选用三极管时要查晶体管手册,使参数合理。
2.观察瞬态分析的波形输出及频谱分析是否合理。
3.在pspice中设定:参数,AC=100mV、V OFF =0V,Vampl=300mV,freq=10MegHz。
V2参数CD=12V。
V1在AC Sweep中设定参数:①在AC Sweep Type中选 Decade。
②在Sweep Parameters 中选pts/Decade为20、Stort Fred为10k、End Fred为500MEG。
、Lntervat为10。
③AC Sweep Type中选 Output Voltoge为V(A)、1/V为V1四、实验报告1.根据输入信号的幅度和频率,测出输出信号的幅度和频率,完成表1-12.画出输入信号和输出信号的波形;(根据图形输出)仿真图如下:3.分析单调谐回路谐振放大器的质量指标:(1)测量电压增益;=60Au=UoUi(2)测量放大器的通频带;谐振回路的通频带:BW=fH-fL =0.02MHz实验二三点式振荡器一、实验目的1.熟悉三点式振荡器的工作原理及电路构成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太原理工大学现代科技学院高频电子线路课程实验报告专业班级测控1001班学号姓名指导教师实验一高频小信号调谐放大器一、实验目的小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号微弱信号的线性放大。
在本实验中,通过对谐振回路的调试,对放大器处于谐振时各项技术指标的测试(电压放大倍数、通频带、矩形系数),进一步掌握高频小信号调谐放大器的工作原理。
学会小信号调谐放大器的设计方法。
二、实验仪器1.BT-3(G)型频率特性测试仪(选项)一台2.20MHz模拟示波器一台3.数字万用表一块4.调试工具一套三、实验原理图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。
它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。
在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率和相位。
晶体管的静态工作点由电阻RB1,RB2及RE决定,其计算方法与低频单管放大器相同。
图1 小信号调谐放大器该放大电路在高频情况下的等效为如图1-2所示,晶体管的4个y参数y ie,y oe,y fe 及y re分别为:输入导纳(1-1)输出导纳(1-2)正向传输导纳(1-3)反向传输导纳(1-4)图1-2 放大器的高频等效回路式中,gm——晶体管的跨导,与发射极电流的关系为(1-5) gb’e——发射结电导,与晶体管的电流放大系数β及IE有关其关系为(1-6)rb’b——基极体电阻,一般为几十欧姆; Cb’c——集电极电容,一般为几皮法;Cb’e——发射结电容,一般为几十皮法至几百皮法。
由此可见,晶体管在高频情况下的分布参数除了与静态工作电流IE,电流放大系数β关外,还与工作频率ω有关。
晶体管手册中给出的分布参数一般是在测试条件一定的情况下测得的。
如在f0=30MHz,I E=2mA,U CE=8V条件下测得3DG6C的y参数为:如果工作条件发生变化,上述参数则有所变动。
因此,高频电路的设计计算一般采用工程估算的方法。
图1-2中所示的等效电路中,P1为晶体管的集电极接入系数,即P1=N1/N2(1-7)式中,N2为电感L线圈的总匝数。
P2为输出变压器T的副边与原边的匝数比,即P2=N3/N2(1-8)g L为调谐放大器输出负载的电导,g L =1/R L。
通常小信号调谐放大器的下一级仍为晶体管调谐放大器,则g L将是下一级晶体管的输入导纳g ie2。
由图1-2可见,并联谐振回路的总电导g∑的表达式为(1-9)式中,G为LC回路本身的损耗电导。
谐振时L和C的并联回路呈纯阻,其阻值等于1/G,并联谐振电抗为无限大,则jw C与1/(jw L)的影响可以忽略。
2、调谐放大器的性能指标及测量方法表征高频小信号调谐放大器的主要性能指标有谐振频率of,谐振电压放大倍数voA,放大器的通频带BW及选择性(通常用矩形系数1.0rK来表示)等。
放大器各项性能指标及测量方法如下:(1)谐振频率放大器的调谐回路谐振时所对应的频率of称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f0的表达式为(1-10)式中,L为调谐回路电感线圈的电感量;CΣ为调谐回路的总电容, CΣ的表达式为(1-11)式中, Coe为晶体管的输出电容;C ie为晶体管的输入电容。
谐振频率of的测量方法是: 用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f0。
(2)电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数Avo称为调谐放大器的电压放大倍数。
Avo的表达式为(1-12)式中,gΣ为谐振回路谐振时的总电导。
因为LC并联回路在谐振点时的L和C的并联电抗为无限大,因此可以忽略其电导。
但要注意的是f ey本身也是一个复数,所以谐振时输出电压u 0与输入电压u i相位差为(+ Φfe)。
A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1中RL两端的电压u0及u i输入信号的大小,则电压放大倍数A V0由下式计算:(1-13)(3)通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数AV下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW,其表达式为(1-14)式中,Q L为谐振回路的有载品质因数。
分析表明,放大器的谐振电压放大倍数Avo与通频带BW的关系为(1-15)上式说明,当晶体管选定即y fe确定,且回路总电容CΣ为定值时,谐振电压放大倍数A V0与通频带BW的乘积为一常数。
这与低频放大器中的增益带宽积为一常数的概念是相同的。
通频带BW的测量方法:是通过测量放大器的谐振曲线来求通频带。
测量方法可以是扫频法,也可以是逐点法。
逐点法的测量步骤是:先调谐放大器的谐振回路使其谐振,记下此时的谐振频率fo及电压放大倍数Avo然后改变高频信号发生器的频率(保持其输出电压Us不变),并测出对应的电压放大倍数Avo。
由于回路失谐后电压放大倍数下降,所以放大器的谐振曲线如图1-3所示。
由式(1-14)可得BW=f H−f L =2∆f0.7 (1-16)图1-3 谐振曲线通频带越宽放大器的电压放大倍数越小。
要想得到一定宽度的通频宽,同时又能提高放大器的电压增益,由式(1-15)可知,除了选用y fe较大的晶体管外,还应尽量减小调谐回路的总电容量CΣ。
如果放大器只用来放大来自接收天线的某一固定频率的微弱信号,则可减小通频带,尽量提高放大器的增益。
(4)选择性——矩形系数调谐放大器的选择性可用谐振曲线的矩形系数Kv0.1时来表示,如图(1-3)所示的谐振曲线,矩形系数Kv0.1为电压放大倍数下降到0.1 A V0时对应的频率偏移与电压放大倍数下降到0.707 A V0时对应的频率偏移之比,即(1-17)上式表明,矩形系数Kv0.1越小,谐振曲线的形状越接近矩形,选择性越好,反之亦然。
一般单级调谐放大器的选择性较差(矩形系数Kv0.1远大于1),为提高放大器的选择性,通常采用多级单调谐回路的谐振放大器。
可以通过测量调谐放大器的谐振曲线来求矩形系数Kv0.1。
3、实验参考电路实验图1-4 单级调谐放大器(1)主要技术指标:谐振频率fo=10.7MHz,谐振电压放大倍数Avo≥10-15 dB,通频带BW=1 MHz,矩形系数Kr0.1<10。
因fT比工作频率f0大(5—10)倍,所以选用3DG12C,选β=50,工作电压为12V,查手册得=70, C bˊC=3PF,当I E=1.5mA时C bˊe为25PF,取L≈1.8μH,变压器初级N2=23匝,次级为10匝。
P2=0.43, P1=0 (2)确定电路为单级调谐放大器,如上图1-4。
(3)确定电路参数a、设置静态工作点由于放大器是工作在小信号放大状态,放大器工作电流ICQ一般选取0.8—2mA为宜,现取I E=1.5mA,U EQ=2.25V,U CEQ=9.75V。
则则R6A=1.5KΩ取流过3AR的电流为基极电流的7倍,则有:则则取R A2=5.1K WA1选用50K的可调电阻以便调整静态工作点。
b、计算谐振回路参数由式(1-6)得由式(1-5)得由式(1-1)—(1-4)得4个y参数由于则有因,则有c、计算回路总电容∑C,由(1-10)得由(1-11),得则有C3A=119pF,取标称值120pF d、确定耦合电容及高频滤波电容高频电路中的耦合电容及滤波电容一般选取体积较小的瓷片电容,现取耦合电容=0.01μF,旁路电容C A4=0.1μF,滤波电容C A5=0.1μF 四、实验内容本实验中,用到BT-3和频谱仪的地方选做。
参考所附电路原理图G6。
先调静态工作点,然后再调谐振回路。
1、按照所附电路原理图G6,按下开关KA1,接通12V电源,此时LEDA1点亮。
2、调整晶体管的静态工作点:在不加输入信号(即u i=0),将测试点TTA1接地,用万用表直流电压档(20V档)测量三极管QA1射极的电压(即测P6与G两焊点之间的电压,见图0-2所示),调整可调电阻WA1,使u EQ=2.25V(即使IE=1.5mA),根据电路计算此时的u BQ,u CEQ,u EQ及I EQ值。
3、调谐放大器的谐振回路使它谐振在10.7MHz 方法是用BT-3频率特性测试仪的扫频电压输出端和检波探头,分别接电路的信号输入端TTA1及测试端TTA2,通过调节y轴,放大器的“增益”旋钮和“输出衰减”旋钮于合适位置,调节中心频率刻度盘,使荧光屏上显示出放大器的“幅频谐振特性曲线”,根据频标指示用绝缘起子慢慢旋动变压器的磁芯,使中心频率f0=10.7MHz所对应的幅值最大。
如果没有频率特性测试仪,也可用示波器来观察调谐过程,方法是:在TTA1处由高频信号源提供频率为10.7MHz的载波(参考高频信号源的使用),大小为Vp-p-=20~100mV的信号,用示波器探头在TTA2处测试(在示波器上看到的是正弦波),调节变压器磁芯使示波器波形最大(即调好后,磁芯不论往上或往下旋转,波形幅度都减小)。
4、测量电压增益Av0在有BT-3频率特性测试仪的情况下用频率特性测试仪测Av0测量方法如下:在测量前,先要对测试仪的y轴放大器进行校正,即零分贝校正,调节“输出衰减”和“y轴增益“旋钮,使屏幕上显示的方框占有一定的高度,记下此时的高度和此时“输出衰减”的读数N1dB,然后接入被测放大器,在保持y轴增益不变的前提下,改变扫频信号的“输出衰减”旋钮,使谐振曲线清晰可见。
记下此时的“输出衰减”的值N2dB,则电压增益为若用示波器测,则为输出信号的大小比输入信号的大小之比。
如果AV01较小,可以通过调静态工作点来解决(即I E增大)。
在无BT-3频率特性测试仪的情况下,可以由示波器直接测量。
方法如下:用示波器测输入信号的峰峰值,记为Ui。
测输出信号的峰峰值记为Uo。
则小信号放大的电压放大倍数为Uo/Ui 5、测量通频带BW用扫频仪测量BW:先调节“频率偏移”(扫频宽度)旋钮,使相邻两个频标在横轴上占有适当的格数,然后接入被测放大器,调节“输出衰减”和y轴增益,使谐振特性曲线在纵轴占有一定高度,测出其曲线下降3dB处两对称点在横轴上占有的宽度,根据内频标就可以近似算出放大器的通频带:6、测量放大器的选择性放大器选择性的优劣可用放大器谐振曲线的矩形系数Kr0.1表用5)中同样的方法测出B0.1即可得:由于处于高频区,分布参数的影响存在,放大器的各项技术指标满足设计要求后的元件参数值与设计计算值有一定的偏差,所以在调试时要反复仔细调整才能使谐振回路处于谐振状态。