铁碳微电解的反应原理
水污染治理技术6.7 铁碳微电解

6.7 铁碳微电解
(6)微电解材料选择及组合方式
阳极材料:铸铁屑、小碎铁块、铸铝屑、铝合金。 阴极材料:焦炭、活性炭、石墨、煤粉。 加入催化剂CuO、Mn02、A12O3等能改迚阴极的电极性能, 提高电化学活性。氯化钠、氯化氨的存在提高废水的电导率 有助于微电解反应的迚行。
6.7 铁碳微电解
6.7 铁碳微电解
6.7 铁碳微电解
酸性溶液中; 当铁和炭有 外在导体连 接时。
6.7 铁碳微电解
一、铁碳微电解原理 1、原电池反应 阳极(Fe): 碳作为阴极,发生如下反应 阴极(C) : 在酸性和充氧条件下:
在中性或碱性和充氧条件下:
6.7 铁碳微电解
2、氧化还原反应 ① 单质铁的还原性:金属活动顺序表中排在元素铁后面的金 属离子可能被铁置换出来并沉积在铁表面; ②Fe2+的还原性:阳极反应产生的新生态二价铁离子具有较 强的还原能力,一些氧化性较强的离子或者化合物能被Fe2+ 还原成毒性相对较小的还原态,例如,Cr6+在酸性条件下能 被Fe2+还原Cr3+。 ③新生态氢的还原性:电极反应中得到的新生态氢具有较大 的活性,能与废水中的许多组分发生还原作用。 ④中间反应产物O2-、H2O2,的氧化性:铁-碳原电池中, 阴极发生的一系列中间反应产物,如O2-、H2O2具有极强的 氧化性。
6.7 铁碳微电解
一、铁碳微电解原理 二、铁碳微电解应用 三、运行维ቤተ መጻሕፍቲ ባይዱ与管理 四、微电解法的収展
6.7 铁碳微电解
微电解法(内电解法)又称腐蚀电池法,铁屑过滤 法。一般采用铸铁屑和活性炭或者焦炭构成微小的原 电池,以充入的污水为电解质,以电化学反应为主, 还可通过铁屑对絮体的电附集,混凝,吸附,过滤等 综合作用来处理废水。 微电解(内电解)与电解(外电解)的区别:微 电解工艺过程中不需要外接电源。
微电解反应塔

微电解反应塔是一种用于处理高浓度废水的设备,采用填充在反应器内的铁碳填料,利用铁碳填料中的铁和碳之间的电位差来促进废水的电解反应。
以下是一些微电解反应塔的基本原理和特点:
1.铁碳填料:微电解反应塔中的铁碳填料通常由铁和碳组成,其
中铁和碳之间存在一定的电位差,这种电位差可以促进废水的电解反应。
2.电解反应:在微电解反应塔中,当废水通过铁碳填料时,由于
铁和碳之间的电位差,废水中的污染物会被电解成为带电荷的离子,这些离子会被铁碳填料吸附并形成可沉淀的污泥。
3.氧化还原反应:微电解反应塔中的氧化还原反应是指铁碳填料
中的铁和废水中的污染物之间的氧化还原反应。
这种氧化还原反应可以将废水中的有机物质氧化为二氧化碳和水,或将重金属离子还原为更低的价态。
4.吸附作用:微电解反应塔中的铁碳填料还具有吸附作用,可以
将废水中的悬浮物、有机物质和重金属离子吸附在填料的表
面。
5.分离效果:微电解反应塔的分离效果较好,可以将废水中的悬
浮物、有机物质和重金属离子有效地分离出来,形成沉淀或污泥。
6.适用范围:微电解反应塔适用于处理高浓度的废水,如制药、
造纸、印染、化工等行业的废水。
需要注意的是,微电解反应塔需要合理设计参数,如填料的选择、填料的级配、水流速度等,以保证其处理效果和运行稳定性。
同时,微电解反应塔也需要定期维护和保养,如更换填料、清洗设备等,以保证其正常运行和使用寿命。
铁碳微电解的反应原理

铁碳微电解的反应原理:电化学反应的氧化还原。
铁屑对絮体的电附集和对反应的催化作用。
电池反应产物的混凝,新生絮体的吸附和床层的过滤等作用的综合效应的结果。
其中主要作用是氧化还原和电附集,废铁屑的主要成分是铁和碳,当将其浸入电解质溶液中时,由于Fe和C之间存在1.2V的电极电位差,因而会形成无数的微电池系统,在其作用空间构成一个电场,阳极反应生成大量的Fe2+进入废水,进而氧化成Fe3+,形成具有较高吸附絮凝活性的絮凝剂。
阴极反应产生大量新生态的[H]和[O],在偏酸性的条件下,这些活性成分均能与废水中的许多组分发生氧化还原反应,使有机大分子发生断链降解,从而消除了有机物尤其是印染废水的色度,提高了废水的可生化度,且阴极反应消耗了大量的H+生成了大量的OH-,这使得废水的pH值也有所提高。
当废水与铁碳接触后发生如下电化学反应:阳极:Fe-2e—→Fe Eo(Fe/Fe)=0.4阴极:2H++2e—→H2 Eo(H+/H2)=0V当有氧存在时,阴极反应如下:O2+4H++4e—→2H2O Eo(O2)=1.23VO2+2H2O+4e—→4OH- Eo(O2/OH-)=0.41V有试验在铁碳反应后加H2O2,阳极反应生成的Fe2+可作为后续催化氧化处理的催化剂,即Fe2+与H2O2构成Fenton试剂氧化体系。
阴极反应生成的新生态[H]能与废水中许多组分发生氧化还原反应,破坏染料中间体分子中的发色基团(如偶氮基团),使其脱色。
通过铁碳曝气反应,消耗了大量的氢离子,使废水的pH值升高,为后续催化氧化处理创造了条件。
催化氧化原理向废水中投加适量的H2O2溶液与废水中的Fe2+组成试剂,它具有极强的氧化能力,特别适用于难降解有机废水的治理。
Fenton 试剂之所以具有极强的氧化能力,是由于HO被Fe催化分解产生•OH(羟基自由基)。
生化性能改善和色度去除的机理微电解对色度去除有明显的效果。
这是由于电极反应产生的新生态二价铁离子具有较强的还原能力,可使某些有机物的发色基团硝基—NO2 、亚硝基—NO 还原成胺基—NH2 ,另胺基类有机物的可生化性也明显高于硝基类有机物;新生态的二价铁离子也可使某些不饱和发色基团(如羧基—COOH、偶氮基-N=N-) 的双键打开,使发色基团破坏而除去色度,使部分难降解环状和长链有机物分解成易生物降解的小分子有机物而提高可生化性。
铁碳微电解技术原理介绍及应用分析

铁碳微电解技术原理介绍及应用分析1微电解又称内电解、铁碳法、铁屑过滤法、零价铁法等等,被广泛应用到重金属、印染、造纸、皮革、制药废水的处理中。
微电解工艺的原理是将铁屑(铁屑一般为铁-碳合金)和惰性碳粒(石墨、焦炭、活性炭、煤等)浸没在酸性废水中,由于电极电位差,废水中会形成无数的微型腐蚀电池(微观电池)。
同时,铁屑和投加的碳颗粒又构成了无数的微型电解电极(宏观电池),电位高的碳为阴极,电位低的铁为阳极。
电解电极(宏观电池)与腐蚀电池(微观电池)在酸性溶液中构成无数的微型电解回路,因而被称作微电解反应。
在铁阳极上,纯铁失去电子生成Fe2+进入溶液中,电子在电极电位差的作用下从阳极流向碳阴极。
在阴极附近,溶液中的溶解氧吸收电子生成OH-。
在偏酸性溶液中,阴极反应生成新生态氢,进而生成氢气从溶液中逸出。
微电解通过氧化还原作用、电化学富集作用、物理吸附作用、絮凝和沉淀作用、电子传递作用达到去除污染物的目的。
(1)氧化还原作用金属铁、电极反应产生的Fe2+和酸性条件下阴极产生的新生态氢均具有还原性,能与一些有机物发生氧化还原反应,如将含硝基有机物还原为氨基有机物,所以铁碳微电解技术对废水中的硝基苯有很好的去除效果。
Fe2+能将偶氮型染料的发色基团还原,因而该技术具有脱色作用,同时能提高废水的可生化性。
(2)电化学富集作用当铁与碳化铁之间形成一个个小的原电池的时候,其周围会产生一个电场,废水中的胶体颗粒和带电荷的细小污染物处在原电池电场下时,产生电泳从而在电极上凝聚沉积下来得到去除。
(3)物理吸附作用反应体系中的铁屑比表面积大并显示出较高的表面极性,能够对金属离子起到去除的作用;同时铁屑表面活性较高,能够吸附水体中的污染物,从而净化废水。
另外体系反应过程中产生的络合物,能够吸附、共沉、裹挟大量的污染物质,从而使污染物得到去除。
(4)絮凝和沉淀作用电极反应产生的Fe2+及部分氧化生成的Fe3+,在碱性且有氧气存在的条件下,会生成Fe(OH)2和Fe(OH)3絮凝沉淀。
铁碳微电解装置

铁碳微电解装置一、引言铁碳微电解装置是一种新型的水处理设备,它利用电化学原理将水中的有机物质和无机物质进行分解和去除。
本文将从原理、结构、工作流程、应用等方面对铁碳微电解装置进行详细介绍。
二、原理铁碳微电解装置是一种通过电化学反应来去除水中污染物的设备。
其原理是利用电极在外加电压下发生氧化还原反应,使得水中的有机物质和无机物质被分解成较小的无害物质。
具体来说,铁碳微电解装置由两个电极组成,即阳极和阴极。
在阳极上,水分子被氧化成氧气和氢离子;而在阴极上,水分子则被还原成氢气和氢离子。
同时,在阳极上发生的反应会产生一些次级产物,如臭氧、过氧化氢等,在阴极上也会产生一些次级产物,如亚硝酸盐等。
这些次级产物可以进一步参与到水处理过程中,促进污染物的去除。
三、结构铁碳微电解装置的结构比较简单,主要由电极、电源、控制系统、反应池等几部分组成。
其中,电极是整个装置的核心部件,它由铁碳复合材料制成,具有较高的催化活性和稳定性。
反应池则是用来容纳水和电极的地方,通常采用圆柱形或长方形的设计。
控制系统则是用来控制电压、电流等参数的设备。
四、工作流程铁碳微电解装置的工作流程相对简单,具体如下:1.将待处理水注入反应池中;2.启动电源,并设置合适的电压和电流;3.通过阳极和阴极之间的氧化还原反应将水中的有机物质和无机物质分解成较小的无害物质;4.通过次级产物进一步促进污染物去除;5.处理完成后,关闭电源并将处理后的水排出。
五、应用铁碳微电解装置可以广泛应用于各种水处理领域,如生活饮用水、工业废水、农村生活污水等。
其主要优点包括:1.效果好:铁碳微电解装置可以有效去除水中的有机物质和无机物质,使水达到一定的净化标准;2.成本低:相对于传统的水处理设备,铁碳微电解装置具有较低的成本,更适合于小型水处理场所使用;3.操作简便:铁碳微电解装置的操作非常简单,只需要设置好电压和电流即可。
六、总结铁碳微电解装置是一种新型的水处理设备,具有效果好、成本低、操作简便等优点。
铁碳微电解原理

铁碳微电解原理
铁碳微电解是一种通过在铁碳微电解体系中进行电化学反应来实现物质的电化学转化的技术。
该技术的原理是利用电流通过铁碳微电解体系中的阳极和阴极之间的电解质溶液,引发氧化还原反应。
在铁碳微电解过程中,电流从阳极流入电解质溶液,使阳极处发生氧化反应。
同时,电流在阴极处通过电解质溶液,引发还原反应。
这两种反应相互联动,使得物质在电解质溶液中发生电化学转化。
在铁碳微电解体系中,阳极和阴极通常由铁和碳组成。
甚至可以使用废旧金属和废旧碳材料作为阳极和阴极。
这样不仅可以实现废旧物资的再利用,还能降低生产成本。
铁碳微电解技术具有高效、环保等优点。
它可以用于废水处理、废气处理、金属资源回收等领域,有着广泛的应用前景。
需要注意的是,铁碳微电解技术并不是解决所有问题的万能药。
在使用过程中,还需要考虑电流密度、电解质浓度、反应温度等因素,以确保反应的效率和可控性。
总而言之,铁碳微电解技术是一种应用电化学原理实现物质电化学转化的技术。
其原理是通过在铁碳微电解体系中应用电流引发氧化还原反应。
铁碳微电解技术具有高效、环保等优点,并在废水处理、废气处理、金属资源回收等领域有着广泛的应用前景。
铁碳微电解反应

铁碳微电解反应一、概述铁碳微电解反应是指在含有碳源的溶液中,通过外加电场作用下,铁离子与碳源发生反应,生成铁基合金或氧化物的过程。
该反应具有简单、高效、低成本等优点,在金属粉末制备、废水处理等领域得到广泛应用。
二、反应机理1. 铁离子还原在微电解过程中,外加电场作用下,铁离子会发生还原反应,从Fe3+还原为Fe2+。
2. 碳源氧化同时,在含有碳源的溶液中,碳源也会发生氧化反应。
常见的碳源有葡萄糖、甘油和聚乙烯醇等。
以葡萄糖为例,其氧化反应式为:C6H12O6 + 6H2O → 6CO2 + 24H+ + 24e-3. 铁离子与碳源反应在铁离子被还原为Fe2+的同时,它与氧化后的碳源发生反应。
在葡萄糖溶液中,产物主要是Fe-C合金和Fe3O4。
三、影响因素1. 外加电压外加电压是影响铁碳微电解反应的重要因素。
过高或过低的电压都会影响反应效果和产物质量。
2. 碳源种类不同种类的碳源对反应的影响也不同。
一般来说,含有羟基或醛基的化合物更容易被氧化。
3. 溶液pH值溶液pH值对反应速率和产物性质都有影响。
一般来说,酸性条件下反应速率较快,但产物易受到腐蚀;碱性条件下产物质量较好,但反应速率较慢。
4. 温度温度对反应速率也有很大影响。
一般来说,温度越高,反应速率越快。
四、应用领域1. 金属粉末制备铁碳微电解法可以用于制备各种金属粉末,如Fe、Ni、Co等。
与传统方法相比,该方法具有成本低、操作简单等优点。
2. 废水处理铁碳微电解法可以用于废水处理中,通过氧化还原作用去除废水中的有机污染物和重金属离子。
该方法具有高效、低成本等优点,适用于小型污水处理厂。
3. 电池材料制备铁碳微电解法可以用于制备电池材料,如LiFePO4。
与传统方法相比,该方法具有简单、快速等优点。
五、总结铁碳微电解反应是一种简单、高效、低成本的反应方式,在金属粉末制备、废水处理和电池材料制备等领域得到广泛应用。
其机理复杂,影响因素多样,需要根据具体情况进行调整。
铁碳微电解技术

铁碳微电解技术一、铁碳微电解法概述铁屑(较多使用铸铁屑)为铁-碳合金,当浸没在废水溶液中时,就构成一个完整的微电池回路,形成一种内部电解反应,这就是微电解。
而在铸铁屑中再加入惰性碳(如石墨、焦炭、活性炭、煤等)颗粒时,铁屑与炭粒接触,形成的大原电池即为铁碳微电解法。
二、技术原理铁碳微电解技术主要利用了铁的还原性、铁的电化学性、铁离子的絮凝吸附三者共同作用来净化废水。
铁碳微电解工艺的电解材料一般采用铸铁屑和活性炭或者焦炭,当材料浸没在废水中时,发生内部和外部两方面的电解反应。
一方面铸铁中含有微量的碳化铁,碳化铁和纯铁存在明显的氧化还原电势差,这样在铸铁屑内部就形成了许多细微的原电池,纯铁作为原电池的阳极,碳化铁作为原电池的阴极,在含有酸性电解质的水溶液中发生电化学反应,使铁变为二价铁离子进入溶液。
此外,铸铁屑和其周围的炭粉又形成了较大的原电池,因此在利用微电解进行废水处理的过程实际上是内部和外部双重电解的过程,或者称之为存在微观和宏观的原电池反应。
另外,为了增加电位差,促进铁离子的释放,也可在铁碳微电解填料中加入一定比例催化剂。
发生电化学反应过程如下:阳极(Fe):Fe - 2e→Fe2+E(Fe/Fe2+)=0.44V阴极(C) :2H+ + 2e→H2 E(H+/H2)=0.00V反应中,产生了初生态的Fe2+和原子H,它们具有高化学活性,能改变废水中许多有机物的结构和特性,使有机物发生断链、开环等作用。
若有曝气,还会发生下面的反应:O2+ 4H+ + 4e→2H2O E(O2)=1.23VO2+ 2H2O + 4e →4OH-E(O2/OH-)=0.41VFe2+ + O2 + 4H+ →2H2O + Fe3+反应中生成的OH-是出水pH值升高的原因,而由Fe2+氧化生成的Fe3+逐渐水解生成聚合度大的Fe(OH)3胶体絮凝剂,可以有效地吸附、凝聚水中的悬浮物及重金属离子,且吸附性能远远高于一般的Fe(OH)3,从而增强对废水的净化效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁碳微电解的反应原理:
电化学反应的氧化还原。
铁屑对絮体的电附集和对反应的催化作用。
电池反应产物的混凝,新生絮体的吸附和床层的过滤等作用的综合效应的结果。
其中主要作用是氧化还原和电附集,废铁屑的主要成分是铁和碳,当将其浸入电解质溶液中时,由于Fe和C之间存在1.2V的电极电位差,因而会形成无数的微电池系统,在其作用空间构成一个电场,阳极反应生成大量的Fe2+进入废水,进而氧化成Fe3+,形成具有较高吸附絮凝活性的絮凝剂。
阴极反应产生大量新生态的[H]和[O],在偏酸性的条件下,这些活性成分均能与废水中的许多组分发生氧化还原反应,使有机大分子发生断链降解,从而消除了有机物尤其是印染废水的色度,提高了废水的可生化度,且阴极反应消耗了大量的H+生成了大量的OH-,这使得废水的pH值也有所提高。
当废水与铁碳接触后发生如下电化学反应:
阳极:Fe-2e—→Fe Eo(Fe/Fe)=0.4
阴极:2H++2e—→H2 Eo(H+/H2)=0V
当有氧存在时,阴极反应如下:
O2+4H++4e—→2H2O Eo(O2)=1.23V
O2+2H2O+4e—→4OH- Eo(O2/OH-)=0.41V
有试验在铁碳反应后加H2O2,阳极反应生成的Fe2+可作为后续催化氧化处理的催化剂,即Fe2+与H2O2构成Fenton试剂氧化体系。
阴极反应生成的新生态[H]能与废水中许多组分发生氧化还原反应,破坏染料中间体分子中的发色基团(如偶氮基团),使其脱色。
通过铁碳曝气反应,消耗
了大量的氢离子,使废水的pH值升高,为后续催化氧化处理创造了条件。
催化氧化原理向废水中投加适量的H2O2溶液与废水中的Fe2+组成试剂,它具有极强的氧化能力,特别适用于难降解有机废水的治理。
Fenton 试剂之所以具有极强的氧化能力,是由于HO被Fe催化分解产生•OH(羟基自由基)。
生化性能改善和色度去除的机理
微电解对色度去除有明显的效果。
这是由于电极反应产生的新生态二价铁离子具有较强的还原能力,可使某些有机物的发色基团硝基—NO2 、亚硝基—NO 还原成胺基—NH2 ,另胺基类有机物的可生化性也明显高于硝基类有机物;新生态的二价铁离子也可使某些不饱和发色基团(如羧基—COOH、偶氮基-N=N-) 的双键打开,使发色基团破坏而除去色度,使部分难降解环状和长链有机物分解成易生物降解的小分子有机物而提高可生化性。
此外,二价和三价铁离子是良好的絮凝剂,特别是新生的二价铁离子具有更高的吸附-絮凝活性,调节废水的pH 可使铁离子变成氢氧化物的絮状沉淀,吸附污水中的悬浮或胶体态的微小颗粒及有机高分子,可进一步降低废水的色度,同时去除部分有机污染物质使废水得到净化。
微电解处理废水自诞生以来,便引起国内外环保研究学者的关注,并进行了大量的研究!已有很多专利和实用技术成果。
最近几年,微电解处理工业废水发展十分迅速,现已用于印染、电镀、石油化工、制药、煤气洗涤、印刷电路板生产等工业废水及含砷、含氟废水的处理工程,并收到了良好的经济效益和环保效果。
微电解工艺对废水的脱色有良好处理的效果,且以废治废,运行费用低,因此在我国将具有良好的工业应用前景。
目前国内外微电解设备均是固定床,其特点是结构简单,推流性好,但存在不少实用性问题:一是效率不高,反应速度不快;二是床体易板结,造成短路和死区;三是铁屑补充劳动强度大。
内电解法处理工业废水中存在的问题
内电解法对不同结构,不同性质的染料的作用机理各异,需进一步探讨脱色降污作用机理及最佳处理工艺。
根据各类染料的特点,尤其处理高浓度废水时,需找出与混凝法、生化法、曝气氧化法等配合的适宜工艺,有效克服该法去除率偏低的缺点。
在解决酸性废水电化腐烛速率高而中性偏酸废水电极吸附及新生铁离子水解、絮凝效果好这矛盾。
筛选有效催化剂、助剂使之能在较广PH范围内发挥电化腐烛及絮凝吸附最佳效果。
尤其是在酸性废水中,虽脱色率较高,但铁溶出量大,污泥量亦大。
要采取有效措施尽量减少污泥量,减低污泥含水率以避免产生二次污染。
选择合适的铁屑活化方法,设计合理的过滤床,解决铁屑易钝化、易结块从而出现沟流等弊端.提高处理效率。
问题及对策
铁床作为一种废水处理装置,目前无论从理论上还是从实践上来讲,都有待进一步完善和改进。
在实际运行中,常会出现填料钝化、板结以及出水“返色”等现象,这是在实际工程中必须妥善解决的问题。
1)关于填料钝化问题
铁床经过一段时间的运行后,填料表面会形成钝化膜,废水中的悬浮颗粒也会部分沉积在填料表面上,这样就阻隔了填料与废水的有效接触,导
致铁床处理效果降低。
铁床的运行周期应通过实际运行确定,一般为20 d 左右,浸洗活化时间可采用2-3 h。
2)关于填料板结问题
铁床填料的板结除了导致铁床内部废水流态恶化致使处理效果降低外,还会使填料更换的难度大大增加。
通过在铁床填料中加入适当的辅料可以有效避免填料出现板结现象,同时也有利于气、液、固砚相充分接触,提高处理效果。
辅料可选用X50聚乙烯多面空心球。
采用流化床装置也能较好地解决铁床填料的板结问题。
但高的投资费用、运行费用及操作管理要求使此种装置的应用受到一定限制。
铁碳内电解柱运行一段时间后,铁屑易结块,出现沟流等现象,大大影响了处理效果。
目前吴全义等采用铁屑高频结孔技术可有效防止铁屑结块现象的发生,但此技术有待进一步的研究和完善
采用铁、炭流化床反应器对染料废水进行预处理,克服了固定床铁炭反应器表面易钝化、填料易结块及运行效果随运行时间的延长而逐步降低的不足。
在对反应器内部结构作适当调整后,可以方便地将传统的固定床工艺改造为流化床工艺。
这样,不仅可提高预处理效果,而且大大方便了设施操作和运行管理。
3)关于铁床出水“返色”问题
一些染料废水经铁床脱色后,在较短时间内出现颜色逐渐加深的现象。
关于这种“返色”现象的原因,普遍认同的观点是:铁床填料和废水反应,破
坏了染料分子的发色或助色基团,但染料分子只是转变成了无色的小分子有机物,仍旧存在于废水中,这些小分子有机物具有一定的逆反应趋势。
但通过实验作者发现,对于一些类型的染料废水,当中和沉降pH值为8-8 . 5时,这种“返色”现象除表现在废水颜色逐渐加深外,废水还会逐渐变浑浊,较长时间静置后,会出现少量较深颜色的沉淀物。
经分析,此为Fe (OH)3沉淀。
这种现象很容易解释:Fe2+被氧化成了Fe3+,而它们的水解产物Fe(OH )2和Fe(OH ) 3的溶度积常数相差1021倍以上。
基于以上分析,作者认为,Fe2+末完全去除会在一定程度上加剧这种“返色”现象。
因此,解决铁床出水“返色”问题,除应考虑在后续处理工艺中彻底脱除发色母体外,还应在中和沉降时调节pH值至9以上,使Fe2+完全沉淀或加人适当的氧化剂(如O2、H2O2和O3等)使Fe2+迅速被氧化成Fe3+后以Fe (0H)3胶体形式析出。
4)铁碳法通常是在酸性条件下进行的,但酸性条件下,溶出的铁屑量大,加碱中和时产生的沉淀物多,增加了脱水工序的负担,而且废渣的处理也成了问题。
目前一般将废渣送至炼铁厂处置或掺合制作建筑材料。