半导体纳米结构的发光性质及其机理.doc

半导体纳米结构的发光性质及其机理.doc
半导体纳米结构的发光性质及其机理.doc

半导体发光的分类:

1)光致发光,2)电致发光,3)阴极射线发光,4)X射线及高能例子发光,5)化学发光以及6)生物发光等。其共同点就是用不同的能量激发半导体,让其发光,也就是把不同形式的能量转换为光能。

PL定义:

Luminescence is one of the most important methods to reveal the energy structure and surface states of semiconductor nanoparticles and has been studied extensively. Whenever a semiconductor is irradiated, electrons and holes are created. If electronhole pairs recombine immediately and emit a photon that is known as fluorescence and if the electrons and holes created do not recombine rapidly, but are trapped in some metastable states separately, they need energy to be released from the traps and recombine to give luminescence. If they spontaneously recombine after some time, it is called photoluminescence (PL). It is reported that the fluorescence process in semiconductor nanoparticles is very complex, and most nanoparticles exhibit broad and Stokes shifted luminescence arising from the deep traps of the surface states. Only clusters with good

surface passivation may show high band-edge emission. 5,267,338,339 If the detrapping process is caused by heating or thermostimulation, the luminescence is called thermoluminescence (TL), and the energy corresponding to the glow peak is equal to the trap depth. The TL process is different from the PL not sufficiently high to excite the electrons from their ground states to their excited states. Only the carriers ionized from the surface states or defect sites are involved in the TL process; that is, the thermoluminescence has arisen from the surface states. Thermoluminescence is a good way to detect the recombination emission caused by the thermal detrapping of carriers. It is well known that the UV emission peaks originate from the recombination of free excitons through an exciton-exciton collision process corresponding to near-band-edge (NBE) emission The room-temperature photoluminescence (PL) using a Nd: yttrium-aluminum-garnet laser with a wavelength of 325 nm and a 6 ns pulse width as the excitation source and a 3 nm spectrometer (Shimadzu Corp. RF-5301) with an intensified charge coupled device (ICCD) camera (Roper Scientific) as the detection stage可以先无辐射跃迁到缺陷中心,在下来也可以辐射跃迁到缺陷中心,在无辐射到价带主要,看缺陷中心的能级在哪里

发光机制几种辐射复合跃迁发光类型:

1.激子复合发光

在纯净的ZnO薄膜材料中,电子和空穴能形成激子,激子的束缚能约为60 meV,激子的复合能发射出窄的谱线。激子复合发光包括自由激子复合发光、束缚激子发光、激子-激子碰撞发光,还有声子参与的激子发光以及电子-空穴等离子体复合受激发光等情况。

2.带间跃迁发光

在非平衡状态下,导带的电子跃迁到价带和和价带的空穴复合产生带间跃迁发光。由于氧化锌材料室温下的禁带宽度高达3.37 eV,其带间跃迁引起的发光波长都在375 nm以下,处在紫外光波段上。ZnO是直接带隙半导体,具有相同k值的电子态之间的跃迁,其动量守恒,因此其发光效率比间接带隙半导体要高。

3.能带与缺陷能级之间的电子跃迁发光

PL谱测试仪器:

测试仪器上有一个激发光源,还有个单色仪和探测器有激光光源、氙灯。

激光的三个必要条件:泵浦源,激发材料,谐振腔。有三原色要做激光,越窄越好。

光致发光大致机理:

半导体的发光机理主要就是先的有个激发光源,激发半导体使得电子从夹带跃到导带,然后从导带跃迁到低能级导致发光。

ZnO光致发光讨论要点:

氧化锌里有氧空位和锌填隙,氧空位,发绿,间隙氧导致光黄光的,除了380的紫外发光,其他都是缺陷发光

光致发光PL谱分析:

找峰位,看峰强,看半高宽,如果峰位差不多,看有没有红移或者蓝移。

激子发光:

激子是电子和空穴的符合体,UV是本征发光是由于激子符合发光本征发光可以是带间跃迁,也可以是激子复合导致的结晶不好,一般得不到UV的,电子一般是回到缺陷能级,至于激子的精细分析要做低温

本征发光和缺陷发光:

本征发光和缺陷发光,一般是此消彼长的相互竞争的,量子限制效应一般是针对本征的表面态引入的是表面态能级,表面态也可以近似归结为缺陷发光类型。

可用于发光的材料,纳米结构种类?点,线,棒,带,core-shell,环……各自的特点?

用得多是首先是宽禁带半导体。例如现在做蓝光的GaN,ZnO,SiC。感觉好像低维材料的纳米效应等性质并不明显V近红外有Ⅲ-Ⅴ族的,红外则是窄禁带的TeCdHg等。因此纳米材料的发光性质往往跟快体差不多,只是可能引入由于量子效应(不遵循电子跃迁法则),表面效应等的杂质能级。

稀土掺杂

是独立中心发光还是复合发光好像理论上争议比较大。目前是独立中心发光占优势,ZnO 参杂都参什么Fe Co Ni Cu Sn以及稀土元素等

影响发光的因素有哪些?是怎么影响发光的?发光的类型有哪几种?有什么用途?

纳米晶内部的完整性、缺陷种类和浓度掺杂、结晶度最基本的是能级结构

表面态,表面有机物CAPPING 再,就是,因为材料的表面与内部的晶格常数不同,其布里渊区有所变化导致能带结构与内部不同,进而禁带宽带也会不同。所谓的表面态只能是在能带面在表面部分偏离了其内部的区域,就像在一维情况出现能带的弯曲一样。

显示器固体激光器平面显示器光波导但PL谱主要是为了得到固体内部的能级结构。PVP 钝化的ZnO发光边强(机物CAPPING后,变强变弱都有可能)

未被PEO包覆的ZnO纳米粒子,界面存在很多缺陷,表面态俘获光生空穴的几率很大,相应的,光生空穴隧穿回晶体内部以及和浅能级电子复合的几率也很高,因此,未经PEO包覆的ZnO纳米粒子的可见光发射很强。ZnO被PEO包覆后,经过表面修饰,补偿了ZnO表面的一些悬键,减少了结构缺陷,阻隔了产生可见区发光的通路,从而表面态俘获光生空穴以及光生空穴隧穿回晶体内部的几率大大降低,导致了ZnO纳米粒子的可见光发射强度降低。而且,ZnO的紫外发射和可见光发射是两个相互竞争的过程,当可见光发射强度降低时,紫外发射的强度就会大大增强。随着配比的PEO质量浓度的增加,ZnO的紫外发射与可见光发射的强度比是逐渐增大的。因为PEO的浓度越大,就能饱和越多的表面缺陷,导致了可见光发射强度降低。同时,紫外发射的强度增强,因此紫外发射与可见光发射的强度比是逐渐增大的。这表明ZnO纳米粒子的深能级发射是与表面态相关的,通过PEO的表面修饰能够有效的钝化表面,提高ZnO纳米粒子的紫外发光效率。

做掺杂时候,尤其是纳米线,如何判断是再线上

掺杂的表正很是问题这个只有做高分辨吧?TEM可以说元素在里面,如果晶格很整齐,比较有说福利HRTEM,只能从反面说没有形成团簇和第二相。现在单跟纳米线的表征很不完善,有待于研究提高。

P, N 结

从发光上来说,好像也不说是p型还是n型,做p型主要为了PN结。不做成器件怎么用,所以要PN结,做发光二极管。不过大部分仍然认为是N型的。的p型的跟ZnO的n型的也可以,那叫异质结。同质结更好用。至少晶格失配少。很难的,要晶格匹配还要热膨胀系数匹配发光应该不会涉及到P、n型,对于同一种材料,P、n型不影响禁带宽度。N、P型的费米能级有些差别而光致发光也只是激发费米能级附近的电子

声子伴线:

是在低温看见的在发光过程中声子参与进来了可以解释温度相关的光谱纵向光学声子在较高温度下声子是可以与光子耦合的pl上的声子,不是总是能出来的不过一定是在低温霍尔效应:

霍尔效应可以测得电子和空穴的浓度,从而可以确定那个是多数载流子,那个是少数载流子。霍尔效应可以测得电子和空穴的浓度,但对于纳米粉体操作性不大

UV与结晶度的关系

发光强度与结晶度有关联结晶度越好,单一性当然越好。缺陷等的干扰少结晶度差,缺陷就多,非辐射符合中心就多,强度肯定要下降。展宽就越少。

最新纳米结构与纳米材料25个题目+完整答案资料

1.什么是纳米材料?其内涵是什么?(从零、一、二、三维考虑) 2.纳米材料的四大效应是什么?对每一效应举例说明。 3.纳米材料的常用的表征方法有哪些? 4.用来直接观察材料形态的SEM、TEM、AFM对所测定的样品有哪些特定要求?从它们的图像中能够得到哪些基本信息? 5.纳米颗粒的高表面活性有何优缺点?如何利用? 6.在纳米颗粒的气相合成中涉及到哪些基本环节?气相合成大致可分为哪四种?气相成核理论的机制有哪两种? 7.溶胶-凝胶法制备纳米颗粒的基本过程是怎样的? 8.用溶胶-凝胶技术结合碳纳米管的生长机理,可获得密度不同的碳纳米管阵列(也叫纳米森林),简要阐述其主要步骤及如何控制碳纳米管的分布密度? 9.改变条件可制备不同晶粒大小的二氧化钛,下图分别为两种晶粒尺寸不同的二氧化钛的XRD图与比表面积数据。请用Scherrer 方程、BET比表面积分别估算这两种二氧化钛的晶粒尺寸(XRD测试时所用的 = 1.5406?,锐钛矿相二氧化钛的密度是3.84 g/cm3)(默写出公式并根据图中的数据来计算)。 10.氧化物或者氮化物纳米材料具有许多特殊的功能,请以一种氧化物或者氮化物为例,举出其三种主要的制备方法(用到的原料、反应介质、主要的表征手段)、主要用途(与纳米效应有关的用途)、并介绍这种物质的至少两种晶相。 11.举出五种碳的纳米材料,阐述其一维材料与二维材料的结构特点、用途。 12.简述纳米材料的力学性能、热学性能与光学性能有怎样的变化? 13.什么叫化学气相沉积法,它与外场结合又可衍生出哪些方法?简述VLS机制。 14.纳米半导体颗粒具有光催化性能的主要原因是什么?光催化有哪些具体应用 15.利用机械球磨法制备纳米颗粒的主要机制是什么?有何优、缺点? 16 何为“自催化VLS生长”?怎样利用自催化VLS生长实现纳米线的掺杂? 17.液相合成金属纳米线,加入包络剂(capping reagent)的作用是什么? 18.何为纳米材料的模板法合成?它由哪些优点?合成一维纳米材料的模板有哪些? 19.试结合工艺流程图分别说明氧化铝模板的制备过程以及氧化铝模板合成纳米线阵列的过程 20.从力学特性、电学特性和化学特性来阐述碳纳米管的性质,它有哪些主要的应用前景? 21.如何提高传统光刻技术中曝光系统的分辩率? 22.试比较电子束刻蚀和离子束刻蚀技术的异同点和优缺点。 23.比较极紫外光刻技术和X射线光刻技术的异同。 24.何为纳米材料的自组装?用于制备纳米结构的微乳液体系一般有几个组成部分? 25 何谓“取向搭接Oriented attachment”“奥斯德瓦尔德熟化Ostwald ripening”?

纳米材料物理热学性质

纳米材料的热学性质 纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级 ( 1 n m~1 0 0 n m)的固体材料。由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达 l 5 ~5 0 %。纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。 一热容 1996年,在低温下测定了纳米铁随粒度变化的比热,发现与正常的多晶铁相比,纳米铁出现了反常的比热行为,低温下的电子比热系数减50 %。 1998年,通过研究了粒度和温度对纳米粒子热容的影响,建立了一个预测热容的理论模型,结果表明:过剩的热容并不正比于纳米粒子的比表面,当比表面远小于其物质的特征表面积时,过剩的热容可以认为与粒度无关。 2002年,又把多相纳米体系的热容定义为体相和表面相的热容之和,因为表面热容为负值,所以随着粒径的减小和界面面积的扩大,将导致多相纳米体系总的热容的减小, 二.晶格参数,结合能,内聚能 纳米微粒的晶格畸变具有尺寸效应,利用惰性气体蒸发的方法在高分子基体上制备了1. 45nm 的pd纳米微粒,通过电子微衍射方法测试了其晶格参数,发现 Pd 纳米微粒的晶格参数随着微粒尺寸的减小而降低。结合能的确比相应块体材料的结合能要低。通过分子动力学方法,模拟 Pd 纳米微粒在热力学平衡时的稳定结构,并计算微粒尺寸和形状对 晶格参数和结合能的影响,定量给出形状对晶格参数和结合能变化量的贡献研究表明:在一定的形状下,纳米微粒的晶格参数和结合能随着微粒尺寸的减小而降低,在一定尺寸时,球形纳米微粒的晶格参数和结合能要高于立方体形纳米微粒的相应量。 三纳米粒子的熔解热力学 熔解温度是材料最基本的性能,几乎所有材料的性能如力学性能,物理性能以及化学性能都是工作温度比熔解温度( T /Tm )的函数,除了熔解温度外,熔解焓和熔解熵也是描述材料熔解热力学的重要参量;熔解焓表示体系在熔解的过程中,吸收热量的多少,而熔解熵则是体系熔解过程中熵值的变化。几乎整个熔解热力学理论就是围绕着熔解温度,熔解熵和熔解焓建立的块体材料的熔解温度(有时称熔点) 熔解焓(或称熔解热)和熔解熵一般是常数,但对于纳米材料则非如此实验表明:纳米微粒的熔解温度依赖于微粒的尺寸。 四反应体系的化学平衡 利用纳米氧化铜和纳米氧化锌分别与硫酸氢钠溶液的反应,测定出不同粒径,不同温度时每个组分反应的平衡浓度,从而计算出平衡常数,进而得到化学反应的标准摩尔吉布斯函数;通过不同温度的标准摩尔吉布斯函数,可得化学反

半导体纳米材料的光学性能及研究进展

?综合评述? 半导体纳米材料的光学性能及研究进展Ξ 关柏鸥 张桂兰 汤国庆 (南开大学现代光学研究所,天津300071) 韩关云 (天津大学电子工程系,300072) 摘要 本文综述了近年来半导体纳米材料光学性能方面的研究进展情况,着重介绍了半导体纳米材料的光吸收、光致发光和三阶非线性光学特性。 关键词 半导体纳米材料;光学性能 The Optica l Properties and Progress of Nanosize Sem iconductor M a ter i a ls Guan B ai ou Zhang Gu ilan T ang Guoqing H an Guanyun (Institute of M odern Op tics,N ankaiU niversity,T ianjin300071) Abstract T he study of nano size sem iconducto r particles has advanced a new step in the understanding of m atter.T h is paper summ arizes the p rogress of recent study on op tical p roperties of nano size sem icon2 ducto r m aterials,especially emphasizes on the op tical2abso rp ti on,pho to lum inescence,nonlinear op tical p roperties of nano size sem iconducto r m aterials. Key words nano size sem iconducto r m aterials;op tical p roperties 1 引言 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 低维材料一般分为以下三种:(1)二维材料,包括薄膜、量子阱和超晶格等,在某一维度上的尺寸为纳米量级;(2)一维材料,或称量子线,线的粗细为纳米量级;(3)零维材料,或称量子点,是尺寸为纳米量级的超细微粒,又称纳米微粒。随着维数的减小,半导体材料的电子能态发生变化,其光、电、声、磁等方面性能与常规体材料相比有着显著不同。低维材料开辟了材料科学研究的新领域。本文仅就半导体纳米微粒和由纳米微粒构成的纳米固体的光学性能及其研究进展情况做概括介绍。2 半导体纳米微粒中电子的能量状态 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子、空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 关于半导体纳米微粒中电子能态的理论工作最早是由AL.L.Efro s和A.L.Efro s开展的[1]。他们采用有效质量近似方法(E M A),根据微粒尺寸R与体材料激子玻尔半径a B之比分为弱受限(Rμa B,a B=a e+ a h,a e,a h分别为电子和空穴的玻尔半径)、中等受限(a h

举例说明纳米材料的结构与其性质的关系

代鹏程无机化学2009级硕博连读学号:200911461 题目:举例说明纳米材料的结构与其性质的关系 答: 目录 1、纳米材料定义 2、纳米材料的结构 3、纳米材料的性能 4、以量子点为例说明纳米材料结构与其性质的关系 5、以纳米线为例说明纳米材料结构与其性质的关系 1、纳米材料定义 纳米材料是纳米级结构材料的简称。狭指由纳米颗粒构成的固体材料,其中纳米颗粒的尺寸最多不超过100纳米,在通常情况下不超过10纳米;从广义上说,纳米材料,是指微观结构至少在一维方向上受纳米尺度(1~100nm)限制的各种固体超细材料,它包括零维的原子团簇(几十个原子的聚集体)和纳米微粒;一维纳米纤维;二维纳米微粒膜(涂层)及三维纳米材料。 2、纳米材料的结构 材料学研究认为:材料的结构决定材料的性能,同时材料的性能反映材料的结构。纳米材料也同样如此。对于纳米材料,其特性既不同于原子,又不同于结晶体,可以说它是一种不同于本体材料的新材料,其物理化学性质与块体材料有明显的差异。 纳米材料的结构特点是:纳米尺度结构单元,大量的界面或自由表面,以及结构单元与大量界面单元之间存在的交互作用。在结构上,大多数纳米粒子呈现为理想单晶,也有呈现非晶态或亚稳态的纳米粒子。纳米材料的结构上存在两种结构单元;即晶体单元和界面单元。晶体单元由所有晶粒中的原子组成,这些原子严格地位于晶格位置;界面单元由处于各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。 纳米材料由于非常小,使纳米材料的几何特点之一是比表面积(单位质量材料的表面积)很大,一般在102~104m2/g。它的另一个特点是组成纳米材料的单元表面上的原子个数与单元中所有原子个数相差不大。例如:一个由5个原子组成的正方体纳米颗粒,总共有原子个数53=125个,而表面上就有约89个原子,占了纳米颗粒材料整体原子个数的71%以上。这些特点完全不同于普通的材料。例如,普通材料的比表面积在10m2/g以下,其表面原子的个数与组成单元的整体原子个数相比较完全可以忽略不计。 由于以上纳米材料的两上显著不同于普通材料的几何特点,从物理学的观点来看,就使得纳米材料有两个不同于普通材料的物理效应表现出来,这是一个由量变到质变的过程。一个效应我们称之为量子尺寸效应,另一个被称之为表面效应。量子尺寸效应是由于材料的维度不断缩小时,描述它的物理规律完全不同

半导体纳米材料的制备方法

摘要:讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括物理法和化学法两大类下的几种,机械球磨法、磁控溅射法、静电纺丝法、溶胶凝胶法、微乳液法、模板法等,并分析了以上几种纳米材料制备技术的优缺点关键词:半导体纳米粒子性质;半导体纳米材料;溶胶一凝胶法;机械球磨法;磁控溅射法;静电纺丝法;微乳液法;模板法;金属有机物化学气相淀积引言 半导体材料(semiconductormaterial)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)。相对于导体材料而言,半导体中的电子动能较低,有较长的德布罗意波长,对空间限域比较敏感。半导体材料空间中某一方向的尺寸限制与电子的德布罗意波长可比拟时,电子的运动被量子化地限制在离散的本征态,从而失去一个空间自由度或者说减少了一维,通常适用体材料的电子的粒子行为在此材料中不再适用。这种自然界不存在,通过能带工程人工制造的新型功能材料叫做半导体纳米材料。现已知道,半导体纳米粒子结构上的特点(原子畴尺寸小于100nm,大比例原子处于晶界环境,各畴之间存在相互作用等)是导致半导体纳米材料具有特殊性质的根本原因。半导体纳米材料独特的质使其将在未来的各种功能器件中发挥重要作用,半导体纳米材料的制备是目前研究的热点之一。本文讨论了半导体纳米材料的性质,综述了几种化学法制备半导体纳米材料的原理和特点。

2.半导体纳米粒子的基本性质 2.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 随着纳米材料粒径的减小,表面原子数迅速增加。例如当粒径为10nm 时,表面原子数为完整晶粒原子总数的20%;而粒径为1nm时,其表面原子百分数增大到99%;此时组成该纳米晶粒的所有约30个原子几乎全部分布在表面。由于表面原子周围缺少相邻的原子:有许多悬空键,具有不饱和性,易与其他原子相结合而稳定下来,故表现出很高的化学活性。随着粒径的减小,纳米材料的表面积、表面能及表面结合能都迅速增大。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。 因此想要获得发光效率高的纳米材料,采用适当的方法合成表面完好的半导体材料很重要。 2.2量子尺寸效应 量子尺寸效应--是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。当半导体材料从体相减小到某一临界尺寸(如与电子的德布罗意波长、电子的非弹性散射平均自由程和体相激子的玻尔半径相等)以后,其中的电子、空穴和激子等载流子的运动将受到强量子封

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

半导体发光器件(led常识)(精)

半导体发光器件(led常识) 半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用 (一)LED发光原理 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。 理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即 λ≈1240/Eg(mm) 式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性 1.极限参数的意义 (1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED 发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。 (3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 2.电参数的意义

(完整版)纳米材料四大效应及相关解释

纳米材料四大效应及相关解释 四大效应基本释义及内容: 量子尺寸效应:是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。 小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应。 宏观量子隧道效应:当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。 四大效应相关解释及应用: 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小比表面积将会显著地增加。例如粒径为10nm时,比表面积为90m2/g;粒径为5nm时,比表面积为180m2/g;粒径下降到2nm时,比表面积猛增到450m2/g。粒子直径减小到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱

纳米半导体材料在微电子技术中的应用探究

纳米半导体材料在微电子技术中的应用探究 摘要 本文先简短介绍了纳米材料的几种量子效应,而后根据半导体发展国际技术路线图(ITRS)所提出的特征尺度减小给微电子技术带来的问题,重点介绍了碳纳米管和石墨烯两种有望突破物理极限束缚的新型纳米半导体材料。作为科普性的探究论文,本文没有深究物理、化学机理,而是将重点放在两者在后摩尔时代的微电子技术应用上,指出了两者在集成电路、纳电子器件甚至太赫兹技术、量子信息学中的可能应用。 关键词:碳纳米管石墨烯纳米材料微电子技术 Abstract This paper briefly introduces the quantum mechanism of nano-semiconductor-materials, and then introduces particularly Carbon Nanotube and Graphene as two possible solutions to the physical limitations to the microelectronics, proposed by the International Technology Roadmap for Semiconductors. As a paper aimed at introduction, we focus on the applications of the two materials rather than their theoretical principles and points out their possible prospects in integrated circuits, nano-microelectronic devices, Terahertz technology, and quantum information. Key words: Carbon Nanotube Graphene Nano-materials microelectronics

半导体发光

半导体发光 摘要:本文从半导体的经典定义和能带定义出发,引出半导体的发展的历程。然后过度到半导体材料的发光历史,及其发展现状。通过与其它发光光源相对比,重点谈论了LED的优势,同时附带的指出了LED对解决能源和环境问题所做出的贡献。最后从发光的本质出发,提出了在理论上可以利用半导体中的电子从导带跃迁到价带而实现发光。 关键词:半导体发光 LED 荧光灯 1.半导体材料的定义: 半导体材料(semiconductor material)是导电能力介于导体与绝缘体之间的物质。在能带理论之前,半导体材料通常是指那些电阻率在107Ω·cm~10-3Ω·cm范围内的材料。处于金属材料和绝缘材料之间。能带理论从材料的能带结构角度详细而理性的对半导体经行了定义,对半导体的认识有了一个质的飞跃。能带理论认为:满带是不会产生电流,理由是电子波函数在k空间中是空间反演对称的,在-k处的电子产生的电流和在k处产生电流大小相等而方向相反,没有净电流产生如图1所示;对于部分填充能带,能带只是被价电子部分填充,无外场下电子在k空间分布对称没有电流产生,然而在外电场作用下电子在k空间分布下的对称性被破坏,于是在宏观上产生电流。 导带被电子部分填充的材料是金属,导带未被电子部分填充、价带恰好被填满且导带和价带的带隙较窄的材料为半导体,带隙较宽的绝缘体。绝缘体带隙较宽以至于价带电子不能够激发到导带上,不能导电。半导体带隙较窄,在绝对零度时,价带是满带,而导带是空带,不能导电,当外界条件(光照,热激发等)改变时,半导体的禁带宽度较小,可以把价带顶的电子激发到导带底,于是在导带底有了电子,价带顶有了空穴,就可以导电。 2.荧光发光和LED发光: 在多方面的努力下,荷兰飞利浦在1974年首先研制成功了将能够发出人眼敏感的红、绿、蓝三色光的荧光粉氧化钇(发红光,峰值波长为611nm)、多铝酸镁(发绿光,峰值波长为541nm)和多铝酸镁钡(发蓝光,峰值波长为450nm)按一定比例混合成三基色荧光粉(完整名称是稀土元素三基色荧光粉),它的发光效率高(平均光效在80lm/W以上,约为白炽灯的5倍),色温为2500K-6500K,显色指数在85左右,用它作荧光灯的原料可大大节省能源,这就是高效节能荧光灯的来由。可以说,稀土元素三基色荧光粉的开发与应用是荧光灯发展史上的一个重要里程碑。没有三基色荧光粉,就不可能有新一代细管径紧凑型高效节能荧光灯的今天。荧光灯管两端装有灯丝,玻璃管内壁涂有一层均匀的薄荧光粉,管内被抽成真空度103-104毫米汞柱以后,充入少量惰性气体,同时还注入微量的液态水银。灯管内壁上涂有荧光粉,两个灯丝之间的气体导电时发出紫外线,使荧光粉发出柔和的可见光。与此同时,通用电气公司的尼克?何伦亚克在1962年开发出第一种实际应用的可见光发光二极管。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,即固体封装,所以能起到保护内部芯线的作用,所以LED的抗震性能好。LED是由Ⅲ-Ⅳ族化合物,如GaAs(砷

纳米材料的背景意义

纳米知识介绍 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。 纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符号为 nm。 纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前)主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜),研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年)人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合), ?纳米微粒与常规块体复合(0-3复合), ?纳米复合薄膜(0-2复合)。 第三阶段(从1994年至今)纳米组装体系研究。它的基本内涵是以纳米颗粒以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。 图1 纳米颗粒材料SEM图 一、纳米材料的基本特性 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和 增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还 要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位 错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具 材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其

半导体纳米材料研究进展与应用

半导体纳米材料研究进展与应用 摘要: 介绍了半导体纳米材料的研究进展、制备方法的若干进展和应用前景。 关键词: 半导体纳米材料研究进展应用 1引言 20 世纪是物理学推动高新技术飞速发展的世纪, 人类已从控制与利用大量微观粒子系统的时代进入了控制与利用单个微观粒子的时代。纳米技术是世纪之交发展起来的新技术, 是在0.1~100nm 尺度空间内, 研究电子、原子和分子运动规律和特性的崭新的高技术科学Z。它的目标是人类按照自己的意志直接操纵单个电子、原子等粒子, 制造出具有特定功能的产品.目前, 人们已制造了各种各样的纳米材料, 例如: 纳米金属材料、纳米半导体材料、纳米氧化物材料、纳米陶瓷材料、纳米有机材料等. 其中半导体纳米材料对未来社会信息化的产生有至关重要的影响. 2半导体纳米材料 相对于金属材料而言, 半导体中的电子动能较低, 有较长的德布罗意波长, 因而对空间的限制比较敏感. 电子的德布罗意波长入与其动能 E 的关系为入=h^2/在纸上(其中m*是半导体中电子的有效质量, h 是普朗克常量) 。当空间某一方向的尺度限制与电子的德布罗意波长可比拟时, 电子的运动就会受限, 而被量子化地限制在离散的本征态, 从而失去一个空间自由度或者说减少了一维。因此, 通常在体材料中适用的电子的粒子行为在此材料中不再适用, 这种新型的材料称为半导体低维结构, 也称为半导体纳米材料【1】。 1966 年, Fuou ler 等人[2]首次令人们信服地证实了在Si/S iO 2 界面处存在二维电子气,从此拉开了半导体低维结构研究的序幕. Si-MO SFET[3]可以认为是对载流子实现一个维度方向限制最早的固体结构.在这个系统中, 由于Si 和SiO 2 界面导带的不连续, 形成一个三角势阱, 将电子限制在其中, 使其既不能穿过氧化层, 也不能进入Si 的体内, 电子的运动被限制在二维界面内. 随着微加工技术的发展和分子束外延技术(MBE )、金属有机物化学气相沉积技术(MOCVD)、液相外延(L PE)、气相外延(V PE)等技术的应用, 人们可以制造出更多的二维电子气系统Z 它是由两种具有不同带隙的半导体材料构成, 一般要求这两种材料结构相同, 并且晶格常量接近, 以获得原子级光滑的界面。MBE 和MOCVD 的一个重要特征是可以制备量子尺寸的多层结构, 其控制精度可达单原子层量级〔4〕。这些结构可分为量子阱(QW ) 和超晶格(SL ) 。1970 年, Esak i 和T su 〔5〕在寻找具有负微分电阻的新器件时, 提出了全新的“半导体超晶格”概念Z 如果势垒层厚度足够宽, 使得相邻阱内电子波函数没有相互作用, 即被称为量子阱.反之, 如果相邻阱内电子波函数有较强的相互作用, 即相当于在晶格周期场上叠加一个多层结构的超晶格周期场, 则被称为超晶格。从此, 对半导体量子阱和超晶格等半导体微结构的材料和器件的研究成为近20 多年来半导体物理学中最重要、最活跃的研究领域之一。 1978 年D ingle〔6〕等人对异质结中二维电子气沿平行于界面的输运进行了研究, 发现了电子迁

举例说明纳米材料的结构与其性质的关系.

代鹏程无机化学2009级硕博连读学号:200911461 题目:举例说明纳米材料的结构与其性质的关系 答: 目录 1、纳米材料定义 2、纳米材料的结构 3、纳米材料的性能 4、以量子点为例说明纳米材料结构与其性质的关系 5、以纳米线为例说明纳米材料结构与其性质的关系 1、纳米材料定义 纳米材料是纳米级结构材料的简称。狭指由纳米颗粒构成的固体材料,其中纳米颗粒的尺寸最多不超过100纳米,在通常情况下不超过10纳米;从广义上说,纳米材料,是指微观结构至少在一维方向上受纳米尺度(1~100nm限制的各种固体超细材料,它包括零维的原子团簇(几十个原子的聚集体和纳米微粒;一维纳米纤维;二维纳米微粒膜(涂层及三维纳米材料。 2、纳米材料的结构 材料学研究认为:材料的结构决定材料的性能,同时材料的性能反映材料的结构。纳米材料也同样如此。对于纳米材料,其特性既不同于原子,又不同于结晶体,可以说它是一种不同于本体材料的新材料,其物理化学性质与块体材料有明显的差异。

纳米材料的结构特点是:纳米尺度结构单元,大量的界面或自由表面,以及结构单元与大量界面单元之间存在的交互作用。在结构上,大多数纳米粒子呈现为理想单晶,也有呈现非晶态或亚稳态的纳米粒子。纳米材料的结构上存在两种结构单元;即晶体单元和界面单元。晶体单元由所有晶粒中的原子组成,这些原子严格地位于晶格位置;界面单元由处于各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。 纳米材料由于非常小,使纳米材料的几何特点之一是比表面积(单位质量材料的表面积很大,一般在102~104m2/g。它的另一个特点是组成纳米材料的单元表面上的原子个数与单元中所有原子个数相差不大。例如:一个由5个原子组成的正方体纳米颗粒,总共有原子个数53=125个,而表面上就有约89个原子,占了纳米颗粒材料整体原子个数的71%以上。这些特点完全不同于普通的材料。例如,普通材料的比表面积在10m2/g以下,其表面原子的个数与组成单元的整体原子个数相比较完全可以忽略不计。 由于以上纳米材料的两上显著不同于普通材料的几何特点,从物理学的观点来看,就使得纳米材料有两个不同于普通材料的物理效应表现出来,这是一个由量变到质变的过程。一个效应我们称之为量子尺寸效应,另一个被称之为表面效应。量子尺寸效应是由于材料的维度不断缩小时,描述它的物理规律完全不同 于宏观(普通材料的规律,不但要用描述微观领域的量子力学来描述,同时要考虑到有限边界的实际问题。关于量子尺寸效应处理物理问题,到目前为止,还没有一个较为成熟的适用方法。表面效应是由于纳米材料表面的原子个数不可忽略,而表面上的原子又反受到来自体内一侧原子的作用,因此它很容易与外界的物质发生反应,也就是说它们十分活泼。 纳米材料由于这两上特殊效应的存在,使得它们的物理、化学性质完全不同于普通材料。目前许多实验和应用结果已经证实,纳米材料的熔点、磁性、电容性、发光特性、水溶特性等都完全不同于普通材料。例如,将金属铜或铅做成几个纳米的颗粒,一遇到空气就会燃烧,发生爆炸;用碳纳米管做成的超级电容器,其体积比电

纳米材料与纳米结构21个题目完整答案

1.简单论述纳米材料的定义与分类。 2.什么是原子团簇? 谈谈它的分类. 3.通过Raman 光谱中任何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径? 4.论述碳纳米管的生长机理。 5.论述气相和溶液法生长纳米线的生长机理。 6.解释纳米颗粒红外吸收宽化和蓝移的原因。 7.论述光催化的基本原理以及提高光催化活性的途径。 8.什么是库仑堵塞效应以及观察到的条件? 9.写出公式讨论半导体纳米颗粒的量子限域效应和介电限域效应对其吸收边,发光峰的影响。 10.纳米材料中的声子限域和压应力如何影响其Raman 光谱。 11.论述制备纳米材料的气相法和湿化学法。 12.什么是纳米结构,并举例说明它们是如何分类的,其中自组装纳米结构形成的条件是什么。 13.简单讨论纳米颗粒的组装方法 14.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 15.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 16.简单讨论纳米材料的磁学性能。 17.简述“尺寸选择沉淀法”制备单分散银纳米颗粒的基本原理 18.简述光子晶体的概念及其结构 19.目前人们已经制备了哪些纳米结构单元、复杂的纳米结构和纳米器件。并说明那些纳米结构应该具有增强物理和化学性 能。 20.简单论述单电子晶体管的原理。 21.简述纳米结构组装的工作原理。 1.简单论述纳米材料的定义与分类。 答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。 现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。 如果按维数,纳米材料可分为三大类: 零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。 一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。 二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。 因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。

几种新型半导体发光材料的研究进展

几种新型半导体发光材料的研究进展 摘要:概述了三种新型半导体发光材料氮化镓、碳化硅、氧化锌各自的特性, 评述了它们在固态照明中的使用情况,及其研究现状,并对其未来的发展方向做出了预测。 关键词:LED发光二极管;发光材料;ZnO,SiC,GaN 1引言 在信息技术的各个领域中,以半导体材料为基础制作的各种各样的器件,在人们的生活中几乎无所不及,不断地改变着人们的生活方式、思维方式,提高了人们的生活质量,促进了人类社会的文明进步。它们可用作信息传输,信息存储,信息探测,激光与光学显示,各种控制等等。半导体照明是一种基于半导体发光二极管新型光源的固态照明,是21世纪最具发展前景的高技术领域之一,已经成为人类照明史上继白炽灯、荧光灯之后的又一次飞跃。固态照明是一种新型的照明技术,它具有电光转换效率高、体积小、寿命长、安全低电压、节能、环保等优点。发展固态照明产业可以大规模节约能源,对有效地保护环境,有利于实现我国的可持续发展具有重大的战略意义。从长远来看,新材料的开发是重中之重。发光材料因其优越的物理性能、必需的重要应用及远大的发展前景而在材料行业中备受关注。 本文综述了近几年来对ZnO,SiC,GaN三种新型半导体发光材料的研究进展。2几种新型半导体发光材料的特征及发展现状 在半导体的发展历史上,1990年代之前,作为第一代的半导体材料以硅(包括锗)材料为主元素半导体占统治地位.但随着信息时代的来临,以砷化镓(GaAs)为代表的第二代化合物半导体材料显示了其巨大的优越性.而以氮化物(包括SiC、ZnO等宽禁带半导体)为第三代半导体材料,由于其优越的发光特征正成为最重要的半导体材料之一.以下对几种很有发展前景的新型发光材料做简要介绍. 2.1 氮化镓(GaN) 2.1.1 氮化镓的一般特征 GaN 是一种宽禁带半导体(Eg=3.4 ev),自由激子束缚能为25mev,具有宽的直接带隙,Ⅲ族氮化物半导体InN、GaN 和A lN 的能带都是直接跃迁型, 在性质上相互接近, 它们的三元合金的带隙可以从1.9eV连续变化到6.2eV,这相应于覆盖光谱中整个可见光及远紫外光范围.实际上还没有一种其他材料体系具有如此宽的和连续可调的直接带隙. GaN是优良的光电子材料,可以实现从红外到紫外全可见光范围的光发射和红、黄、蓝三原色具备的全光固体显示,强的原子键,高的热导率和强的抗辐射能力,其光跃迁几率比间接带隙的高一个数量级.GaN具有较高的电离度,在Ⅲ-V的化合物中是最高的(0.5或0.43).在大气压下,GaN一般是六方纤锌矿结构.它的一个原胞中有4个原子,原子体积大约为GaAS的一半.GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700?C.文献[1]列出了纤锌矿GaN和闪锌矿GaN的特性比较: 纤锌矿GaN的特性(W) 闪锌矿GaN的特性(Z) 带隙能量Eg(300k)=3.39eVEg(6k~6k)=3. 50eV Eg(300k)=330±0.02eVEg(300k)=3.2eV

半导体纳米材料的的光学性能

半导体纳米材料的的光学性能 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子,空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 由于量子尺寸效应导致能隙增大,半导体纳米材料的吸收光谱向高能方向移动,即吸收蓝移。同时,由于电子和空穴的运动受限,他们之间的波函数重叠增大,激子态振子强度增大,导致激子吸收增强,因此很容易观察到激子吸收峰,导致吸收光谱结构化. 通常通过吸收光谱来研究半导体纳米微粒的量子尺寸效应和激子能级结构,近年来,研究较多的有[14~20]:Ⅲ-Ⅴ族半导体GaAs、InSb和GaP;Ⅱ-Ⅵ族半导体ZnS、CdS、CdSe和CdTe;Ⅰ-Ⅶ族半导体Cu-Cl、CuBr和CuI;PbS、PbI和间接带隙半导体材料Ag-Br;过渡金属氧化物Fe2O3、Cu2O、ZnO和非过渡金属氧化物SnO2、In2O3、Bi2O3等。余保龙等人[21]研究发现,SnO2纳米微粒用表面活性剂分子包覆时,由于表面的介电限域效应其吸收带边发生红移,而且随着表面包覆物与SnO2的介电常数差值增大和包覆物的浓度增大,其红移量增大。

半导体纳米微粒受光激发后产生电子-空穴对(即激子),电子与空穴复合的途径有 (1)电子和空穴直接复合,产生激子态发光。由于量子尺寸效应的作用,发射波长随着微粒尺寸的减小向高能方向移动(蓝移)。 (2)通过表面缺陷态间接复合发光[9,22]。在纳米微粒的表面存在着许多悬挂键、吸附类等,从而形成许多表面缺陷态。微粒受光激发后,光生载流子以极快的速度受限于表面缺陷态,产生表面态发光。微粒表面越完好,表面对载流子的陷获能力越弱,表面态发光就越弱。 (3)通过杂质能级复合发光。 对半导体纳米材料的研究开辟了人类认识世界的新层次,也开辟了材料科学研究的新领域。总的看来,半导体纳米材料的光学性能研究已取得了很大进展,人们已建立起了半导体纳米微粒中电子能态的理论模型,在材料的线性和非线性光学性能方面都开展了大量的工作,获得了很多有重要意义的成果。但是还有许多问题需要进一步深入研究,例如半导体纳米材料激子能级的理论结果与实验数据之间仍有差距,间接带隙半导体纳米材料的发光机理还有待研究,非线性光学性能的实验工作所涉及纳米材料的范围不够广,掺杂半导体纳米体系中杂质离子与基质间的相互作用还有许多新的物理内容需要揭示和探索等等。随着研究的进一步深入,一些与传统材料物理不同的新现象、新概念还会不断

相关文档
最新文档