铁碳微电解技术概述

合集下载

有机电化学之铁碳微电解法介绍

有机电化学之铁碳微电解法介绍

Page 6
铁碳微电解法装 置
铁碳微电解法在废水处理中的应用
铁碳微电解法在造纸废水处理中的应用: 铁碳微电解法在造纸废水处理中的应用:
造纸废水中含有大量的木质素等难生物降解的物质,许多造纸企 业经过一级物化、二级生化处理后出水的CODcr 、色度等各项指标不 能达到国家造纸工业水污染物排放一级标准。 针对用白腐菌一厌氧一好氧生物法处理造纸黑液的出水色度过高, 而COD也不能达标的现象,利用铁碳微电解反应柱对出水进行脱色与 去除COD的研究,发现在常温下,铁炭质量比2:1,初始pH值 4.5—5.5之间,反应时间30—40 min,最终色度与COD的去除率 分别达到94.2%与68.9% ,出水达到了行业排放标准。
Page 10
铁碳微电解法将来研究的主要方向
设计新型的铁碳微电解反应器。 设计新型的铁碳微电解反应器。通过改进和优化铁碳 微电解反应器内部的结构和运行方式, 微电解反应器内部的结构和运行方式,不仅能够使反 应更加稳定,而且能够避免铁碳填料的板结。 应更加稳定,而且能够避免铁碳填料的板结。 与其他工艺联用。与其他工艺联用不仅能够提高对污 与其他工艺联用。 染物的去除率,而且相对降低了运行的成本, 染物的去除率,而且相对降低了运行的成本,有望在 废水的深度处理中得以实现。 废水的深度处理中得以实现。
铁碳微电解法装置
Page 3
铁碳微电解法作用机理
电极反应生成的产物(如新生态的H )具有很高的 活性,能够跟废水中多 种组分发生氧化还原反 应,许多难降解和有毒的物质都能够被有效地 降解;同时,金属铁能够和废水中金属活动顺 序排在铁之后的重金属离子发生置换反应。 其次,经铁碳微电解处理后的废水中含有大量 的Fe 2+ ,将废水调至中性经曝气之后则生成絮 凝性极强的Fe(OH) 3 ,能够有效吸附废水中的 悬浮物及重金属离子如Cr3+,其吸附性能远远高 于一般的Fe(OH)3絮凝剂。 铁碳微电解就是通过以上各种作用达到去除水 中污染物的目的。

水污染治理技术6.7 铁碳微电解

水污染治理技术6.7 铁碳微电解

6.7 铁碳微电解
(6)微电解材料选择及组合方式
阳极材料:铸铁屑、小碎铁块、铸铝屑、铝合金。 阴极材料:焦炭、活性炭、石墨、煤粉。 加入催化剂CuO、Mn02、A12O3等能改迚阴极的电极性能, 提高电化学活性。氯化钠、氯化氨的存在提高废水的电导率 有助于微电解反应的迚行。

6.7 铁碳微电解
6.7 铁碳微电解
6.7 铁碳微电解
酸性溶液中; 当铁和炭有 外在导体连 接时。
6.7 铁碳微电解
一、铁碳微电解原理 1、原电池反应 阳极(Fe): 碳作为阴极,发生如下反应 阴极(C) : 在酸性和充氧条件下:
在中性或碱性和充氧条件下:
6.7 铁碳微电解
2、氧化还原反应 ① 单质铁的还原性:金属活动顺序表中排在元素铁后面的金 属离子可能被铁置换出来并沉积在铁表面; ②Fe2+的还原性:阳极反应产生的新生态二价铁离子具有较 强的还原能力,一些氧化性较强的离子或者化合物能被Fe2+ 还原成毒性相对较小的还原态,例如,Cr6+在酸性条件下能 被Fe2+还原Cr3+。 ③新生态氢的还原性:电极反应中得到的新生态氢具有较大 的活性,能与废水中的许多组分发生还原作用。 ④中间反应产物O2-、H2O2,的氧化性:铁-碳原电池中, 阴极发生的一系列中间反应产物,如O2-、H2O2具有极强的 氧化性。
6.7 铁碳微电解
一、铁碳微电解原理 二、铁碳微电解应用 三、运行维ቤተ መጻሕፍቲ ባይዱ与管理 四、微电解法的収展
6.7 铁碳微电解
微电解法(内电解法)又称腐蚀电池法,铁屑过滤 法。一般采用铸铁屑和活性炭或者焦炭构成微小的原 电池,以充入的污水为电解质,以电化学反应为主, 还可通过铁屑对絮体的电附集,混凝,吸附,过滤等 综合作用来处理废水。 微电解(内电解)与电解(外电解)的区别:微 电解工艺过程中不需要外接电源。

铁碳微电解技术原理介绍及应用分析

铁碳微电解技术原理介绍及应用分析

铁碳微电解技术原理介绍及应用分析1微电解又称内电解、铁碳法、铁屑过滤法、零价铁法等等,被广泛应用到重金属、印染、造纸、皮革、制药废水的处理中。

微电解工艺的原理是将铁屑(铁屑一般为铁-碳合金)和惰性碳粒(石墨、焦炭、活性炭、煤等)浸没在酸性废水中,由于电极电位差,废水中会形成无数的微型腐蚀电池(微观电池)。

同时,铁屑和投加的碳颗粒又构成了无数的微型电解电极(宏观电池),电位高的碳为阴极,电位低的铁为阳极。

电解电极(宏观电池)与腐蚀电池(微观电池)在酸性溶液中构成无数的微型电解回路,因而被称作微电解反应。

在铁阳极上,纯铁失去电子生成Fe2+进入溶液中,电子在电极电位差的作用下从阳极流向碳阴极。

在阴极附近,溶液中的溶解氧吸收电子生成OH-。

在偏酸性溶液中,阴极反应生成新生态氢,进而生成氢气从溶液中逸出。

微电解通过氧化还原作用、电化学富集作用、物理吸附作用、絮凝和沉淀作用、电子传递作用达到去除污染物的目的。

(1)氧化还原作用金属铁、电极反应产生的Fe2+和酸性条件下阴极产生的新生态氢均具有还原性,能与一些有机物发生氧化还原反应,如将含硝基有机物还原为氨基有机物,所以铁碳微电解技术对废水中的硝基苯有很好的去除效果。

Fe2+能将偶氮型染料的发色基团还原,因而该技术具有脱色作用,同时能提高废水的可生化性。

(2)电化学富集作用当铁与碳化铁之间形成一个个小的原电池的时候,其周围会产生一个电场,废水中的胶体颗粒和带电荷的细小污染物处在原电池电场下时,产生电泳从而在电极上凝聚沉积下来得到去除。

(3)物理吸附作用反应体系中的铁屑比表面积大并显示出较高的表面极性,能够对金属离子起到去除的作用;同时铁屑表面活性较高,能够吸附水体中的污染物,从而净化废水。

另外体系反应过程中产生的络合物,能够吸附、共沉、裹挟大量的污染物质,从而使污染物得到去除。

(4)絮凝和沉淀作用电极反应产生的Fe2+及部分氧化生成的Fe3+,在碱性且有氧气存在的条件下,会生成Fe(OH)2和Fe(OH)3絮凝沉淀。

铁碳微电解反应

铁碳微电解反应

铁碳微电解反应一、概述铁碳微电解反应是指在含有碳源的溶液中,通过外加电场作用下,铁离子与碳源发生反应,生成铁基合金或氧化物的过程。

该反应具有简单、高效、低成本等优点,在金属粉末制备、废水处理等领域得到广泛应用。

二、反应机理1. 铁离子还原在微电解过程中,外加电场作用下,铁离子会发生还原反应,从Fe3+还原为Fe2+。

2. 碳源氧化同时,在含有碳源的溶液中,碳源也会发生氧化反应。

常见的碳源有葡萄糖、甘油和聚乙烯醇等。

以葡萄糖为例,其氧化反应式为:C6H12O6 + 6H2O → 6CO2 + 24H+ + 24e-3. 铁离子与碳源反应在铁离子被还原为Fe2+的同时,它与氧化后的碳源发生反应。

在葡萄糖溶液中,产物主要是Fe-C合金和Fe3O4。

三、影响因素1. 外加电压外加电压是影响铁碳微电解反应的重要因素。

过高或过低的电压都会影响反应效果和产物质量。

2. 碳源种类不同种类的碳源对反应的影响也不同。

一般来说,含有羟基或醛基的化合物更容易被氧化。

3. 溶液pH值溶液pH值对反应速率和产物性质都有影响。

一般来说,酸性条件下反应速率较快,但产物易受到腐蚀;碱性条件下产物质量较好,但反应速率较慢。

4. 温度温度对反应速率也有很大影响。

一般来说,温度越高,反应速率越快。

四、应用领域1. 金属粉末制备铁碳微电解法可以用于制备各种金属粉末,如Fe、Ni、Co等。

与传统方法相比,该方法具有成本低、操作简单等优点。

2. 废水处理铁碳微电解法可以用于废水处理中,通过氧化还原作用去除废水中的有机污染物和重金属离子。

该方法具有高效、低成本等优点,适用于小型污水处理厂。

3. 电池材料制备铁碳微电解法可以用于制备电池材料,如LiFePO4。

与传统方法相比,该方法具有简单、快速等优点。

五、总结铁碳微电解反应是一种简单、高效、低成本的反应方式,在金属粉末制备、废水处理和电池材料制备等领域得到广泛应用。

其机理复杂,影响因素多样,需要根据具体情况进行调整。

铁碳微电解技术

铁碳微电解技术

铁碳微电解技术一、铁碳微电解法概述铁屑(较多使用铸铁屑)为铁-碳合金,当浸没在废水溶液中时,就构成一个完整的微电池回路,形成一种内部电解反应,这就是微电解。

而在铸铁屑中再加入惰性碳(如石墨、焦炭、活性炭、煤等)颗粒时,铁屑与炭粒接触,形成的大原电池即为铁碳微电解法。

二、技术原理铁碳微电解技术主要利用了铁的还原性、铁的电化学性、铁离子的絮凝吸附三者共同作用来净化废水。

铁碳微电解工艺的电解材料一般采用铸铁屑和活性炭或者焦炭,当材料浸没在废水中时,发生内部和外部两方面的电解反应。

一方面铸铁中含有微量的碳化铁,碳化铁和纯铁存在明显的氧化还原电势差,这样在铸铁屑内部就形成了许多细微的原电池,纯铁作为原电池的阳极,碳化铁作为原电池的阴极,在含有酸性电解质的水溶液中发生电化学反应,使铁变为二价铁离子进入溶液。

此外,铸铁屑和其周围的炭粉又形成了较大的原电池,因此在利用微电解进行废水处理的过程实际上是内部和外部双重电解的过程,或者称之为存在微观和宏观的原电池反应。

另外,为了增加电位差,促进铁离子的释放,也可在铁碳微电解填料中加入一定比例催化剂。

发生电化学反应过程如下:阳极(Fe):Fe - 2e→Fe2+E(Fe/Fe2+)=0.44V阴极(C) :2H+ + 2e→H2 E(H+/H2)=0.00V反应中,产生了初生态的Fe2+和原子H,它们具有高化学活性,能改变废水中许多有机物的结构和特性,使有机物发生断链、开环等作用。

若有曝气,还会发生下面的反应:O2+ 4H+ + 4e→2H2O E(O2)=1.23VO2+ 2H2O + 4e →4OH-E(O2/OH-)=0.41VFe2+ + O2 + 4H+ →2H2O + Fe3+反应中生成的OH-是出水pH值升高的原因,而由Fe2+氧化生成的Fe3+逐渐水解生成聚合度大的Fe(OH)3胶体絮凝剂,可以有效地吸附、凝聚水中的悬浮物及重金属离子,且吸附性能远远高于一般的Fe(OH)3,从而增强对废水的净化效果。

铁碳微电解技术

铁碳微电解技术

铁碳微电解技术铁碳微电解技术是经过不断的优化改良,能真正快速、低成本处理含重金属、高COD、高色度、高氨氮等高浓度有机废水的处理的理想工艺,突破了传统方法:高成本、生化面积大、难达标的瓶颈。

技术特点:在短时间内(30-90分钟)去除污水中的有害物质。

包括:1、去除重金属:通过改变重金属元素的化学价,在催化和氧化的作用下变成金属化合沉淀物,将浓缩污泥内的重金属再分别提取出来,达到去除效果,去除率最高达99%。

2、去除色度:通过铁碳微电解的氧化作用产生新生氧,使色团受损而达到除色目的,最高去除率达98%。

3、去除COD:通过铁碳微电解的氧化作用断开大分子链,除了去除大部份COD值外,还能改善B/C 值,有利后步生化处理,缩短生化时间及易于达标。

处理污水种类:A、含重金属污水:电镀厂、线路板厂、采矿企业污水、化学污水。

如果污水含氰化物小于60ppm,则不需分开处理,氰化物和重金属在反应时同时被去除,如果污水PH呈酸性,不需用城中和,可直接反应处理,反应完成出水自动变成中性或微城性。

减少了用城中和的步骤和成本。

B、高COD、高色度污水:皮革厂(包括生皮及蓝湿皮)、肖皮厂、印花厂、染厂、垃圾渗透液等高浓废水,通过氧化基铁碳微电解设备处理,污水中的COD和颜色大部份被去除,使后续生化变得轻松容易,大大减少生化时间和面积,从而减轻投资成本和处理成本。

一、电镀废水处理电镀厂废水:呈强酸性,有大量的氰化物和磷酸盐,在生产过程中还有铜、铬、锌、铅等重金属,用铁碳微电解技术处理电镀废水,含氰废水不用分开处理,且各种指标(包括重金属)全部达标排放。

铁碳微电解技术是利用填料具有微电池反应、絮凝作用、和吸附共沉等综合作用,对废水处理表现出十分显著的效果。

对技术原理作简要的分析:铁碳微电解技术原理:铁碳微电解产物具有很高的化学活性,在阳极,产生的新生态Fe2+;在阴极,产生的活性[H],均能与废水中许多污染物组份发生氧化还原反应,使大分子物质分解为小分子物质,使某些难生化降解的物质转变成容易处理的物质,提高废水的可生化性。

铁碳微电解硫酸盐还原

铁碳微电解硫酸盐还原

铁碳微电解硫酸盐还原
铁碳微电解是一种处理废水的方法,其中铁和碳作为电极,通过微电解原理来处理废水中的污染物。

具体到硫酸盐还原,这是一种在微电解过程中,通过铁电极将硫酸盐还原为硫化物的方法。

该方法主要利用了铁的氧化还原反应。

在电解过程中,铁失去电子成为亚铁离子,而碳则保持其电子状态。

这些电子随后与废水中的硫酸盐反应,将其还原为硫化物。

这种方法在处理某些工业废水方面特别有效,例如采矿、石油化工和纺织等行业产生的废水。

这些废水中通常含有高浓度的硫酸盐,通过铁碳微电解处理可以将这些硫酸盐转化为硫化物,从而达到净化废水的目的。

需要注意的是,铁碳微电解技术并不是万能的,它主要适用于处理含有特定污染物的废水。

在实际应用中,通常需要结合其他处理方法来达到最佳的处理效果。

同时,该技术的效率和效果也受到多种因素的影响,例如电极的材料、电解的条件以及废水的特性等。

如果您需要更详细或最新的信息,建议咨询环保专家或查阅最新的文献资料。

铁碳微电解法(TPFC)技术概况

铁碳微电解法(TPFC)技术概况

微电解技术是目前处理高浓度有机废水的一种理想工艺,该工艺用于高盐、难降解、高色度废水的处理不但能大幅度地降低cod和色度,还可大大提高废水的可生化性。

该技术是在不通电的情况下,利用微电解设备中填充的微电解填料产生“原电池”效应对废水进行处理。

当通水后,在设备内会形成无数的电位差达1.2V 的“原电池”。

“原电池”以废水做电解质,通过放电形成电流对废水进行电解氧化和还原处理,以达到降解有机污染物的目的。

在处理过程中产生的新生态 [•O H] 、[H] 、[O]、Fe2+ 、Fe3+等能与废水中的许多组分发生氧化还原反应,比如能破坏有色废水中的有色物质的发色基团或助色基团,甚至断链,达到降解脱色的作用;生成的Fe2+ 进一步氧化成Fe3 +,它们的水合物具有较强的吸附- 絮凝活性,特别是在加碱调pH 值后生成氢氧化亚铁和氢氧化铁胶体絮凝剂,它们的絮凝能力远远高于一般药剂水解得到的氢氧化铁胶体,能大量絮凝水体中分散的微小颗粒、金属粒子及有机大分子.其工作原理基于电化学、氧化- 还原、物理以及絮凝沉淀的共同作用。

该工艺具有适用范围广、处理效果好、成本低廉、处理时间短、操作维护方便、电力消耗低等优点,可广泛应用于工业废水的预处理和深度处理中。

并且,拓步环保科技所生-产的TPFC新型铁碳微电解填料具有不板结不钝化的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4.1铁炭微电解技术概述
微电解技术,又称内电解、铁还原、铁炭法·零价铁法、铁屑过滤法等技术,是被广泛研究与应用的一项废水处理技术。

1.4.2铁炭微电解作用机理
(l)氧化还原反应
铁是活泼金属,在偏酸性水溶液中能够发生如下反应:
Fe+2H+→Fe2++H2↑
当水中存在氧化剂时Fe2+可进一步被氧化为Fe3+。

从铁的电极电位可以知道,在金属活动顺序表中排在铁后面的金属有可能被铁置换出来而沉积在铁的表面上。

同样,其他氧化性较强的离子或化合物也会被铁或亚铁离子还原成毒性较小的还原态。

铁的还原能力也可使某些有机物被还原成还原态物质:硝基苯可被活性金属还原成胺基就是其中一例,还原后的胺基有机物颜色较淡,且易被微生物氧化分解,使废水中的色度得以降低,可生化性提高为进一步的生化处理创造了条件。

(2)原电池反应
铸铁是铁和碳的合金,即由纯铁和碳化铁(Fe3C)及一些杂质组成,碳化铁为极小的颗粒,分散在铁内,且碳化铁的腐蚀趋势低。

因此,当铸铁屑浸入水中时就构成了成千上万个细小的微电池,纯铁为阳极,碳化铁及杂质则成为阴极,发生电极反应,这就是微观原电池。

当体系中有活性炭等宏观阴极材料存在时,又可以组成宏观原电池。

这样,铁屑在受到微原电池腐蚀的同时又受到大
原电池的腐蚀,因而能加速电极反应。

其基本电极反应如下:
阳极反应:
Fe-2e-→Fe2+
E(Fe2+/Fe)=-0.44 V
阴极反应:
2H++2e-→2[H]→H2
E O(H+/H 2)=0.ooV
当有O2存在时:
02+4H++4e→2H2 O(酸性溶液)(1.4)
E O(O2)=1.23V
02+2H2 O+4e→4OH-(碱性及中性溶液)(1.5)
E0(O2/OH-)= 0.40V
当然,阴极过程也可以是有机物的还原。

由上述电极反应的电极电位可知,在酸性充氧情况下电极反应的E0最大,反应(l.4)进行的最快,该反应不断消耗废水中的H+而使其pH上升,因此,反应的pH低、酸度大时,氧的电极电位提高,微电池的电位差加大,促进了电极反应的进行。

从这理论上解释了酸性废水微电解反应效果较好的原因。

由于Fe2+的不断生成能有效的克服阳极的极化作用,从而促进铁的电化学腐蚀,使大量的Fe2+进入溶液,具有较高的化学还原活性。

在酸性溶液中,电极反应所产生的新生态[H],能与废水中的许多组分发生氧化还原反应,破坏发色和助色基团,达到脱色目的;同时铁是活泼金属,它的还原能力可使某些氧化基
团组分被还原为还原态物质,废水的可生化性大大提高。

值得注意的是,铁-碳原电池中,阴极发生的一系列中间反应产物,如O2-、H2O2,这些中间产物具有极强的氧化性。

(3)电化学富集
当铁与碳化铁或与其他杂质之间形成一个小的原电池时,将在其周围产生一个电场,许多废水中均存在着稳定的带电胶体,当这些胶体处于电场下时,将产生电泳作用而被附集。

(4)物理吸附
在弱酸性溶液中,铁屑丰富的比表面积显出较高的表面极性,能吸附多种金属离子,促进金属的去除,同时铁屑中的微炭粒对金属的吸附作用也是不可忽视的;而且铁屑表面具有较高的活性,能吸附废水中的有机污染物,净化废水。

另外反应过程中产生的新的胶粒,其中心胶核是由许多Fe(oH)3聚合而成的有巨大比表面积的不溶性粒子,这就使它易于吸附、共沉、裹挟大量的污染物质,从而达到去除污染物的目的。

(5)铁离子的混凝作用
在酸性条件下,用铁屑处理废水时,会产生Fe2+和Fe3+。

Fe2+和Fe3+是很好的混凝剂,将溶液pH值调至碱性且有O2存在时会形成Fe(oH)2和Fe(oH)3絮状沉淀。

反应式如下:
Fe2++2OH-→Fe(OH)2↓(1.6)
4Fe2++8OH-+O2+2H2O→4Fe(OH)3↓(1.7)
生成的Fe(OH)2、Fe(OH)3是胶体絮凝剂,具有一定的吸附能力。

这样,废水中原有的悬浮物质,通过原电池反应产生的不溶物和构成色度的不溶性胶体均可被其吸附凝聚。

(6)铁离子的沉淀作用
在电池反应的产物中,Fe2+和Fe3+也将和一些无机物发生反应生成沉淀物而去除这些无机物,以减少其对后续生化工段的毒害性。

如S2-、CN-等将生成FeS、Fe3[Fe(CN)6]2、Fe4[Fe(CN)6]3等沉淀而被去除。

(7)电子传递作用
铁是生物氧化酶中细胞色素的重要组成部分,通过Fe2+、Fe3+之间的氧化还原反应进行电子传递口]。

微电解出水中新生态的铁离子能参与这种电子传递,对生化反应有促进作用,提高了废水的可生化性。

铁碳池对整个系统运行的作用
从文献资料上看,工业废水通过铁碳池后,可以降低废水的酸度,减少中和剂的使用量;废水的可生化性显著提高:在最佳工艺条件下COD的去除率可达60%左右,有人做的实验甚至到达90%以上;色度去除率大于90%。

铁碳池运行过程中出现的问题
1 铁屑结块和表面钝化问题
2 出水返色问题:由于铁屑被氧化成Fe2+,又生成Fe3+,它们的水解产物Fe(OH)2和Fe(OH)3是造成返色现象的主要原因,并且未完全去除的Fe2+会在一定程度上加剧这种“返色”现象。

3 产生铁泥:这个好处理,可以送往炼铁厂或者掺和制作建筑材料。

补充一个问题:铁碳池串联,即多次微电解处理,串联7个。

得到的结论是串联越多,COD呈逐步下降趋势,但是到300mg/L时,无法进一步降低COD浓度。

但是没有提到出水的pH值的变化情况。

相关文档
最新文档