高中数学直线与圆精选题目(附答案)
2020年高中数学必修二《直线与圆的位置关系》

第 1 页 共 3 页 2020年高中数学必修二《直线与圆的位置关系》1.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于( )A .122B .2 2C .3 2D .4 2答案 B解析 x 2+y 2+4x -4y +6=0,即(x +2)2+(y -2)2=2,∴圆心(-2,2)到x -y +4=0的距离d =0.∴弦长等于直径2 2.故选B.2.经过点M(2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y =5 B.2x +y +5=0 C .2x +y =5D .2x +y +5=0 答案 C解析 ∵M(2,1)在圆上,∴切线与MO 垂直,∵k MO =12,∴切线斜率为-2.又过(2,1),∴y -1=-2(x -2),即y +2x =5.故选C.3.以点P(-4,3)为圆心的圆与直线2x +y -5=0没有公共点,则圆的半径r 的取值范围为( )A .(0,2)B .(0,5)C .(0,25)D .(0,10) 答案 C解析 圆心到直线的距离为d ,则d =|-8+3-5|5=2 5. ∵没有公共点,∴d>r ,∴选C.4.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为2的点共有( )A .1个B .2个C .3个D .4个 答案 C解析 ∵x 2+y 2+2x +4y -3=0,∴(x +1)2+(y +2)2=8,圆心(-1,-2)到x +y +1=0的距离为d =|-1-2+1|2=2=r 2,∴有三个点.故选C. 5.由点P(1,3)引圆x 2+y 2=9的切线的长是( )A .2B.19 C .1D .4 答案 C。
高考数学直线与圆的方程复习题及答案

高考数学直线与圆的方程复习题及参考答案:一、选择题(每小题只有一个选项是正确的,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2009•重庆市高三联合诊断性考试)将直线l1:y=2x绕原点逆时针旋转60°得直线l2,则直线l2到直线l3:x+2y-3=0的角为 ( )A.30°B.60°C.120°D.150°答案:A解析:记直线l1的斜率为k1,直线l3的斜率为k3,注意到k1k3=-1,l1⊥l3,依题意画出示意图,结合图形分析可知,直线l2到直线l3的角是30°,选A.2.(2009•湖北荆州质检二)过点P(1,2),且方向向量v=(-1,1)的直线的方程为( )A.x-y-3=0B.x+y+3=0C.x+y-3=0D.x-y+3=0答案:C解析:方向向量为v=(-1,1),则直线的斜率为-1,直线方程为y-2=-(x-1)即x+y-3=0,故选C.3.(2009•东城3月)设A、B为x轴上两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程x-y+1=0,则直线PB的方程为 ( )A.2x+y-7=0B.2x-y-1=0C.x-2y+4=0D.x+y-5=0答案:D解析:因kPA=1,则kPB=-1,又A(-1,0),点P的横坐标为2,则B(5,0),直线PB的方程为x+y-5=0,故选D.4.过两点(-1,1)和(0,3)的直线在x轴上的截距为 ( )A.-32B.32C.3D.-3答案:A解析:由两点式,得y-31-3=x-0-1-0,即2x-y+3=0,令y=0,得x=-32,即在x轴上的截距为-32.5.直线x+a2y+6=0和(a-2)x+3ay+2a=0无公共点,则a的值是 ( )A.3B.0C.-1D.0或-1答案:D解析:当a=0时,两直线方程分别为x+6=0和x=0,显然无公共点;当a≠0时,-1a2=-a-23a,∴a=-1或a=3.而当a=3时,两直线重合,∴a=0或-1.6.两直线2x-my+4=0和2mx+3y-6=0的交点在第二象限,则m的取值范围是( )A.-32≤m≤2B.-32C.-32≤m<2D.-32答案:B解析:由2x-my+4=0,2mx+3y-6=0,解得两直线的交点坐标为(3m-6m2+3,4m+6m2+3),由交点在第二象限知横坐标为负、纵坐标为正,故3m-6m2+3<0且4m+6m2+3>0⇒-327.(2009•福建,9)在平面直角坐标系中,若不等式组x+y-1≥0,x-1≤0,ax-y+1≥0,(a为常数)所表示的平面区域的面积等于2,则a的值为 ( )A.-5B.1C.2D.3答案:D解析:不等式组x+y-1≥0,x-1≤0,ax-y+1≥0所围成的区域如图所示.∵其面积为2,∴|AC|=4,∴C的坐标为(1,4),代入ax-y+1=0,得a=3.故选D.8.(2009•陕西,4)过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为( )A.3B.2C.6D.23答案:D解析:∵直线的方程为y=3x,圆心为(0,2),半径r=2.由点到直线的距离公式得弦心距等于1,从而所求弦长等于222-12=23.故选D.9.(2009•西城4月,6)与直线x-y-4=0和圆x2+y2+2x-2y=0都相切的半径最小的圆的方程是 ( )A.(x+1)2+(y+1)2=2B.(x+1)2+(y+1)2=4C.(x-1)2+(y+1)2=2D.(x-1)2+(y+1)=4答案:C解析:圆x2+y2+2x-2y=0的圆心为(-1,1),半径为2,过圆心(-1,1)与直线x-y-4=0垂直的直线方程为x+y=0,所求的圆的圆心在此直线上,排除A、B,圆心(-1,1)到直线x-y-4=0的距离为62=32,则所求的圆的半径为2,故选C.10.(2009•安阳,6)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|OA→+OB→|=|OA→-OB→|,其中O为原点,则实数a的值为 ( )A.2B.-2C.2或-2D.6或-6答案:C解析:由|OA→+OB→|=|OA→-OB→|得|OA→+OB→|2=|OA→-OB→|2,OA→•OB→=0,OA→⊥OB→,三角形AOB为等腰直角三角形,圆心到直线的距离为2,即|a|2=2,a=±2,故选C.11.(2009•河南实验中学3月)若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是 ( )A.点在圆上B.点在圆内C.点在圆外D.不能确定答案:C解析:直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则1a2+b2<1,a2+b2>1,点P(a,b)在圆C外部,故选C.12.(2010•保定市高三摸底考试)从原点向圆x2+(y-6)2=4作两条切线,则这两条切线夹角的大小为 ( )A.π6B.π2C.arccos79D.arcsin229答案:C解析:如图,sin∠AOB=26=13,cos∠BOC=cos2∠AOB=1-2sin2∠AOB=1-29=79,∴∠BOC=arccos79,故选C.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。
高中数学 直线和圆的方程十年高考题(带详细解析) 知识点+例题

直线和圆的方程一、选择题1.(2003北京春文12,理10)已知直线ax +by +c =0(abc ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |,|b |,|c |的三角形( )A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在2.(2003北京春理,12)在直角坐标系xOy 中,已知△AOB 三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即横、纵坐标均为整数的点)的总数是( )A.95B.91C.88D.75 3.(2002京皖春文,8)到两坐标轴距离相等的点的轨迹方程是( ) A.x -y =0 B.x +y =0 C.|x |-y =0 D.|x |-|y |=04.(2002京皖春理,8)圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是( ) A.相交 B.相切 C.相离 D.不确定的5.(2002全国文)若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( )A.1,-1B.2,-2C.1D.-16.(2002全国理)圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A.21 B.23 C.1D.37.(2002北京,2)在平面直角坐标系中,已知两点A (co s 80°,sin80°),B (co s 20°,sin20°),则|AB |的值是( )A.21B.22C.23D.18.(2002北京文,6)若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.)3,6[ππB.)2,6(ππC.)2,3(ππD.]2,6[ππ9.(2002北京理,6)给定四条曲线:①x 2+y 2=25,②4922y x +=1,③x 2+42y =1,④42x +y 2=1.其中与直线x +y -5=0仅有一个交点的曲线是( )A.①②③B.②③④C.①②④D.①③④10.(2001全国文,2)过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A.(x -3)2+(y +1)2=4B.(x +3)2+(y -1)2=4C.(x -1)2+(y -1)2=4D.(x +1)2+(y +1)2=4 11.(2001上海春,14)若直线x =1的倾斜角为α,则α( )A.等于0B.等于4π C.等于2π D.不存在12.(2001天津理,6)设A 、B 是x 轴上的两点,点P 的横坐标为2且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A.x +y -5=0B.2x -y -1=0C.2y -x -4=0D.2x +y -7=013.(2001京皖春,6)设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q 的轨迹是( )A.圆B.两条平行直线C.抛物线D.双曲线14.(2000京皖春,4)下列方程的曲线关于x =y 对称的是( ) A.x 2-x +y 2=1 B.x 2y +xy 2=1 C.x -y =1 D.x 2-y 2=115.(2000京皖春,6)直线(23-)x +y =3和直线x +(32-)y =2的位置关系是( ) A.相交不垂直 B.垂直 C.平行 D.重合16.(2000全国,10)过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,则该直线的方程是( )A.y =3xB.y =-3xC.y =33xD.y =-33x17.(2000全国文,8)已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值范围是( )A.(0,1)B.(3,33) C.(33,1)∪(1,3) D.(1,3)18.(1999全国文,6)曲线x 2+y 2+22x -22y =0关于( ) A.直线x =2轴对称B.直线y =-x 轴对称C.点(-2,2)中心对称D.点(-2,0)中心对称19.(1999上海,13)直线y =33x 绕原点按逆时针方向旋转30°后所得直线与圆(x -2)2+y 2=3的位置关系是( )A.直线过圆心B.直线与圆相交,但不过圆心C.直线与圆相切D.直线与圆没有公共点20.(1999全国,9)直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角为( )A.6πB.4π C .3πD.2π21.(1998全国,4)两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( )A.A 1A 2+B 1B 2=0B.A 1A 2-B 1B 2=0C.12121-=B B A A D.2121A A B B =122.(1998上海)设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin A ·x +ay +c =0与bx -sin B ·y +sin C =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直23.(1998全国文,3)已知直线x =a (a >0)和圆(x -1)2+y 2=4相切,那么a 的值是( )A.5B.4C.3D.224.(1997全国,2)如果直线ax +2y +2=0与直线3x -y -2=0平行,那么系数a 等于( )A.-3B.-6C.-23 D.32 25.(1997全国文,9)如果直线l 将圆x 2+y 2-2x -4y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( )A.[0,2]B.[0,1]C.[0,21] D.[0,21) 26.(1995上海,8)下列四个命题中的真命题是( )A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)表示C.不经过原点的直线都可以用方程1=+bya x 表示 D.经过定点A (0,b )的直线都可以用方程y =kx +b 表示 27.(1995全国文,8)圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( ) A.相离 B.外切 C.相交 D.内切28.(1995全国,5)图7—1中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2 29.(1994全国文,3)点(0,5)到直线y =2x 的距离是( ) A.25B.5C.23D.25图7—130.(2003上海春,2)直线y=1与直线y=3x+3的夹角为_____.31.(2003上海春,7)若经过两点A(-1,0)、B(0,2)的直线l与圆(x -1)2+(y-a)2=1相切,则a=_____.32.(2002北京文,16)圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y +8=0距离的最小值为.33.(2002北京理,16)已知P是直线3x+4y+8=0上的动点,P A,PB是圆x2+y2-2x-2y+1=0的两条切线,A、B是切点,C是圆心,那么四边形P ACB 面积的最小值为.34.(2002上海文,6)已知圆x2+(y-1)2=1的圆外一点P(-2,0),过点P作圆的切线,则两条切线夹角的正切值是.35.(2002上海理,6)已知圆(x+1)2+y2=1和圆外一点P(0,2),过点P作圆的切线,则两条切线夹角的正切值是.36.(2002上海春,8)设曲线C1和C2的方程分别为F1(x,y)=0和F2(x,y)=0,则点P(a,b) C1∩C2的一个充分条件为.37.(2001上海,11)已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为:38.(2001上海春,6)圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为.39.(2000上海春,11)集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是_____.40.(1997上海)设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是.41.(1994上海)以点C(-2,3)为圆心且与y轴相切的圆的方程是.42.(2003京春文,20)设A(-c,0),B(c,0)(c>0)为两定点,动点P到A点的距离与到B点的距离的比为定值a(a>0),求P点的轨迹.43.(2003京春理,22)已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.(Ⅰ)求动圆圆心的轨迹M的方程;(Ⅱ)设过点P,且斜率为-3的直线与曲线M相交于A、B两点.(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.44.(2002全国文,21)已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1.求直线PN 的方程.45.(1997全国文,25)已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为55,求该圆的方程.46.(1997全国理,25)设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段圆弧,其弧长的比为3∶1.在满足条件(1)、(2)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.47.(1997全国文,24)已知过原点O的一条直线与函数y=lo g8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=lo g2x的图象交于C、D 两点.(1)证明点C、D和原点O在同一条直线上.(2)当BC平行于x轴时,求点A的坐标.48.(1994上海,25)在直角坐标系中,设矩形OPQR的顶点按逆时针顺序依次为O(0,0),P(1,t),Q(1-2t,2+t),R(-2t,2),其中t∈(0,+∞).(1)求矩形OPQR在第一象限部分的面积S(t).(2)确定函数S(t)的单调区间,并加以证明.49.(1994全国文,24)已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0).求动点M的轨迹方程,说明它表示什么曲线.答案解析1.答案:B解析:圆心坐标为(0,0),半径为 1.因为直线和圆相切.利用点到直线距离公式得:d =22||b a c +=1,即a 2+b 2=c 2.所以,以|a |,|b |,|c |为边的三角形是直角三角形.评述:要求利用直线与圆的基本知识,迅速找到a 、b 、c 之间的关系,以确定三角形形状.2.答案:B 解析一:由y =10-32x (0≤x ≤15,x ∈N )转化为求满足不等式y ≤10-32x (0≤x ≤15,x ∈N )所有整数y 的值.然后再求其总数.令x =0,y 有11个整数,x =1,y 有10个,x =2或x =3时,y 分别有9个,x =4时,y 有8个,x =5或6时,y 分别有7个,类推:x =13时y 有2个,x =14或15时,y 分别有1个,共91个整点.故选B.解析二:将x =0,y =0和2x +3y =30所围成的三角形补成一个矩形.如图7—2所示.对角线上共有6个整点,矩形中(包括边界)共有16×11=176.因此所求△AOB 内部和边上的整点共有26176+=91(个) 评述:本题较好地考查了考生的数学素质,尤其是考查了思维的敏捷性与清晰的头脑,通过不等式解等知识探索解题途径.3.答案:D解析:设到坐标轴距离相等的点为(x ,y ) ∴|x |=|y | ∴|x |-|y |=0 4.答案:C解析:圆2x 2+2y 2=1的圆心为原点(0,0)半径r 为22,圆心到直线x sin θ+y -1=0的距离为:1sin 11sin |1|22+=+=θθd∵θ∈R ,θ≠2π+k π,k ∈Z∴0≤sin 2θ<1 ∴d >22∴d >r ∴圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是相离.图7—2解析:将圆x 2+y 2-2x =0的方程化为标准式:(x -1)2+y 2=1 ∴其圆心为(1,0),半径为1,若直线(1+a )x +y +1=0与该圆相切,则圆心到直线的距离d 等于圆的半径r∴11)1(|11|2=++++a a ∴a =-16.答案:A解析:先解得圆心的坐标(1,0),再依据点到直线距离的公式求得A 答案. 7.答案:D解析:如图7—3所示,∠AOB =60°,又|OA |=|OB |=1 ∴|AB |=1 8.答案:B方法一:求出交点坐标,再由交点在第一象限求得倾斜角的范围⎪⎪⎩⎪⎪⎨⎧+-=++=⇒⎩⎨⎧=-+-=k k y kx y x kx y 3232632)32(306323 ∵交点在第一象限,∴⎩⎨⎧>>00y x∴⎪⎪⎩⎪⎪⎨⎧>+->++032326032)32(3kk k∴k ∈(33,+∞)∴倾斜角范围为(2,6ππ)方法二:如图7—4,直线2x +3y -6=0过点A (3,0),B (0,2),直线l 必过点(0,-3),当直线过A 点时,两直线的交点在x 轴,当直线l 绕C 点逆时针旋转时,交点进入第一象限,从而得出结果.评述:解法一利用曲线与方程的思想,利用点在象限的特征求得,而解法二利用数形结合的思想,结合平面几何中角的求法,可迅速、准确求得结果.9.答案:D解析:联立方程组,依次考查判别式,确定D. 10.答案:C解析一:由圆心在直线x +y -2=0上可以得到A 、C 满足条件,再把A 点坐标(1,-1)代入圆方程.A 不满足条件.∴选C.解析二:设圆心C 的坐标为(a ,b ),半径为r ,因为圆心C 在直线x +y -2=0上,∴b =2-a . 由|CA |=|CB |,得(a -1)2+(b +1)2=(a +1)2+(b -1)2,解得a =1,b =1 因此所求圆的方程为(x -1)2+(y -1)2=4评述:本题考查圆的方程的概念,解法一在解选择题中有广泛的应用,应引起重视.图7—3图7—4解析:直线x =1垂直于x 轴,其倾斜角为90°. 12.答案:A解析:由已知得点A (-1,0)、P (2,3)、B (5,0),可得直线PB 的方程是x +y -5=0. 评述:本题考查直线方程的概念及直线的几何特征. 13.答案:B解析一:设P =1+bi ,则Q =P (±i ), ∴Q =(1+bi )(±i )=±b i ,∴y =±1 解析二:设P 、Q 点坐标分别为(1,t ),(x ,y ), ∵OP ⊥OQ ,∴1t·xy=-1,得x +ty =0 ①∵|OP |=|OQ |,∴2221y x t +=+,得x 2+y 2=t 2+1②由①得t =-y x ,将其代入②,得x 2+y 2=22y x +1,(x 2+y 2)(1-21y)=0.∵x 2+y 2≠0,∴1-21y=0,得y =±1. ∴动点Q 的轨迹为y =±1,为两条平行线. 评述:本题考查动点轨迹的基本求法. 14.答案:B解析:∵点(x ,y )关于x =y 对称的点为(y ,x ),可知x 2y +xy 2=1的曲线关于x =y 对称. 15.答案:B 解析:直线(23-)x +y =3的斜率k 1=32-,直线x +(32-)y =2的斜率k 2=23+,∴k 1·k 2=)23)(32(+-=-1.16.答案:C解析一:圆x 2+y 2+4x +3=0化为标准式(x +2)2+y 2=1,圆心C (-2,0).设过原点的直线方程为y =kx ,即kx -y =0.由1|2|2+-k k =1,解得k =±33,∵切点在第三象限, ∴k >0,所求直线方程为y =33x . 解析二:设T 为切点,因为圆心C (-2,0),因此CT =1,OC =2,△OCT 为Rt △.如图7—5,∴∠CO T=30°,∴直线OT 的方程为y =33x . 评述:本题考查直线与圆的位置关系,解法二利用数与形的完美图7—5结合,可迅速、准确得到结果.17.答案:C解析:直线l 1的倾斜角为4π,依题意l 2的倾斜角的取值范围为(4π-12π,4π)∪(4π,4π+12π)即:(6π,4π)∪(4π,3π),从而l 2的斜率k 2的取值范围为:(33,1)∪(1,3). 评述:本题考查直线的斜率和倾斜角,两直线的夹角的概念,以及分析问题、解决问题的能力.18.答案:B解析:由方程(x +2)2+(y -2)2=4如图7—6所示,故圆关于y =-x 对称 故选B.评述:本题考查了圆方程,以及数形结合思想.应注意任何一条直径都是圆的对称轴.19.答案:C解析:直线y =33x 绕原点逆时针旋转30°所得的直线方程为:y =3x .已知圆的圆心(2,0)到y =3x 的距离d =3,又因圆的半径r =3,故直线y =3x 与已知圆相切.评述:本题考查直线的斜率和倾斜角以及直线与圆的位置关系. 20.答案:C解析:如图7—7所示,由⎪⎩⎪⎨⎧=+=-+4032322y x y x消y 得:x 2-3x +2=0 ∴x 1=2,x 2=1 ∴A (2,0),B (1,3)∴|AB |=22)30()12(-+-=2又|OB |=|OA |=2∴△AOB 是等边三角形,∴∠AOB =3π,故选C.评述:本题考查直线与圆相交的基本知识,及正三角形的性质以及逻辑思维能力和数形结合思想,同时也体现了数形结合思想的简捷性.如果注意到直线AB 的倾斜角为120°.则等腰△OAB 的底角为60°.因此∠AOB =60°.更加体现出平面几何的意义.21.答案:A图7—6图7—7解法一:当两直线的斜率都存在时,-11B A ·(22B A -)=-1,A 1A 2+B 1B 2=0. 当一直线的斜率不存在,一直线的斜率为0时,⎩⎨⎧==⎩⎨⎧==0001221B A B A 或, 同样适合A 1A 2+B 1B 2=0,故选A. 解法二:取特例验证排除.如直线x +y =0与x -y =0垂直,A 1A 2=1,B 1B 2=-1,可排除B 、D. 直线x =1与y =1垂直,A 1A 2=0,B 1B 2=0,可排除C ,故选A.评述:本题重点考查两直线垂直的判定、直线方程的一般式等基本知识点,重点考查分类讨论的思想及逻辑思维能力.22.答案:C解析:由题意知a ≠0,s i n B ≠0,两直线的斜率分别是k 1=-a A sin ,k 2=Bbsin . 由正弦定理知k 1·k 2=-a A sin ·Bbsin =-1,故两直线垂直. 评述:本题考查两直线垂直的条件及正弦定理.23.答案:C解析:方程(x -1)2+y 2=4表示以点(1,0)为圆心,2为半径的圆,x =a 表示与x 轴垂直且与圆相切的直线,而此时的切线方程分别为x =-1和x =3,由于a >0,取a =3.故选C.评述:本题考查圆的方程、圆的切线方程及图象.利用数形结合较快完成此题. 24.答案:B解析一:若两直线平行,则22123-≠-=a , 解得a =-6,故选B.解析二:利用代入法检验,也可判断B 正确.评述:本题重点考查两条直线平行的条件,考查计算能力. 25.答案:A解析:圆的标准方程为:(x -1)2+(y -2)2=5.圆过坐标原点.直线l 将圆平分,也就是直线l 过圆心C (1,2),从图7—8看到:当直线过圆心与x 轴平行时,或者直线同时过圆心与坐标原点时都不通过第四象限,并且当直线l 在这两条直线之间变化时都不通过第四象限.当直线l 过圆心与x 轴平行时,k =0, 当直线l 过圆心与原点时,k =2. ∴当k ∈[0,2]时,满足题意.评述:本题考查圆的方程,直线的斜率以及逻辑推理能力,数形结合的思想方法. 26.答案:B解析:A 中过点P 0(x 0,y 0)与x 轴垂直的直线x =x 0不能用y -y 0=k (x -x 0)表示,因为其斜率k 不存在;C 中不过原点但在x 轴或y 轴无截距的直线y =b (b ≠0)或x =a (a ≠0)图7—8不能用方程bya x +=1表示;D 中过A (0,b )的直线x =0不能用方程y =kx +b 表示. 评述:本题考查直线方程的知识,应熟练掌握直线方程的各种形式的适用范围. 27.答案:C解析:将两圆方程分别配方得(x -1)2+y 2=1和x 2+(y -2)2=4,两圆圆心分别为O 1(1,0),O 2(0,2),r 1=1,r 2=2,|O 1O 2|=52122=+,又1=r 2-r 1<5<r 1+r 2=3,故两圆相交,所以应选C.评述:本题考查了圆的一般方程、标准方程及圆的关系以及配方法. 28.答案:D解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2、α3均为锐角,且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D.评述:本题重点考查直线的倾斜角、斜率的关系,考查数形结合的能力. 29.答案:B解析:直线方程可化为2x -y =0,d =55|5|=-. 评述:本题重点考查直线方程的一般式及点到直线的距离公式等基本知识点,考查运算能力.30.答案:60°解析:因为直线y =3x +3的倾斜角为60°,而y =1与x 轴平行,所以y =1与y =3x +3的夹角为60°.评述:考查直线方程的基本知识及几何知识,考查数形结合的数学思想.31.答案:a =4±5解析:因过A (-1,0)、B (0,2)的直线方程为:2x -y +2=0.圆的圆心坐标为C (1,a ),半径r =1.又圆和直线相切,因此,有:d =5|22|+-a =1,解得a =4±5. 评述:本题考查直线方程、直线和圆的位置关系及点到直线的距离公式等知识. 32.答案:2解析:圆心到直线的距离d =5|843|++=3 ∴动点Q 到直线距离的最小值为d -r =3-1=2 33.答案:22解法一:∵点P 在直线3x +4y +8=0上.如图7—9. ∴设P (x ,432-- x ),C 点坐标为(1,1), S 四边形P ACB =2S △P AC图7—9=2·21·|AP |·|AC |=|AP |·|AC |=|AP | ∵|AP |2=|PC |2-|AC |2=|PC |2-1∴当|PC |最小时,|AP |最小,四边形P ACB 的面积最小. ∴|PC |2=(1-x )2+(1+2+43x )2=9)145(1025162522++=++x x x ∴|PC |min =3 ∴四边形P ACB 面积的最小值为22.解法二:由法一知需求|PC |最小值,即求C 到直线3x +4y +8=0的距离,∵C (1,1),∴|PC |=5|843|++=3,S P ACD =22. 34.答案:34解法一:圆的圆心为(0,1)设切线的方程为y =k (x +2).如图7—10. ∴kx +2k -y =0 ∴圆心到直线的距离为1|12|2+-k k =1∴解得k =34或k =0, ∴两切线交角的正切值为34. 解法二:设两切线的交角为α∵tan212=α,∴tan α=3441112tan 12tan22=-=-αα. 35.答案:34解析:圆的圆心为(-1,0),如图7—11. 当斜率存在时,设切线方程为y =kx +2 ∴kx -y +2=0 ∴圆心到切线的距离为1|2|2++-k k =1 ∴k =43, 图7—10图7—11即tan α=43 当斜率不存在时,直线x =0是圆的切线 又∵两切线的夹角为∠α的余角 ∴两切线夹角的正切值为34 36.答案:F 1(a ,b )≠0,或F 2(a ,b )≠0,或F 1(a ,b )≠0且F 2(a ,b )≠0或C 1∩C 2=∅或P ∉C 1等解析:点P (a ,b )∉C 1∩C 2,则 可能点P 不在曲线C 1上; 可能点P 不在曲线C 2上;可能点P 既不在曲线C 1上也不在曲线C 2上; 可能曲线C 1与曲线C 2不存在交点.37.答案:可得两圆对称轴的方程2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0 解析:设圆方程(x -a )2+(y -b )2=r 2 ① (x -c )2+(y -d )2=r 2 ② (a ≠c 或b ≠d ),则由①-②,得两圆的对称轴方程为: (x -a )2-(x -c )2+(y -b )2-(y -d )2=0, 即2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0.评述:本题考查圆的方程、圆的公共弦方程的概念,考查抽象思维能力和推广数学命题的能力.38.答案:(x -1)2+(y -1)2=1 解析一:设所求圆心为(a ,b ),半径为r . 由已知,得a =b ,r =|b |=|a |.∴所求方程为(x -a )2+(y -a )2=a 2又知点(1,0)在所求圆上,∴有(1-a )2+a 2=a 2,∴a =b =r =1. 故所求圆的方程为:(x -1)2+(y -1)2=1. 解析二:因为直线y =x 与x 轴夹角为45°. 又圆与x 轴切于(1,0),因此圆心横坐标为1,纵坐标为1,r =1.评述:本题考查圆的方程等基础知识,要注意利用几何图形的性质,迅速得到结果. 39.答案:3或7解析:当两圆外切时,r =3,两圆内切时r =7,所以r 的值是3或7.评述:本题考查集合的知识和两圆的位置关系,要特别注意集合代表元素的意义. 40.答案:x +y -4=0解析一:已知圆的方程为(x -2)2+y 2=9,可知圆心C 的坐标是(2,0),又知AB 弦的中点是P (3,1),所以k CP =2301--=1,而AB 垂直CP ,所以k AB =-1.故直线AB 的方程是x +y -4=0.解析二:设所求直线方程为y -1=k (x -3).代入圆的方程,得关于x 的二次方程:(1+k 2)x 2-(6k 2-2k +4)x +9k 2-6k -4=0,由韦达定理:x 1+x 2=221426k k k ++-=6,解得k =1.解析三:设所求直线与圆交于A 、B 两点,其坐标分别为A (x 1,y 1)、B (x 2,y 2),则有⎪⎩⎪⎨⎧=+-=+-9)2(9)2(22222121y x y x②-①得(x 2+x 1-4)(x 2-x 1)+(y 2-y 1)(y 2+y 1)=0 又AB 的中点坐标为(3,1),∴x 1+x 2=6,y 1+y 2=2. ∴1212x x y y --=-1,即AB 的斜率为-1,故所求方程为x +y -4=0.评述:本题考查直线的方程与圆的有关知识.要特别注意圆所特有的几何性质. 41.答案:(x +2)2+(y -3)2=4 解析:因为圆心为(-2,3),且圆与y 轴相切,所以圆的半径为2.故所求圆的方程为(x +2)2+(y -3)2=4.42.解:设动点P 的坐标为P (x ,y )由||||PB PA =a (a >0),得2222)()(yc x y c x +-++=a ,化简,得:(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x +c 2+y 2=0.整理, 得:(x -1122-+a a c )2+y 2=(122-a ac )2当a =1时,化简得x =0.所以当a ≠1时,P 点的轨迹是以(1122-+a a c ,0)为圆心,|122-a ac |为半径的圆;当a =1时,P 点的轨迹为y 轴.评述:本题考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力.43.(Ⅰ)解法一,依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x .解法二:设M (x ,y ),依题意有|MP |=|MN |,所以|x +1|=22)1(y x +-.化简得:y 2=4x .(Ⅱ)(i )由题意得,直线AB 的方程为y =-3(x -1).由⎪⎩⎪⎨⎧=--=.4),1(32x y x y 消y 得3x 2-10x +3=0,解得x 1=31,x 2=3. ① ②图7—12所以A 点坐标为(332,31),B 点坐标为(3,-23), |AB |=x 1+x 2+2=316. 假设存在点C (-1,y ),使△ABC 为正三角形,则|BC |=|AB |且|AC |=|AB |,即⎪⎪⎩⎪⎪⎨⎧=-++=+++.)316()32()131()316()32()13(222222y y 由①-②得42+(y +23)2=(34)2+(y -332)2,解得y =-9314. 但y =-9314不符合①, 所以由①,②组成的方程组无解.因此,直线l 上不存在点C ,使得△ABC 是正三角形.(ii )解法一:设C (-1,y )使△ABC 成钝角三角形,由⎩⎨⎧-=--=.1),1(3x x y 得y =23,即当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,故y ≠23.又|AC |2=(-1-31)2+(y -332)2=334928y -+y 2, |BC |2=(3+1)2+(y +23)2=28+43y +y 2,|AB |2=(316)2=9256.当∠CAB 为钝角时,co sA =||||2||||||222AC AB BC AC AB ⋅-+<0.即|BC |2 >|AC |2+|AB |2,即9256334928342822++->++y y y y ,即y >392时,∠CAB 为钝角. 当|AC |2>|BC |2+|AB |2,即9256342833492822+++>+-y y y y ,即y <-3310时,∠CBA 为钝角. 又|AB |2>|AC |2+|BC |2,即2234283349289256y y y y++++->, 即0)32(,03433422<+<++y y y. 该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是)32(9323310≠>-<y y y 或. 解法二:以AB 为直径的圆的方程为(x -35)2+(y +332)2=(38)2. 圆心(332,35-)到直线l :x =-1的距离为38,所以,以AB 为直径的圆与直线l 相切于点G (-1,-332). 当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A 、B 、C 三点不共线时,∠ACB 为锐角,即△ABC 中,∠ACB 不可能是钝角.因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角.过点A 且与AB 垂直的直线方程为)31(33332-=-x y . 令x =-1得y =932. 过点B 且与AB 垂直的直线方程为y +2333=(x -3). 令x =-1得y =-3310.又由⎩⎨⎧-=--=.1),1(3x x y 解得y =23,所以,当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是y <-3310或y >932(y ≠23).评述:该题全面综合了解析几何、平面几何、代数的相关知识,充分体现了“注重学科知识的内在联系”.题目的设计新颖脱俗,能较好地考查考生综合运用数学知识解决问题的能力.比较深刻地考查了解析法的原理和应用,以及分类讨论的思想、方程的思想.该题对思维的目的性、逻辑性、周密性、灵活性都进行了不同程度的考查.对运算、化简能力要求也较高,有较好的区分度.44.解:设点P 的坐标为(x ,y ),由题设有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++.整理得 x 2+y 2-6x +1=0. ①因为点N 到PM 的距离为1,|M N|=2, 所以∠PMN =30°,直线PM 的斜率为±33, 直线PM 的方程为y =±33(x +1).② 将②式代入①式整理得x 2-4x +1=0. 解得x =2+3,x =2-3.代入②式得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).直线PN 的方程为y =x -1或y =-x +1.45.解:设圆的方程为(x -a )2+(y -b )2=r 2. 令x =0,得y 2-2by +b 2+a 2-r 2=0. |y 1-y 2|=222122124)(a r y y y y -=-+=2,得r 2=a 2+1①令y =0,得x 2-2ax +a 2+b 2-r 2=0, |x 1-x 2|=r b r x x x x 224)(2221221=-=-+,得r 2=2b 2②由①、②,得2b 2-a 2=1又因为P (a ,b )到直线x -2y =0的距离为55, 得d =555|2|=-b a ,即a -2b =±1. 综上可得⎩⎨⎧=-=-;12,1222b a a b 或⎩⎨⎧-=-=-121222b a a b 解得⎩⎨⎧-=-=11b a 或⎩⎨⎧==11b a于是r 2=2b 2=2.所求圆的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2. 46.解:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |、|a |. 由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为2r ,故r 2=2b 2,又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1, 从而有2b 2-a 2=1又点P (a ,b )到直线x -2y =0距离为d =5|2|b a -, 所以5d 2=|a -2b |2=a 2+4b 2-4ab ≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1 当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值,由此有⎩⎨⎧=-=1222a b b a 解方程得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 由于r 2=2b 2,知r =2,于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2评述:本题考查了圆的方程,函数与方程,求最小值问题,进一步考查了待定系数法、函数与方程思想.题中求圆的方程给出的三个条件比较新颖脱俗,灵活运用几何知识和代数知识将条件恰当转化,推演,即合乎逻辑、说理充分、陈述严谨.47.(1)证明:设A 、B 的横坐标分别为x 1,x 2,由题设知x 1>1,x 2>1,点A (x 1,lo g 8x 1),B (x 2,lo g 8x 2).因为A 、B 在过点O 的直线上,所以228118log log x x x x =, 又点C 、D 的坐标分别为(x 1,lo g 2x 1),(x 2,lo g 2x 2) 由于lo g 2x 1=2log log 818x =3lo g 8x 1,lo g 2x 2=2log log 828x =3lo g 8x 2,所以OC 的斜率和OD 的斜率分别为228222118112log 3log ,log 3log x x x x k x x x x k OD OC ====.由此得k OC =k OD ,即O 、C 、D 在同一条直线上.(2)解:由BC 平行于x 轴,有lo g 2x 1=lo g 8x 2,解得 x 2=x 13 将其代入228118log log x x x x =,得x 13lo g 8x 1=3x 1lo g 8x 1. 由于x 1>1,知lo g 8x 1≠0,故x 13=3x 1,x 1=3,于是点A 的坐标为(3,lo g 83).评述:本小题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查运算能力和分析问题的能力.48.解:(1)当1-2t >0即0<t <21时,如图7—13,点Q 在第一象限时,此时S (t )为四边形OPQK 的面积,直线QR 的方程为y -2= t (x +2t ).令x =0,得y =2t 2+2,点K 的坐标为(P ,2t 2+2).t t t S S S OKR OPQR OPQK 2)22(21)1(2222⋅+-+=-=)1(232t t t -+-=当-2t +1≤0,即t ≥21时,如图7—14,点Q 在y 轴上或第二象限,S (t )为△OP L的面积,直线PQ 的方程为y -t =-t1(x -1),令x =0得y =t +t 1,点L 的坐标为(0,t +t 1),S △OPL =1)1(21⋅+t t)1(21tt += 所以S (t )=⎪⎪⎩⎪⎪⎨⎧≥+<<-+-21 )1(21210 )1(232t t t t t t t(2)当0<t <21时,对于任何0<t 1<t 2<21,有S (t 1)-S (t 2)=2(t 2-t 1)[1-(t 1+t 2)+(t 12+t 1t 2+t 22)]>0,即S (t 1)> S (t 2),所以S (t )在区间(0,21)内是减函数. 图7—13图7—14当t ≥21时,对于任何21≤t 1≤t 2,有S (t 1)-S (t 2)=21(t 1-t 2)(1-211t t ), 所以若21≤t 1≤t 2≤1时,S (t 1)>S (t 2);若1≤t 1≤t 2时,S (t 1)<S (t 2),所以S (t )在区间[21,1]上是减函数,在区间[1,+∞)内是增函数,由2[121+(21)2-(21)3]=45=S (21)以及上面的证明过程可得,对于任何0<t 1<21≤t 2<1,S (t 2)<45≤S (t 1),于是S (t )的单调区间分别为(0,1]及[1,+∞),且S (t )在(0,1]内是减函数,在[1,+∞)内是增函数.49.解:如图7—15,设直线MN 切圆于N ,则动点M 组成的集合是:P ={M ||MN |=λ|MQ |},(λ>0为常数)因为圆的半径|ON |=1,所以|MN |2=|MO |2-|ON |2=|MO |2-1.设点M 的坐标为(x ,y ),则2222)2(1y x y x +-=-+λ整理得(λ2-1)(x 2+y 2)-4λ2x +(1+4λ2)=0当λ=1时,方程化为x =45,它表示一条直线,该直线与x 轴垂直,交x 轴于点(45,0); 当λ≠1时,方程化为(x -1222-λλ)2+y 2=)1(3122-+λλ它表示圆心在(1222-λλ,0),半径为|1|3122-+λλ的圆. 评述:本题考查曲线与方程的关系、轨迹的概念等解析几何的基本思想以及综合运用知识的能力.图7—15。
高中数学直线与圆习题精讲精练

圆与直线一、典型例题例1、已知定点P (6,4)与定直线 1:y=4x ,过P 点的直线 与 1交于第一象限Q 点,与x 轴正半轴交于点M ,求使△OQM 面积最小的直线 方程。
分析:直线 是过点P 的旋转直线,因此是选其斜率k 作为参数,还是选择点Q (还是M )作为参数是本题关键。
通过比较可以发现,选k 作为参数,运算量稍大,因此选用点参数。
设Q (x 0,4x 0),M (m ,0) ∵ Q ,P ,M 共线 ∴ k PQ =k PM ∴m 64x 6x 4400-=--解之得:1x x 5m 00-=∵ x 0>0,m>0 ∴ x 0-1>0 ∴ 1x x 10mx2x 4|OM |21S 020OMQ -===∆令x 0-1=t ,则t>0 )2t1t (10t)1t (10S 2++=+=≥40当且仅当t=1,x 0=11时,等号成立 此时Q (11,44),直线 :x+y-10=0评注:本题通过引入参数,建立了关于目标函数S △OQM 的函数关系式,再由基本不等式再此目标函数的最值。
要学会选择适当参数,在解析几何中,斜率k ,截距b ,角度θ,点的坐标都是常用参数,特别是点参数。
例2、已知△ABC 中,A (2,-1),B (4,3),C (3,-2),求:(1)BC 边上的高所在直线方程;(2)AB 边中垂线方程;(3)∠A 平分线所在直线方程。
分析: (1)∵ k BC =5∴ BC 边上的高AD 所在直线斜率k=51-∴ AD 所在直线方程y+1=51-(x-2)即x+5y+3=0(2)∵ AB 中点为(3,1),k AB =2∴ AB 中垂线方程为x+2y-5=0(3)设∠A 平分线为AE ,斜率为k ,则直线AC 到AE 的角等于AE 到AB 的角。
∵ k AC =-1,k AB =2 ∴k21k 2k11k +-=-+∴ k 2+6k-1=0∴ k=-3-10(舍),k=-3+10∴ AE 所在直线方程为(10-3)x-y-210+5=0评注:在求角A 平分线时,必须结合图形对斜率k 进行取舍。
高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D )A -1或2B 23C 2D -14.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=05.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C )A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 ( A )A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 ( C ) A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥23,则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞) C [-33,33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。
高中数学经典例题—与圆有关的最值问题

高中数学经典例题-与圆有关的最值问题I .题源探究·黄金母题【例1】已知圆()()22:1225C x y -+-=,直线()():211740,l m x m y m m +++--=为任意实数.(1)求证:直线l 恒过定点;(2)判断直线l 被圆截C 得的弦何时最长、何时最短?并求截得的弦长最短时m 的值以及最短长度. 【答案】(1)()3,1;(2)34-, 【解析】(1)直线l 的方程经过整理得()()2740x y m x y +-++-=.由于m 的任意性,于是有27,4.x y x y +-⎧⎨+-⎩解此方程组,得3,1x y =⎧⎨=⎩,即直线l 恒过定点()3,1D .(2)因为直线l 恒过圆C 内一点D ,所以当直线l 经过圆心C 时被截得的弦最长,它是圆的直径;当直线l 垂直于CD 时被截得的弦长最短.由()()1,2,3,1C D ,可知直线CD 的斜率为12CD k =-,故当直线l 被圆C 截得的弦长最短时,直线l 的斜率为2,于是有2121m m +-=+,解得34m =-,此时直线l 的方程为()123y x -=-,即250x y --=。
又CD精彩解读【试题来源】人教A 版必修2P 144B 组T6.【母题评析】本题考查圆的有关最值问题,考查考生的分析问题、解决问题的能力. 【思路方法】结合圆的有关几何性质解题.线l 被圆C 截得的弦最短时m 的值为34-,最短长度是45。
II .考场精彩·真题回放【例2】【2017高考江苏卷】在平面直角坐标系xOy 中,点()12,0A -,()0,6B ,点P 在圆22:50O x y +=上.若20PA PB ⋅,则点P 的横坐标的取值范围是 . 【答案】52,1⎡⎤-⎣⎦【解析】不妨设()00,P x y ,则220050x y +=,且易知052,52x ⎡⎤∈-⎣⎦.因为PA PB AP BP =⋅⋅()()000012,,6x y x y =+⋅-=220000126x x y y ++-005012620x y =+-,故00250x y -+.B (1,7)A (-5,-5)2x-y+5=0Oyx52所以点()00,P x y 在圆22:50O x y +=上,且在直线250x y -+=的左上方(含直线).联立2250250x y x y ⎧+=⎨-+=⎩,得15x =-,21x =,如图所示,结合图形知052,1x ⎡⎤∈-⎣⎦.【命题意图】本类题主要考查点与圆、直线与圆、圆与圆位置关系,以及考查逻辑思维能力、运算求解能力、数形结合的能力、方程思想的应用.【考试方向】这类试题考查根据给定直线、圆方程判断点与圆、直线与圆、圆与圆的位置关系,同时考查通过数形结合思想、充分利用圆的几何性质解决圆的切线、圆的弦长等问题.在考查形式上,主要要以选择题、填空题为主,也有时会出现在解答题中,中档题.【难点中心】1.直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d 与半径长r 的大小关系来判断. 若d r >,则直线与圆相离; 若d r =,则直线与圆相切;若d r <,则直线与圆相交. (2)代数法故填52,1⎡⎤-⎣⎦.【例3】【2015高考江苏卷】在平面直角坐标系xOy 中,以点()1,0为圆心且与直线210mx y m ---=()m ∈R 相切的所有圆中,半径最大的圆的标准方程为 .【答案】()2212x y -+=【解析】解法一(几何意义):动直线210mx y m ---=整理得()()210m x y --+=,则l 经过定点()2,1M -,故满足题意的圆与l 切于M 时,半径最大,从而()()2221102r =-+--=,故标准方程为()2212x y -+=.解法二(代数法——基本不等式):由题意222221112111m m m m r d m m m ++==+--==+++ 211m m=++21212mm+=,当且仅当1m =时,取“=”.故标准方程为()2212x y -+=.解法三(代数法——∆判别式):由题意211m r d m --==+22211m m m ++=+,设22211m m t m ++=+,则()21210t m m t --+-=,m ∴∈R ,2.点与圆、圆与圆位置关系的判断方法,类似的也有几何法和代数法两种; 3.比较圆心距与两个圆的半径和与半径差的大小关系,特别是遇到参数问题时,如何建立等式或不等式是一个难点.()()222410t ≥∴∆=---,解得02t ≤≤,maxd ∴=【例4】【2015高考广东卷】已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线:(4)l y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.【答案】(1)()3,0;(2)223953243x y x ⎛⎫⎛⎫-+=< ⎪ ⎪⎝⎭⎝⎭;(3)3325,,4477k ⎡⎧⎫∈--⎨⎬⎢⎩⎭⎣⎦.【解析】(1)由22650x y x +-+=得()2234x y -+=,所以圆1C 的圆心坐标为()3,0;(2)设(),M x y .因为点M 为弦AB 中点,即1C M AB ⊥,所以11C M AB k k =-,即13y yx x=--,所以线段AB 的中点M 的轨迹的方程为223953243x y x ⎛⎫⎛⎫-+=< ⎪ ⎪⎝⎭⎝⎭; (3)由(2)知点M的轨迹是以3,02C ⎛⎫⎪⎝⎭为圆心,32r =为半径的部分圆弧EF (不包括两端点),且533E ⎛ ⎪⎝⎭,525,3F ⎛⎫- ⎪ ⎪⎝⎭.又直线():4l y k x =-过定点()4,0D , 当直线l 与圆C 相切时,由223402321k k ⎛⎫-- ⎪⎝⎭=+得34k =±. 又250255743DEDFkk ⎛⎫-- ⎪⎝⎭=-=-=-,所以当332525,,44k ⎡⎤⎧⎫∈--⎨⎬⎢⎥⎩⎭⎣⎦时,直线():4l y k x =-与曲线C 只有一个交点.III .理论基础·解题原理考点一 与截距有关的圆的最值问题形如t ax by =+形式的最值问题,可转化为动直线截距的最值问题. 考点二 与斜率有关的圆的最值问题形如y bx aμ-=-形式的最值问题,可转化为动直线斜率的最值问题. 考点三 与距离有关的圆的最值问题在运动变化中,动点到直线、圆的距离会发生变化,在变化过程中,就会出现一些最值问题,如距离最小,最大等.这些问题常常联系到平面几何知识,利用数形结合思想可直接得到相关结论,解题时便可利用这些结论直接确定最值问题.常见的结论有:(1)圆外一点A 到圆上距离最近为AO r -,最远为AO r +; (2)过圆内一点的弦最长为圆的直径,最短为该点为中点的弦;(3)直线与圆相离,则圆上点到直线的最短距离为圆心到直线的距离d r +,最近为d r -;(4)过两定点的所有圆中,面积最小的是以这两个定点为直径端点的圆的面积. (5)直线外一点与直线上的点的距离中,最短的是点到直线的距离;(6)两个动点分别在两条平行线上运动,这两个动点间的最短距离为两条平行线间的距离. 考点四 与面积相关的最值问题与圆有关的最值问题,因与平面几何性质联系密切,且与圆锥曲线相结合的命题趋势,使与圆相关的最值问题成为命题宠儿.与圆的面积的最值问题,一般转化为寻求圆的半径相关的函数关系或者几何图形的关系,借助函数求最值的方法,如配方法,基本不等式法等求解,有时可以通过转化思想,利用数形结合思想求解.IV .题型攻略·深度挖掘【考试方向】这类试题,通常以选择题或填空题的形式出现,试题难度不大,多为容易题、中档题;若以解答题的形式呈现,则有一定难度. 【技能方法】1.数形结合法处理与圆有关的最值问题,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.研究与圆有关的最值问题时,可借助图形的性质,利用数形结合求解.常见的最值问题有以下几种类型:①形如y bx aμ-=-形式的最值问题,可转化为动直线斜率的最值问题;②形如t ax by =+形式的最值问题,可转化为动直线截距的最值问题;③形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.2.建立函数关系求最值根据题目条件列出关于所求目标函数的关系式,然后根据关系的特点选用参数法、配方法、判别式法等进行求解.2.利用基本不等式求解最值如果所求的表达式是满足基本不等式的结构特征,如a b ⋅或者a b +的表达式求最值,常常利用题设条件建立两个变量的等量关系,进而求解最值.同时需要注意,“一正二定三相等”的验证.V .举一反三·触类旁通考向1 与斜率有关的圆的最值问题【例1】如果直线()21400,0ax by a b -+=>>和函数()()110,1x f x mm m +=+>≠的图象恒过同一个定点,且该定点始终落在圆()()221225x a y b -+++-=的内部或圆上,那么ba的取值范围是 A .⎪⎭⎫⎢⎣⎡3443, B .⎥⎦⎤ ⎝⎛3443, C .⎥⎦⎤⎢⎣⎡3443, D .⎪⎭⎫⎝⎛3443,【答案】C【解析】函数()11x f x m+=+恒过定点()1,2-.将点()1,2-代入直线2140ax by -+=可得22140a b --+=,即()7,0,0a b a b +=>>.由点()1,2-在圆()()221225x a y b -+++-=内部或圆上可得()()22112225a b --+++-≤即2225a b +≤()0,0a b >>.2273425a b a b a b +==⎧⎧⇒⎨⎨=+=⎩⎩或43a b =⎧⎨=⎩.所以点(),a b 在以()3,4A 和()4,3B 为端点的线段上运动.ba表示以()3,4A 和()4,3B 为端点的线段上的点与坐标原点连线的斜率.所以min 303404b a -⎛⎫==⎪-⎝⎭,max404303b a -⎛⎫== ⎪-⎝⎭.所以3443b a ≤≤.故C 正确. 【例2】已知圆22:8150C x y x +-+=,直线2y kx =+上至少存在一点P ,使得以点P 为原心,半径为1的圆与圆C 有公共点,则k 的最小值是 ( )A .43-B .54-C .35-D .53- 【答案】A【跟踪练习】1.已知实数x 、y 满足x 2+y 2=4,则22-+y x xy的最小值为 ( )A .222-B .222-C .222+D .222-- 【答案】A2.在平面直角坐标系x y O 中,圆1C :()()221625x y ++-=,圆2C :()()2221730x y r -+-=.若圆2C 上存在一点P ,使得过点P 可作一条射线与圆1C 依次交于点A ,B ,满足2PA =AB ,则半径r 的取值范围是_______. 【答案】[]5,55【解析】由题,知圆1C 的圆心为(1,6)-,半径为5,圆2C 的圆心为(17,30),半径为r ,两圆圆心距为22(171)(306)30++-=,如图,可知当AB 为圆1C 的直径时取得最大值,所以当点P 位于点1P 所在位置时r 取得最小值,当点P 位于点2P 所在位置时r 取得最大值.因为max ||10AB =,||2||PA AB =,所以min 5r =,max 55r =.3.过点()1,2M 的直线l 与圆C :()()223425x y -+-=交于,A B 两点,C 为圆心,当ACB ∠最小时,直线l 的方程是 . 【答案】: 30x y +-=【解析】:要使ACB ∠最小,由余弦定理可知,需弦长AB 最短.要使得弦长最短,借助结论可知当()1,2M 为弦的中点时最短.因圆心和()1,2M 所在直线的42131k-==-,则所求的直线斜率为1-,由点斜式可得1(2)30y x x y -=--⇒+-=.【点评】此题通过两次转化,最终转化为求过定点的弦长最短的问题.4.若圆C :034222=+-++y x y x 关于直线062=++by ax 对称,则由点(a ,b )向圆所作的切线长的最小值是_____________. 【答案】4【点评】与切线长有关的问题及与切线有关的夹角问题,解题时应注意圆心与切点连线与切线垂直,从而得出一个直角三角形.考向2 与截距有关的圆的最值问题【例3】【2017北京海淀模拟】设为不等式表示的平面区域,直线与区域有公共点,则的取值范围是_____.【答案】或者【解析】由题设到直线的距离,解之得,应填答案.【跟踪练习】1.【2017江苏南通高三第三次调研考试】在平面直角坐标系xOy中,已知点,点,为圆上一动点,则的最大值是____.【答案】2点睛:首先根据问题将的表达式列出来,做最值问题的小题,首先得明确问题表达式,然后根据函数或者基本不等式求解最值,本题解题关键在于,写出表达式后要将其化为斜率的定义求法来理解从而求得结论.2.【2018安徽六安模拟】若直线2x y m =-+与曲线2142y x =-恰有三个公共点,则实数m 的取值范围是 ( ) A .2) B .(2121) C .(121) D .21)思路分析:直线2x y m =-+与曲线21|4|2y x =-m 的取值范围,可以转化为直 线2x y m =-+的图象与曲线21|4|2y x =-的图象有三个交点时实数m 的取值范围,作出两个函数 的图象,通过图象观察临界直线,从而求出m 的取值范围;本题曲线21|4|2y x =- 画图时要分类讨论,知图象由椭圆的上一部分与双曲线的上部分组成.3.【2018湖北稳派教育高三上学期第二次联考】已知圆C的圆心在x 轴的正半轴上,且y 轴和直线320x y-+=均与圆C相切.(1)求圆C的标准方程;(2)设点()0,1P,若直线y x m=+与圆C相交于M,N两点,且MPN∠为锐角,求实数m的取值范围.【答案】(1)()2224x y-+=;(2)1515222,(,222⎛⎫---+--⋃-+⎪⎪⎝⎭).试题解析:(1)设圆C的标准方程为:故由题意得,解得,∴圆C 的标准方程为:.(2)由()22{24y x mx y=+-+=消去y整理得.∵直线y x m =+与圆C 相交于M ,N 两点,∴,解得,设,则.∴依题意得()()()()121212121111PM PN x x y y x x x m x m ⋅=+--=++-+-()()()212122110x x m x x m =+-++->,∴()()()221210m m m m +--+->,整理得210m m +->,解得或.又,∴15222m ----<<或152222m -+<<-+.故实数m 的取值范围是.点睛:(1)对于BAC ∠为锐角的问题(或点A 在以BC 为直径的圆外,或222AB AC BC >+),都可转化为0AB AC ⋅>,然后坐标化,转化为代数运算处理.(2)对于直线和圆位置关系的问题,可将直线方程和圆的方程联立消元后根据所得的二次方程的判别式、根据系数的关系,借助于代数运算处理.解题时注意“设而不求”、“整体代换”等方法的运用,以减少计算量、提高解题速度.考向3 与距离有关的圆的最值问题【例4】【2018广西南宁模拟】在平面直角坐标系xOy 中,已知()221125x y -+=,22240x y -+=,则()()221212x x y y -+-的最小值为( )A .55.15 C .1215D .1155 【答案】B【跟踪练习】1.【2018江西赣州红色七校一联】已知圆C :(a<0)的圆心在直线 上,且圆C 上的点到直线的距离的最大值为,则的值为( )A .1B .2C .3D .4 【答案】C【解析】圆的方程为,圆心为①,圆C 上的点到直线的距离的最大值为②由①②得,a <0,故得 , =3.点睛:圆上的点到直线的距离的最大值,就是圆心到直线的距离加半径;再就是二元化一元的应用. 2.【2018山西临汾一中、忻州一中、长治二中、康杰中学模拟】已知()2,0A ,直线4310x y ++=被圆()()22:313(3)C x y m m ++-=<所截得的弦长为43P 为圆C 上任意一点,则PA 的最大值为( )A .2913B .513+.7132913 【答案】D【解析】根据弦心距、半径、半弦长的关系得: 22311(23=135m ⎛⎫-+ ⎪⎝⎭),解得: 2m =或163m = (舍去),当2m =时, PA 的最大值2913PC r +=+,故选D .3.【2017辽宁辽南协作校一模】圆x 2+y 2-4x -4y -10=0上的点到直线x +y -8=0的最大距离与最小距离的差是( ) A .18 B .6 C .52 D .42【答案】C点睛:判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.4.【2017安徽宣城二模】已知P 是圆224x y +=上一点,且不在坐标轴上, ()2,0A , ()0,2B ,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,则2AN BM +的最小值为__________.【答案】8【解析】设点()2cos ,2sin P θθ,则直线PA 的方程: ()sin 2cos 1y x θθ=--,则2sin 0,cos 1M θθ⎛⎫- ⎪-⎝⎭同理2cos ,0sin 1N θθ⎛⎫-⎪-⎝⎭,则2AN BM + 2cos 4sin 6sin 1cos 1θθθθ=++--的最小值为8. 5.【2107吉林省延边州模拟】点N 是圆()2251x y ++=上的动点,以点()3,0A 为直角顶点的R t ABC ∆另外两顶,B C 在圆2225x y +=上,且BC 的中点为M ,则MN 的最大值为__________.【答案】1541+ 【解析】6.【2017山东济宁3月模拟考试】在平面直角坐标系xOy 中,椭圆C : 22221(0)x y a b a b+=>>的离心率31l : 1x ya b+=被椭圆C 5 (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线1l 与圆D : 22640x y x y m +--+=相切: (i )求圆D 的标准方程;(ii )若直线2l 过定点()3,0,与椭圆C 交于不同的两点E 、F ,与圆D 交于不同的两点M 、N ,求EF MN ⋅的取值范围.【答案】(I )2214x y +=;(II )(i )()()22325x y -+-=;(ii )(]0,8.【解析】试题分析:(Ⅰ)由直线1l 过定点(),0a , ()0,b ,可得到225a b +=,再结合c a =,即可求出椭圆的方程;(Ⅱ)(i )利用圆的几何性质,求出圆心到直线1l 的距离等于半径,即可求出m 的值,即可求出圆D 的标准方程;(ii )首先设直线2l 的方程为()3y k x =-,利用韦达定理即可求出弦长EF 的表达式,同理利用圆的几何关系可求出弦长MN 的表达式,即可得到EF MN ⋅的表达式,再用换元法29141,5t k ⎡⎫=+∈⎪⎢⎣⎭,即可求出EF MN ⋅的取值范围.试题解析:(Ⅰ)由已知得直线1l 过定点(),0a , ()0,b , 225a b +=,又2c a =, 222a b c =+,解得24a =, 21b =,故所求椭圆C 的标准方程为2214x y +=. (Ⅱ)(i )由(Ⅰ)得直线1l 的方程为12xy +=,即220x y +-=,又圆D 的标准方程为()()223213x y m -+-=-,∴圆心为()3,2,圆的半径r ==∴圆D 的标准方程为()()22325x y -+-=.(ii )由题可得直线2l 的斜率存在,设2l : ()3y k x =-,与椭圆C 的两个交点为()11,E x y 、()22,F x y ,由()223,{1,4y k x x y =++=消去y 得()222214243640k x k x k +-+-=,由0∆>,得2105k ≤<, 21222414k x x k +=+, 212236414k x x k-=+, ∴EF ===.又圆D 的圆心()3,2到直线2l : 30kx y k --==∴圆D 截直线2l 所得弦长222251221k MN r d k +=-=+, ∴()()()()2224222221155112542811414k k k k EF MN k k k +-+-⋅=⨯=+++,设29141,5t k ⎡⎫=+∈⎪⎢⎣⎭, 214t k -=,则22211251148295025t EF MN t t t -⎛⎫- ⎪⎛⎫⎛⎫⎝⎭⋅==-+- ⎪ ⎪⎝⎭⎝⎭, ∵295025y x x =-+-的对称轴为259x =,在5,19⎛⎤⎥⎝⎦上单调递增, 016y <≤, ∴21109502516t t ⎛⎫⎛⎫<-+-≤ ⎪ ⎪⎝⎭⎝⎭,∴08EF MN <⋅≤.【点睛】本题考查了椭圆方程的求法,考查了直线与圆锥曲线,直线与圆的位置关系,常采取联立直线和圆锥曲线方程,利用一元二次方程的根与系数关系求解,对于直线与圆的位置关系,常采取圆的几何性质较多,运算量较少点,圆锥曲线类的题目的特点就是运算量大,要求学生具有较强的运算能力,属于难题. 考向4 与面积相关的最值问题【例5】 在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为_______________.【答案】45π【例6】动圆C 经过点(1,0)F ,并且与直线1x =-相切,若动圆C 与直线221y x =+总有公共点,则圆C 的面积的最小值_________________.【答案】4π【解析】设圆心为(,)a b ,半径为r ,|||1|r CF a ==+,即222(1)(1)a b a -+=+,即214a b =,∴圆心为21(,)4b b ,2114r b =+,圆心到直线221y x =++的距离为22|221|4142b b b d -++=≤+,∴2(223)b ≤-+或2b ≥,当2b =时,min 14124r =⨯+=,∴2min 4S r ππ==. 【跟踪练习】1.设,m n R ∈,若直线10mx ny +-=与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则ABO ∆面积的最小值为_____________. 【答案】3【解析】l 与圆相交所得弦的长为2,故弦心距2222213d m n ==-=+,所以22123m n mn +=≥,16mn ∴≤,l 与x 轴相交于点A 1,0m ⎛⎫ ⎪⎝⎭,与y 轴相交于点B 1,0n ⎛⎫ ⎪⎝⎭, 1111111632222AOB S OA OB m n mn ∆∴===≥⨯=. 2.【2017届高三七校联考期中考试】已知直线1:=-y x l 与圆M :012222=-+-+y x y x 相交于A ,C 两点,点B ,D 分别在圆M 上运动,且位于直线AC 两侧,则四边形ABCD 面积的最大值为 .30【解析】3)1()1(01222222=++-⇒=-+-+y x y x y x ,圆心M 到直线1:=-y x l 距离为212|111|=-+,BD 为过圆心M 且垂直于AC 的直径时,四边形ABCD 面积取最大值,为303221322121=⨯-⨯=⨯⨯BD AC .3.【2017河南安阳二模】已知圆:,动点在圆:上,则面积的最大值为( ) A .B .C .D .【答案】B4.【2018河南洛阳模拟】已知两动圆2221:(3)F x y r +=和2222:(3)(4)(04)F x y r r +=-<<,把它们的公共点的轨迹记为曲线C ,若曲线C 与y 轴的正半轴的交点为M ,且曲线C 上的相异两点,A B 满足:0MA MB =.(1)求曲线C 的方程;(2)证明直线AB 恒经过一定点,并求此定点的坐标; (3)求ABM ∆面积S 的最大值.【答案】(1)2214x y += ;(2)证明见解析,定点坐标为3(0,)5N -;(3)6425. 【解析】试题分析:(1)设两动圆的公共点为Q ,则有12124()QF QF F F +=> ,根据椭圆的定义可知Q 的轨迹为椭圆,由此求出轨迹方程;(2)先求出(0,1)M ,设1122(,),()A x y B x y ,当直线AB 斜率存在时设直线方程为y kx m =+ 与椭圆方程联立,由韦达定理计算1212(1)(1)0MA MB x x kx m kx m ⋅=++-+-=得35m -=,所以直线恒过定点3(0,)5N -,验证当直线AB 斜率不存在时也过此点即可;(3)将三角形面积分割成两部分进行计算,即ABM △面积212213225422514MNA MNB k S S S MN x x k ∆∆+=+=⋅-=⋅+,令254t k =+即可求出面积的最大值.试题解析: (1)设两动圆的公共点为Q ,则有12124()QF QF F F +=>.由椭圆的定义可知Q 的轨迹为椭圆,2,a c ==C 的方程是:2214x y +=. (2)证法一:由题意可知:(0,1)M ,设11(,)A x y ,22(,)B x y ,当AB 的斜率不存在时,易知满足条件0MA MB ⋅=的直线AB 为:0x =过定点3(0,)5N -当AB 的斜率存在时,设直线AB :y kx m =+,联立方程组:2214x y y kx m ⎧+=⎪⎨⎪=+⎩①②,把②代入①有:222(14)8440k x kmx m +++-= 122814km x x k-+=+③,21224414m x x k -⋅=+④, 因为0MA MB ⋅=,所以有1212(1)(1)0x x kx m kx m ⋅++-+-=,221212(1)(1)()(1)0k x x k m x x m +⋅+-++-=,把③④代入整理:22222448(1)(1)(1)01414m km k k m m k k--++-+-=++,(有公因式m -1)继续化简得: (1)(53)0m m --=,35m -=或1m =(舍), 综合斜率不存在的情况,直线AB 恒过定点3(0,)5N -.证法二:(先猜后证)由题意可知:(0,1)M ,设11(,)A x y ,22(,)B x y ,如果直线AB 恒经过一定点,由椭圆的对称性可猜测此定点在y 轴上,设为(0,)N m ; 取特殊直线:1MA y x =+,则直线MB 的方程为1y x =-+,解方程组22141x y y x ⎧+=⎪⎨⎪=+⎩得点83(,)55A --,同理得点83(,)55B -,此时直线AB 恒经过y 轴上的点3(0,)5N -下边证明点3(0,)5N -满足条件0MA MB ⋅=当AB 的斜率不存在时,直线AB 方程为:0x =, 点A B 、的坐标为(0,1)±,满足条件0MA MB ⋅=;当AB 的斜率存在时,设直线AB :35y kx =-,联立方程组: 221435x y y kx ⎧+=⎪⎪⎨⎪=-⎪⎩①②,把②代入①得:222464(14)0525k k x x +--= 122245(14)k x x k +=+③,1226425(14)x x k -⋅=+④, 所以1212121288(1)(1)()()55MA MB x x y y x x kx kx ⋅=⋅+--=⋅+--21212864(1)()525k k x x x x =+-++2226482464(1)052525(14)5(14)k k k k k -=+⋅-⋅+=++ (3)ABM △面积MNA MNB S S S =+△△=1212MN x x -由第(2)小题的③④代入,整理得:2322514S k=+ 因N 在椭圆内部,所以k R ∈,可设t 23249t t +32(2)94t t t=≥+92542t t +≥,∴6425S ≤(0k =时取到最大值).所以ABM △面积S 的最大值为6425.考点:1.椭圆的定义与几何性质;2.直线与椭圆的位置关系;3.基本不等式. 考向5 与圆有关的最值问题综合题【例7】已知实数x ,y 满足方程x 2+y 2-4x +1=0,求: (1)yx 的最大值和最小值;(2)y -x 的最大值和最小值; (3)x 2+y 2的最大值和最小值.【点评】研究与圆有关的最值问题时,可借助图形的性质,利用数形结合求解.常见的最值问题有以下几种类型:①形如μ=y -b x -a形式的最值问题,可转化为动直线斜率的最值问题;②形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题;③形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.【例8】设Q P ,分别为()2622=-+y x 11022=+y x 上的点,则Q P ,两点间的最大距离是________________.【答案】26【例9】设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是 . 【答案】5【跟踪练习】1.【2018广西桂林柳州模拟】已知圆()221:24C x a y ++=和圆()222:1C x y b +-=只有一条公切线,若,a b R ∈且0ab ≠,则2211a b +的最小值为( ) A .2 B .4 C .8 D .9 【答案】D【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2.【2017甘肃兰州高三第一次诊断性考试】已知圆和两点,,,若圆上存在点,使得,则当取得最大值时,点的坐标是( )A .B .C .D .【答案】D 【解析】设为圆上一点,由题意知,,即,,,,,所以所在直线倾斜角为30,所以的纵坐标为,的横坐标为,所以,故选D .3.【2018黑龙江海林朝鲜中学】已知两点(),0A a , (),0B a -(0a >),若曲线2223230x y x y +--+=上存在点P ,使得90APB ∠=︒,则正实数a 的取值范围为( )A .(]0,3B .[]1,3C .[]2,3D .[]1,2 【答案】B4.【2017吉林吉林大学附中高三第七次模拟】已知圆C : (()22311x y +-=和两点()0A t -,,()0(0)B t t >,,若圆C 上存在点P ,使得·0PA PB =,则t 的最小值为( )A .3B .2C .1 【答案】D【解析】由题意可得点P 的轨迹方程是以AB 位直径的圆,当两圆外切时有:min min 11t t =+⇒=,即t 的最小值为1.本题选择D 选项.点睛:在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念及其几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围5.【2017天津河西区二模】若直线20ax by -+=(0a >, 0b >)被圆222410x y x y ++-+=截得的弦长为4,则11a b+的最小值为( )A .32+ C .14 D .32+【答案】A【解析】由题意得()()22124x y ++-= ,所以直线20ax by -+=过圆心,即220,22a b a b --+=+= ,因此111121213332222a b b a a b a b a b ⎛++⎛⎫⎛⎫⎛⎫+=+=++≥+= ⎪⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝ ,选A . 点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.6.【2018安徽合肥一中、马鞍山二中等六校教育研究会上学期第一次联考】从直线y x =上一动点出发的两条射线恰与圆()22:21C x y +-=都相切,则这两条射线夹角的最大值为__________.【答案】2π 【解析】当动点与圆心连线与y=x 垂直时,两条射线夹角的最大,如图,易得夹角的最大值为2π.答案: 2π 7.若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.【答案】[1,1]-过OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为∠OMN=45,所以||||sin 45OA OM ==2||12OM ≤, 解得||2OM ≤M (0x ,1),所以20||12OM x =+≤011x -≤≤,故0x 的取值范围是[1,1]-.8.【湖北省黄石市2017届高三年级九月份调研,10】圆222240x y ax a +++-=和圆2224140x y by b +--+=恰有三条公切线,若,a R b R ∈∈,且0ab ≠,则2211a b+的最小值为 . 【答案】19.【2017江苏苏北三市(连云港、徐州、宿迁)高三年级第三次调研】在平面直角坐标系中,圆:.若圆存在以为中点的弦,且,则实数的取值范围是__________.【答案】(或)【解析】由于原C 存在以G 位中点的弦AB ,且AB=2GO ,故 , 如图所示,过点O 作圆C 的两条切线,切点分别为B ,D ,圆上要存在满足题意的点A ,只需,即,连结CB ,由可得: , .10.【2016-2017学年天津市静海县第一中学高二上学期期末五校联考理】在平面直角坐标系中,直线被圆截得的弦的中点为,且满足,当取得最大值时,直线的方程是__________.【答案】。
新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(含答案解析)

一、选择题1.如果实数x 、y 满足22640x y x +-+=,那么yx的最大值是( )A .23B C .3D 2.一束光线从点()2,3A 射出,经x 轴上一点C 反射后到达圆22(3)(2)2x y ++-=上一点B ,则AC BC +的最小值为( )A.B .C .D .3.过点()1,0P 作圆22(2)(2)1x y -+-=的切线,则切线方程为( ) A .1x =或3430x y +-= B .1x =或3430x y --= C .1y =或4340x y -+=D .1y =或3430x y --=4.已知圆()221:24C x a y ++=与圆()22:1C x y b +-=有且仅有1条公切线,则2211a b +的最小值为( ) A .6 B .7C .8D .95.圆22(1)2x y ++=上一点到直线5y x =+的距离最小值为( )A .1B .2CD .6.直线0x y +=被圆226240x y x y +-++=截得的弦长等于( )A .4B .2C .D7.两圆交于点(1,3)A 和(,1)B m ,两圆的圆心都在直线02cx y -+=上, 则m c += . A .1B .2C .3D .48.过点()3,1作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=9.已知圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,则实数m 的取值范围是( )A .(2,32⎡-⎣ B .(2,32⎡-⎣C .2,32⎡⎡-⎣⎣D .((2,32-10.若过点(2,1)P 的圆与两坐标轴都相切,则圆心到直线230x y -+=的距离是( )A.5B.5CD11.曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时,则实数k的取值范围是( ) A .50,12⎛⎫⎪⎝⎭B .13,34⎛⎫⎪⎝⎭C .5,12⎛⎫+∞⎪⎝⎭D .53,12412.若圆()2220x y r r +=>上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围为( )A .)1,+∞B.)1-C .()1-D .()1二、填空题13.设()11,M x y 、()22,N x y 为不同的两点,直线:0l ax by c ++=,1122ax by cax by cδ++=++,以下命题中正确的序号为__________.(1)存在实数δ,使得点N 在直线l 上; (2)若1δ=,则过M 、N 的直线与直线l 平行; (3)若1δ=-,则直线l 经过MN 的中点;(4)若1δ>,则点M 、N 在直线l 的同侧且直线l 与线段MN 的延长线相交; 14.已知点M 是直线l :22y x =--上的动点,过点M 作圆C :()()22114x y -+-=的切线MA ,MB ,切点为A ,B ,则当四边形MACB 的面积最小时,直线AB 的方程为______.15.已知点(3,1)A -,点M 、N 分别是x 轴和直线250x y +-=上的两个动点,则AM MN +的最小值等于_________.16.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为_________.17.与两圆22(2)1x y ++=,22(2)1x y -+=都相切,且半径为3的圆一共有________个18.已知k ∈R ,过定点A 的动直线10kx y +-=和过定点B 的动直线30x ky k --+=交于点P ,则22PA PB +的值为__________.19.直线:20180l x y +-=的倾斜角为__________; 20.已知定点A 到动直线l :()221420+---=mx m y m (m R ∈)的距离为一常数,则定点A 的坐标为________.三、解答题21.在ABC 中,(2,5)A ,()1,3B (1)求AB 边的垂直平分线所在的直线方程;(2)若BAC ∠的角平分线所在的直线方程为30x y -+=,求AC 所在直线的方程. 22.以点1(),C m m为圆心的圆与x 轴相交于点O ,A ,与y 轴相交于点,O B (O 为坐标原点).(1)求证OAB 的面积为定值,并求出这个定值;(2)设直线23y x =-+与圆C 相交于点,P Q ,且||||OP OQ =,求圆C 的方程. 23.已知三条直线123121323:20,:20,:210,,,l x y l x l x y l l A l l B l l C -=+=+-=⋂=⋂=⋂=.(1)求ABC 外接圆的方程;(2)若圆22:20D x y ax +-=与ABC 的外接圆相交,求a 的取值范围.24.圆心为C 的圆经过点(4,1)A -和(3,2)B -,且圆心C 在直线:20l x y --=上. (1)求圆心为C 的圆的方程;(2)过点(5,8)P 作圆C 的切线,求切线的方程.25.当实数m 的值为多少时,关于,x y 的方程()()222221220m m x m m y m +-+-+++=表示的图形是一个圆?26.已知圆C 方程222410x y x y +-++= (1)求圆C 的圆心,半径;(2)直线l 经过(2,0),并且被圆C 截得的弦长为l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】本题首先可求出圆的圆心与半径,然后将yx看作圆上一点(),x y 与()0,0连线的斜率,并结合图像得出当过原点的直线与圆相切时斜率最大,最后根据直线与圆相切即可得出结果. 【详解】22640x y x +-+=,即()2235x y -+=,圆心为()3,0yx的几何意义是圆上一点(),x y 与()0,0连线的斜率, 如图,结合题意绘出图像:结合图像易知,当过原点的直线与圆相切时,斜率最大,即yx最大, 令此时直线的倾斜角为α,则5tan 2α=,y x 的最大值为5,故选:D. 【点睛】关键点点睛:本题考查直线的斜率的几何意义的应用,考查直线与圆相切的相关性质,能否将yx看作点(),x y 与()0,0连线的斜率是解决本题的关键,考查数形结合思想,是中档题.2.C解析:C 【分析】做出圆22(3)(2)2x y ++-=关于x 轴的对称圆,进而根据图形得AC BC AP r+≥-即可求解. 【详解】解:如图,圆22(3)(2)1x y ++-=的圆心()3,2-,其关于x 轴的对称圆的圆心为()3,2P --, 由图得AC BC AP r +≥-52242=-=.故选:C. 【点睛】解题的关键在于求圆关于x 轴的对称圆圆心P ,进而将问题转化AC BC AP r +≥-求解.3.B解析:B 【分析】按照过点P 的直线斜率是否存在讨论,结合直线与圆相切的性质及点到直线的距离公式即可得解. 【详解】圆22(2)(2)1x y -+-=的圆心为()2,2,半径为1,点P 在圆外,当直线的斜率不存在时,直线方程为1x =,点()2,2到该直线的距离等于1,符合题意; 当直线的斜率存在时,设直线方程为()1y k x =-即kx y k 0--=,1=,解得34k =,所以该切线方程为3430x y --=; 所以切线方程为1x =或3430x y --=. 故选:B. 【点睛】方法点睛:求过圆外一点()00,x y 的圆的切线方程的方法几何法:当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即000kx y y kx -+-=.由圆心到直线的距离等于半径,即可求出k 的值,进而写出切线方程;代数法:当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即00y kx kx y =-+,代入圆的方程,得到一个关于x 的一元二次方程,由0∆=,求得k ,切线方程即可求出.4.D解析:D 【分析】由题意可知,圆2C 内切于圆1C ,由题意可得出2241a b +=,然后将代数式2211a b +与224a b +相乘,展开后利用基本不等式可求得2211a b+的最小值. 【详解】圆()221:24C x a y ++=的圆心为()12,0C a -,半径为12r =,圆()22:1C x y b +-=的圆心为()20,C b ,半径为21r =,由于两圆有且仅有1条公切线,则圆2C 内切于圆1C ,所以12121C C r r ==-=,可得2241a b +=,()2222222222111144559b a a b a b a b a b ⎛⎫+=++=∴++≥+= ⎪⎝⎭, 当且仅当222b a =时,等号成立,因此,2211a b +的最小值为9. 故选:D. 【点睛】结论点睛:圆与圆的位置关系:设圆1C 与圆2C 的半径长分别为1r 和2r .(1)若1212C C r r <-,则圆1C 与圆2C 内含; (2)若1212C C r r =-,则圆1C 与圆2C 内切; (3)若121212r r C C r r -<<+,则圆1C 与圆2C 相交; (4)若1212C C r r =+,则圆1C 与圆2C 外切; (5)若1212C C r r >+,则圆1C 与圆2C 外离.5.C解析:C 【分析】求出圆心到直线距离,减去半径得解. 【详解】圆心为(1,0)-,直线方程为5y x =+,所以d == ,圆22(1)2x y ++=上一点到直线5y x =+的距离最小值d r -=故选C . 【点睛】圆上的点到直线的距离的最值的几何求法通常运用圆心到直线的距离加减半径得到.属于基础题.6.A解析:A 【分析】先将圆化成标准方程,求出圆心与半径,再求圆心到直线的距离,然后解弦长即可. 【详解】因为226240x y x y +-++= 所以22(3)(1)6x y -++=,圆心到直线的距离为d ==直线0x y +=被圆226240x y x y +-++=截得的弦长4l =;故选:A . 【点睛】计算圆的弦长通常使用几何法简捷.也可使用代数法计算.7.C解析:C 【分析】由两圆相交且圆心都在直线02c x y -+=上可知线段AB 中点在02cx y -+=上,代入中点坐标整理即可. 【详解】由题意可知:线段AB 的中点1,22m +⎛⎫⎪⎝⎭在直线02c x y -+=上 代入得:12022m c+-+= 整理可得:3m c +=本题正确选项:C 【点睛】本题考查两圆相交时相交弦与圆心连线之间的关系,属于基础题.8.A解析:A 【分析】求出以(3,1)、(1,0)C 为直径的圆的方程,将两圆的方程相减可得公共弦AB 的方程. 【详解】圆22(1)1x y -+=的圆心为(1,0)C ,半径为1,以(3,1)、(1,0)C 为直径的圆的方程为2215(2)()24x y -+-=,因为过点()3,1圆()2211x y -+=的两条切线切点分别为A ,B ,所以,AB 是两圆的公共弦,将两圆的方程相减可得公共弦AB 的方程230x y +-=, 故选:A . 【点睛】本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.9.D【分析】先判断圆心到直线的距离()1,3d ∈,再利用距离公式列不等式即解得参数的取值范围. 【详解】圆C :224x y +=的圆心是()0,0C ,半径2r,而圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,所以圆心()0,0C 到直线l :0x y m -+=的距离()1,3d ∈,即()1,3d ==,解得m -<<m <<.故选:D. 【点睛】本题考查了圆上的点到直线的距离问题和点到直线的距离公式,属于中档题.10.C解析:C 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y -+=的距离. 【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心()1,1到直线230x y -+=的距离均为15d ==圆心()5,5到直线230x y -+=的距离均为25d ==圆心到直线230x y -+=的距离均为5d ==;所以,圆心到直线230x y -+=. 故选:C.关键点点睛:本题考查圆心到直线距离的计算,求出圆的圆心是解题的关键,考查计算能力.11.D解析:D 【分析】 易知曲线214y x 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,然后在同一坐标系中作出直线与半圆的图象,利用数形结合法求解. 【详解】 曲线214y x 变形为22214141y x x y y 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,在同一坐标系中作出直线与半圆的图象,如图所示:当直线()24y k x =-+与圆相切时,圆心到直线的距离等于半径,23221kk -=+,解得512k =,即512AC k ,又413224AB k , 由图知:当曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时:ACAB k kk ,即53124k <≤. 故选:D 【点睛】本题主要考查直线与圆的位置关系的应用,还考查了数形结合的思想方法,属于中档题.12.A解析:A 【分析】到已知直线的距离为1的点的轨迹,是与已知直线平行且到它的距离等于1的两条直线,根据题意可得这两条平行线与222x y r +=有4个公共点,由此利用点到直线的距离公式加以计算,可得r 的取值范围. 【详解】解:作出到直线20x y --=的距离为1的点的轨迹,得到与直线20x y --=平行, 且到直线20x y --=的距离等于1的两条直线, 圆222x y r +=的圆心为原点, 原点到直线20x y --=的距离为22d ==,∴两条平行线中与圆心O 距离较远的一条到原点的距离为21d '=+,又圆222(0)x y r r +=>上有4个点到直线20x y --=的距离为1,∴两条平行线与圆222x y r +=有4个公共点,即它们都与圆222x y r +=相交.由此可得圆的半径r d '>, 即21r >+,实数r 的取值范围是()21,++∞.故选:A .【点睛】本题给出已知圆上有四点到直线的距离等于半径,求参数的取值范围.着重考查了圆的标准方程、直线与圆的位置关系等知识,属于中档题.二、填空题13.②③④【分析】①点在直线上则点的坐标满足直线方程从而得到进而可判断①不正确②若则进而得到根据两直线斜率的关系即可判断②③若即可得到即可判断③④若则或根据点与直线的位置关系即可判定④【详解】解:若点在解析:②③④ 【分析】①点在直线上,则点的坐标满足直线方程,从而得到220ax bx c ++=,进而可判断①不正确.②若1δ=,则1122ax by c ax by c ++=++,进而得到1221y y ax x b-=--,根据两直线斜率的关系即可判断②.③若1δ=-,即可得到1212()()022x x y y a b c ++++=,即可判断③. ④若1δ>,则11220ax by c ax by c ++>++>,或11220ax by c ax by c ++<++<,根据点与直线的位置关系即可判定④. 【详解】解:若点N 在直线l 上则220ax bx c ++=,∴不存在实数δ,使点N 在直线l 上,故①不正确;若1δ=,则1122ax by c ax by c ++=++, 即1221y y ax x b-=--, MN l k k ∴=, 即过M 、N 两点的直线与直线l 平行,故②正确; 若1δ=-,则11220ax by c ax by c +++++= 即,1212()()022x x y y a b c ++++=, ∴直线l 经过线段MN 的中点,即③正确;若1δ>,则11220ax by c ax by c ++>++>,或12220ax by c ax by c ++<++<, 即点M 、N 在直线l 的同侧,且直线l 与线段MN 不平行.故④正确. 故答案为:②③④. 【点睛】本题考查两直线的位置关系,点与直线的位置关系,直线的一般式方程等知识的综合应用,若两直线平行则两直线的斜率相等.14.【分析】由已知结合四边形面积公式可得四边形MACB 面积要使四边形MACB 面积最小则需最小此时CM 与直线垂直求得以CM 为直径的圆的方程再与圆C 的方程联立可得AB 所在直线方程【详解】由圆的标准方程可知圆 解析:210x y ++=【分析】由已知结合四边形面积公式可得四边形MACB面积2||||2||CAM S S CA AM MA ==⋅==△要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,求得以CM 为直径的圆的方程,再与圆C 的方程联立可得AB 所在直线方程. 【详解】由圆的标准方程可知,圆心C (1,1) ,半径r =2.因为四边形MACB的面积2||||2||CAM S S CA AM MA ==⋅==△ 要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直. 直线CM 的方程为11(x 1)2y -=- ,即11.22y x =+联立112222y x y x ⎧=+⎪⎨⎪=--⎩,解得(1,0)M -则以CM 为直径的圆的方程为2215()24x y +-=, 联立222215(),24(1)(1)4x y x y ⎧+-=⎪⎨⎪-+-=⎩消去二次项可得直线AB 的方程为210x y ++=, 故答案为:210x y ++= 【点睛】关键点点睛:根据四边形的面积表达式可以看出要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,此时所做圆的直径为CM ,写出圆的方程,两圆方程相减即可求出过AB 的直线方程.15.【分析】利用对称性作点关于轴的对称点利用数形结合求的最小值【详解】作点关于轴的对称点则最小值即为到直线的距离所以的最小值为故答案为:【点睛】关键点点睛:本题的关键是利用对称性作点关于轴的对称点则再利解析:5【分析】利用对称性,作点(3,1)A -关于x 轴的对称点(3,1)A '--,||||||||AM MN A M MN '+=+,利用数形结合求AM MN +的最小值.【详解】作点(3,1)A -关于x 轴的对称点(3,1)A '--,则||||||||AM MN A M MN '+=+,最小值即为(3,1)A '--到直线250x y +-=的距离,12555d ==,所以||||AM MN +的最小值为55. 125【点睛】关键点点睛:本题的关键是利用对称性作点(3,1)A -关于x 轴的对称点(3,1)A '--,则AM A N '=,再利用点到直线的距离比其他折线都短,计算||||AM MN +的最小值. 16.x +4y -4=0【分析】设l1与l 的交点为A(a8-2a)求得关于的对称点坐标利用对称点在直线上求得即得点坐标从而得直线方程【详解】设l1与l 的交点为A(a8-2a)则由题意知点A 关于点P 的对称点B解析:x +4y -4=0【分析】设l 1与l 的交点为A (a,8-2a ),求得A 关于P 的对称点坐标,利用对称点在直线2l 上求得a ,即得A 点坐标,从而得直线l 方程.【详解】设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0,解得a =4, 即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0. 故答案为:x +4y -4=0. 【点睛】本题考查求直线方程,解题方法是根据点关于点的对称点求解,直线l 与已知两直线各有一个交点,P 是这两个交点连线段中点,因此可设其中一点坐标,由对称性表示出另一点坐标,代入第二条直线方程可求得交点坐标,从而得直线方程.17.7【分析】根据两圆相离可以判定出与两圆都相切且半径为3的圆有7个【详解】解:因为两圆是相离的所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个是以原点为圆心即;与两圆都外切的有2个设切点解析:7 【分析】根据两圆相离,可以判定出与两圆都相切且半径为3的圆有7个.【详解】解:因为两圆221:(2)1O x y ++=,222:(2)1O x y -+=是相离的,所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个,是以原点为圆心,即229x y +=;与两圆都外切的有2个,设切点为(0,)b 4b =⇒=±∴22(9x y +±=,同理,利用圆与圆的圆心距和半径的关系可得:与圆1O 外切于圆2O 内切的圆有2个;与圆1O 内切于圆2O 外切的圆有2个;分别为223()(92x y ++±=和223()(92x y -+=,共7个, 故答案为:7. 【点睛】由圆心距判断两圆的位置关系相离,再利用直观想象可得与两圆都相切的情况,包括内切和外切两类.18.13【分析】由两直线方程可得定点再联立两直线方程解出的坐标然后由两点间距离公式可得进而可以求解【详解】动直线过定点动直线过定点联立方程解得则由两点间距离公式可得:故答案为:13【点睛】本题考查了直线解析:13 【分析】由两直线方程可得定点(0,1)A ,(3,1)B --,再联立两直线方程解出P 的坐标,然后由两点间距离公式可得2PA ,2PB ,进而可以求解. 【详解】动直线10kx y +-=过定点(0,1)A 动直线30x ky k --+=过定点(3,1)B --联立方程1030kx y x ky k +-=⎧⎨--+=⎩,解得223(1k P k -+,2231)1k k k -+++, 则由两点间距离公式可得:PA =PB =2432432222222222224129412991249124()()(1)(1)(1)(1)k k k k k k k k k k PA PB k k k k -+-+++++∴+=+++++++422213(21)13(1)k k k ++==+,故答案为:13. 【点睛】本题考查了直线中定点问题以及两点间距离公式,考查了学生的运算能力,属于基础题.19.【分析】把直线的一般方程化为斜截式方程得到斜率即可求出倾斜角【详解】由可得:所以斜率即所以倾斜角为故填【点睛】本题主要考查直线的斜率及倾斜角属于基础题解析:34π 【分析】 把直线的一般方程化为斜截式方程,得到斜率,即可求出倾斜角. 【详解】由20180x y +-=可得:2008y x =-+ ,所以斜率1k =-,即tan 1α=-,所以倾斜角为34π,故填34π. 【点睛】本题主要考查直线的斜率及倾斜角,属于基础题.20.【解析】【分析】设出定点A 根据点到直线的距离公式求出点到直线l 的距离由距离为常数利用一般到特殊的思想令分析可得定点A 的坐标检验一般性可知动直线l 是以为圆心半径为的圆的切线系即可求出定点A 的坐标为【详 解析:()2,1【解析】 【分析】设出定点A ,根据点到直线的距离公式求出点A 到直线l 的距离,由距离为常数,利用一般到特殊的思想,令0,1,1m =-分析可得,定点A 的坐标,检验一般性可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,即可求出定点A 的坐标为()2,1. 【详解】设定点A 为(),a b ,所以点A 到直线l 的距离d =无论m R ∈,d 为定值,所以令0m = 可得,2d b =-,令1m = 可得,3d a =-, 令1m =-可得,1d a =- ,由31a a -=- 可得,2a =,即有1b =或3b = .当定点A 为()2,1 时,22111m d m +===+ ,符合题意; 当定点A 为()2,3时,22131m d m -==+ ,显然d 的值随m 的变化而变化,不符题意,舍去.综上可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,所以定点A 为2,1.故答案为:()2,1. 【点睛】本题主要考查直线系方程的识别和应用,点到直线的距离公式的应用,考查学生的转化能力和数学运算能力,属于中档题.三、解答题21.(1)11924y x =-+;(2)280x y -+=. 【分析】(1)设AB 边的垂直平分线为l ,求出12l k =-,即得AB 边的垂直平分线所在的直线方程;(2)设B 关于直线30x y -+=的对称点M 的坐标为(,)a b ,求出(0,4)M 即得解. 【详解】(1)设AB 边的垂直平分线为l , 有题可知53221AB k -==-,12lk , 又可知AB 中点为3,42⎛⎫⎪⎝⎭,∴l 的方程为13422y x ⎛⎫-=-- ⎪⎝⎭,即11924y x =-+, (2)设B 关于直线30x y -+=的对称点M 的坐标为(,)a b ;则311133022b a a b -⎧=-⎪⎪-⎨++⎪-+=⎪⎩,解得04a b =⎧⎨=⎩,所以(0,4)M ,由题可知A ,M 两点都在直线AC 上,所以直线AC 的斜率为541202-=-,所以直线AC 的方程为14(0)2y x -=-, 所以AC 所在直线方程为280x y -+=.【点睛】方法点睛:求直线方程常用的方法是:待定系数法,先定式(点斜式、斜截式、两点式、截距式、一般式),再定量.22.(1)证明见解析;定值为2;(2)225((2x y -+=. 【分析】(1)由题可得出圆的方程,即可得出,A B 坐标,进而可求出面积; (2)由题可得OC PQ ⊥,利用斜率可求出m . 【详解】解:(1)由已知圆的半径r OC ==, 故圆C 的方程为222211()()x m y m m m-+-=+, 即22220x y mx y m +--=, ∴(2,0)A m ,2(0,)B m, ∴112||||2222OABSOA OB m m=⋅=⨯⋅=, ∴OAB 的面积为定值2.(2)∵||||OP OQ =,||||CP CQ =,∴OC PQ ⊥,而2PQ k =-,∴2112OC k m==,∴m =∴圆C 的方程为225((22x y +-=或225(()22x y +++=当圆C 为225((22x y ++=时,圆心到直线23y x =-+的距离|3|352d --==>, 此时直线与圆相离,故舍去.∴圆C 的方程为225((22x y +-=. 【点睛】关键点睛:本题考查圆中三角形面积的定值问题以及求圆的标准方程,解题的关键是将点A ,B 都用m 表示出来,根据||||OP OQ =得出OC PQ ⊥. 23.(1)22(2)(2)9x y ++-=;(2)11,,210⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)由三条直线得到三交点,,A B C 构成直角三角形,联立方程组,求得,A C 点的坐标,得到圆心坐标和半径,进而求得圆的方程;(2)由两圆相交,得到|3|||43||a a -<<+,即可求得a 的取值范围. 【详解】(1)由题意,三条直线123:20,:20,:210l x y l x l x y -=+=+-=, 可得2l 平行于y 轴,1l 与3l 互相垂直,三交点,,A B C 构成直角三角形, 经过,,A B C 三点的圆就是以AC 为直径的圆. 由方程组2020x y x -=⎧⎨+=⎩,解得21x y =-⎧⎨=-⎩,所以点A 的坐标是(2,1)--.由方程组20210x x y +=⎧⎨+-=⎩,解得25x y =-⎧⎨=⎩,所以点C 的坐标是(2,5)-.可得线段AC 的中点坐标是(2,2)-,又由||6AC =,所以ABC 外接圆的方程为22(2)(2)9x y ++-=.(2)由圆222:()D x a y a -+=与22(2)(2)9x y ++-=相交,所以|3|||43||a a -<<+,化简得6||146||1a a a -+<<+, 当0a <时,12a <-;当0a >时,110a >. 综上可得,a 的取值范围是11,,210⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 【点睛】圆与圆的位置关系问题的解题策略:判断两圆的位置关系时常采用几何法,即利用两圆的圆心之间的距离与两圆的半径间的关系进行判断,一般不采用代数法;若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.24.(1)22(2)25x y ++=;(2)5x =或34170x y -+=. 【分析】(1)联立点A 和B 的中垂线与直线l ,求出圆心坐标,算出圆心与A 距离,写出圆的标准方程即可;(2)讨论斜率存在与不存在,将直线与圆相切转化为d r =,解出k ,代回直线方程化简即可. 【详解】(1)根据题意可得2113(4)AB k -==---,,A B 中点坐标为73(,)22-,所以AB 的中垂线为7322y x ⎛⎫=-++ ⎪⎝⎭,即2y x =--, 联立方程202x y y x --=⎧⎨=--⎩可得圆心坐标(0,2)-,又222(0(3))(22)25r =--+--=, 所以圆C 的方程为22(2)25x y ++=.(2)①过点P 斜率不存在的直线为5x =,与圆C 相切; ②过点P 斜率存在的直线设斜率为k , 则(5)8y k x =-+,即580kx y k --+= 圆心(0,2)-到切线的距离为5=,解得34k =综上,切线的方程为5x =或34170x y -+=. 【点睛】求圆的方程的两种方法:(1)几何法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程; (2)待定系数法:①根据题意,选择标准方程与一般方程; ②根据条件列出关于,,a b r 或,,D E F 的方程组; ③解出,,a b r 或,,D E F ,代入标准方程或一般方程.25.3m =-【分析】圆的方程中22,x y 系数需相等,可得22212m m m m +-=-+,解方程即可得答案; 【详解】要使方程()()222221220m m x m m y m +-+-+++=表示的图形是一个圆,需满足22212m m m m +-=-+,得2230m m +-=, 所以3m =-或1m =.①当1m =时,方程为2232x y +=-不合题意,舍去;②当3m =-时,方程为2214141x y +=,即22114x y +=为半径的圆.综上,3m =-满足题意. 【点睛】圆的一般方程形式为2222(4)00x y Dx Ey F D E F ++++=+->,注意方程的特点是求解的关键.26.(1)圆心(1,2)-;半径2;(2)2x =或3460x y --=. 【分析】(1)将圆的方程化为标准方程,直接求圆心和半径;(2)利用弦长公式,得到圆心到直线的距离,分斜率存在和不存在两种情况,求直线方程. 【详解】(1)()()22222410124x y x y x y +-++=⇔-++=圆心(1,2)- 半径2;(2)圆222410x y x y +-++=可化为22(1)(2)4x y -++=.所以圆心到直线的距离为1d ==当直线l 的斜率不存在时,直线l 的方程为2x =, 此时直线l被圆C 截得的弦长为当直线l 的斜率k 存在时,设直线l 的方程为(2)y k x =-,即20kx y k --=1= 解得34k =∴直线的方程为3460x y --=综上所述,直线l 的方程为2x =或3460x y --=.【点睛】易错点睛:本题第二问,根据弦长求直线方程时,不要忽略过定点直线,其中包含斜率存在和不存在两种情况,否则容易丢根.。
高中关于圆的试题及答案

高中关于圆的试题及答案题目一:求圆的面积和周长某圆的半径为5厘米,求该圆的面积和周长。
解答:圆的面积公式为:\[ A = \pi r^2 \]圆的周长公式为:\[ C = 2\pi r \]将半径 \( r = 5 \) 厘米代入公式计算:面积 \( A = \pi \times 5^2 = 25\pi \) 平方厘米周长 \( C = 2\pi \times 5 = 10\pi \) 厘米题目二:圆的切线问题已知点P(4,3)在圆 \( x^2 + y^2 = 25 \) 上,求过点P的圆的切线方程。
解答:首先,我们知道圆心O的坐标为(0,0),半径为5。
点P在圆上,所以OP是半径,OP的长度为5。
切线与半径垂直,因此切线的斜率与OP的斜率互为相反数的倒数。
OP 的斜率为 \( \frac{3-0}{4-0} = \frac{3}{4} \),所以切线的斜率为 \( -\frac{4}{3} \)。
切线方程为 \( y - y_1 = m(x - x_1) \),代入点P(4,3)和斜率\( m = -\frac{4}{3} \),得到:\[ y - 3 = -\frac{4}{3}(x - 4) \]化简得切线方程为:\[ 4x + 3y - 25 = 0 \]题目三:圆与直线的位置关系已知直线 \( l: 2x - 3y + 6 = 0 \) 与圆 \( C: x^2 + y^2 - 4x - 6y + 4 = 0 \),求直线l与圆C的位置关系。
解答:首先,将圆的方程化为标准形式:\[ (x-2)^2 + (y-3)^2 = 9 \]圆心C的坐标为(2,3),半径r为3。
接下来,计算圆心C到直线l的距离d:\[ d = \frac{|2\cdot2 - 3\cdot3 + 6|}{\sqrt{2^2 + (-3)^2}} = \frac{|4 - 9 + 6|}{\sqrt{13}} = \frac{1}{\sqrt{13}} \]由于 \( d < r \),即 \( \frac{1}{\sqrt{13}} < 3 \),所以直线l 与圆C相交。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学直线与圆精选题目(附答案)一、两直线的位置关系1.求直线斜率的基本方法(1)定义法:已知直线的倾斜角为α,且α≠90°,则斜率k =tan α. (2)公式法:已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,则斜率k =y 2-y 1x 2-x 1.2.判断两直线平行的方法(1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2⇔l 1∥l 2.(2)若不重合的直线l 1与l 2的斜率都不存在,其倾斜角都为90°,则l 1∥l 2. 3.判断两直线垂直的方法(1)若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1⇔l 1⊥l 2. (2)已知直线l 1与l 2,若其中一条直线的斜率不存在,另一条直线的斜率为0,则l 1⊥l 2.1.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. [解] (1)∵l 1⊥l 2, ∴a (a -1)-b =0,① 又l 1过点(-3,-1), ∴-3a +b +4=0.②解①②组成的方程组得⎩⎨⎧a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2, ∴直线l 1的斜率存在. ∴k 1=k 2,即ab =1-a .③又∵坐标原点到这两条直线的距离相等,l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b =-(-b ).④由③④联立,解得⎩⎨⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.经检验此时的l 1与l 2不重合,故所求值为 ⎩⎨⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23 ,b =2.注:已知两直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0(1)对于l 1∥l 2的问题,先由A 1B 2-A 2B 1=0解出其中的字母值,然后代回原方程检验这时的l 1和l 2是否重合,若重合,舍去.(2)对于l 1⊥l 2的问题,由A 1A 2+B 1B 2=0解出字母的值即可. 2.直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为( ) A .-3 B .-43 C .2D .3解析:选D 由2a -6=0得a =3.故选D.3.已知直线x +2ay -1=0与直线(a -1)x +ay +1=0平行,则a 的值为( ) A.32 B.32或0 C .0D .-2解析:选A 当a =0时,两直线的方程化为x =1和x =1,显然重合,不符合题意;当a ≠0时,a -11=a 2a ,解得a =32.故选A.二、直线方程1.直线方程的五种形式2.常见的直线系方程(1)经过两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是待定系数.在这个方程中,无论λ取什么实数,都不能得到A 2x +B 2y +C 2=0,因此它不能表示直线l 2.(2)平行直线系方程:与直线Ax +By +C =0(A ,B 不同时为0)平行的直线系方程是Ax +By +λ=0(λ≠C ).(3)垂直直线系方程:与直线Ax +By +C =0(A ,B 不同时为0)垂直的直线系方程是Bx -Ay +λ=0.4.过点A (3,-1)作直线l 交x 轴于点B ,交直线l 1:y =2x 于点C ,若|BC |=2|AB |,求直线l 的方程.[解] 当直线l 的斜率不存在时,直线l :x =3, ∴B (3,0),C (3,6).此时|BC |=6,|AB |=1,|BC |≠2|AB |, ∴直线l 的斜率存在.设直线l 的方程为y +1=k (x -3), 显然k ≠0且k ≠2. 令y =0,得x =3+1k , ∴B ⎝ ⎛⎭⎪⎫3+1k ,0,由⎩⎨⎧y =2x ,y +1=k (x -3),得点C 的横坐标x C =3k +1k -2.∵|BC |=2|AB |,∴|x B -x C |=2|x A -x B |,∴⎪⎪⎪⎪⎪⎪3k +1k -2-1k -3=2⎪⎪⎪⎪⎪⎪1k , ∴3k +1k -2-1k -3=2k 或3k +1k -2-1k -3=-2k , 解得k =-32或k =14.∴所求直线l 的方程为3x +2y -7=0或x -4y -7=0. 注:求直线方程时,要根据给定条件,选择恰当的方程,常用以下两种方法求解:(1)直接法:直接选取适当的直线方程的形式,写出结果;(2)待定系数法:先以直线满足的某个条件为基础设出直线方程,再由直线满足的另一个条件求出待定系数,从而求得方程.5.已知直线l 1:3x -2y -1=0和l 2:3x -2y -13=0,直线l 与l 1,l 2的距离分别是d 1,d 2,若d 1∶d 2=2∶1,求直线l 的方程.解:由直线l 1,l 2的方程知l 1∥l 2,又由题意知,直线l 与l 1,l 2均平行(否则d 1=0或d 2=0,不符合题意).设直线l :3x -2y +m =0(m ≠-1且m ≠-13),由两平行直线间的距离公式,得d 1=|m +1|13,d 2=|m +13|13,又d 1∶d 2=2∶1,所以|m +1|=2|m +13|,解得m =-25或m =-9.故所求直线l 的方程为3x -2y -25=0或3x -2y -9=0. 6.已知直线l :3x -y +3=0,求: (1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程.解:设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′). ∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1.① 又PP ′的中点在直线3x -y +3=0上, ∴3×x ′+x 2-y ′+y2+3=0.②由①②得⎩⎪⎨⎪⎧x ′=-4x +3y -95, ③y ′=3x +4y +35. ④(1)把x =4,y =5代入③④得x ′=-2,y ′=7, ∴P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为-4x +3y -95-3x +4y +35-2=0, 化简得7x +y +22=0.三、圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2 (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(3)若圆经过两已知圆的交点或一已知圆与一已知直线的交点,求圆的方程时可用相应的圆系方程加以求解:①过两圆C 1:x 2+y 2+D 1x +E 1y +F 1=0,C 2:x 2+y 2+D 2x +E 2y +F 2=0交点的圆系方程为x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ为参数,λ≠-1),该方程不包括圆C 2;②过圆C :x 2+y 2+Dx +Ey +F =0与直线l :Ax +By +C =0交点的圆系方程为x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0(λ为参数,λ∈R).7.在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-3,0),B (2,0),C (0,-4),经过这三个点的圆记为M .(1)求BC 边的中线AD 所在直线的一般式方程; (2)求圆M 的方程.[解] (1)法一:由B (2,0),C (0,-4),知BC 的中点D 的坐标为(1,-2). 又A (-3,0),所以直线AD 的方程为y -0-2-0=x +31+3,即中线AD 所在直线的一般式方程为x +2y +3=0. 法二:由题意,得|AB |=|AC |=5, 则△ABC 是等腰三角形, 所以AD ⊥BC .因为直线BC 的斜率k BC =2, 所以直线AD 的斜率k AD =-12,由直线的点斜式方程,得y -0=-12(x +3), 所以直线AD 的一般式方程为x +2y +3=0. (2)设圆M 的方程为x 2+y 2+Dx +Ey +F =0.将A (-3,0),B (2,0),C (0,-4)三点的坐标分别代入方程,得⎩⎨⎧9-3D +F =0,4+2D +F =0,16-4E +F =0,解得⎩⎪⎨⎪⎧D =1,E =52,F =-6.所以圆M 的方程是x 2+y 2+x +52y -6=0. 注:利用待定系数法求圆的方程(1)若已知条件与圆的圆心和半径有关,可设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值.(2)若已知条件没有明确给出圆的圆心或半径,可选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,从而求出D ,E ,F 的值.8.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( ) A .(x +1)2+(y +1)2=2 B .(x -1)2+(y -1)2=2 C .(x +1)2+(y +1)2=8 D .(x -1)2+(y -1)2=8解析:选B 直径的两端点分别为(0,2),(2,0),∴圆心为(1,1),半径为2,故圆的方程为(x -1)2+(y -1)2=2.9.已知圆C 经过点A (2,-3),B (-2,-5),且圆心在直线l :x -2y -3=0上,求圆C 的方程.解:设圆C 的方程为(x -a )2+(y -b )2=r 2.由题意,得⎩⎨⎧(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,a -2b -3=0,解得⎩⎨⎧a =-1,b =-2,r 2=10.所以圆C 的方程为(x +1)2+(y +2)2=10.10.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.解:联立两圆的方程得方程组 ⎩⎨⎧x 2+y 2-12x -2y -13=0,x 2+y 2+12x +16y -25=0,相减得公共弦所在直线的方程为4x +3y -2=0.再由⎩⎨⎧4x +3y -2=0,x 2+y 2-12x -2y -13=0解得两圆交点坐标为(-1,2),(5,-6).∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径长为12 (5+1)2+(-6-2)2=5.∴圆C 的方程为(x -2)2+(y +2)2=25.四、直线与圆的位置关系1.直线与圆位置关系的判断方法(1)几何法:设圆心到直线的距离为d ,圆的半径长为r .若d <r ,则直线和圆相交;若d =r ,则直线和圆相切;若d >r ,则直线和圆相离.(2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为Δ.Δ=0⇔直线与圆相切;Δ>0⇔直线与圆相交;Δ<0⇔直线与圆相离.2.过圆外一点(x 0,y 0)与圆相切的切线方程的求法①当切线斜率存在时,设切线方程为y -y 0=k (x -x 0),化成一般式kx -y +y 0-kx 0=0,利用圆心到直线的距离等于半径长,解出k ;②当切线斜率存在时,设切线方程为y -y 0=k (x -x 0),与圆的方程(x -a )2+(y -b )2=r 2联立,化为关于x 的一元二次方程,利用判别式为0,求出k .当切线斜率不存在时,可通过数形结合思想,在平面直角坐标系中作出其图象,求出切线的方程.3.圆中弦长的求法(1)直接求出直线与圆或圆与圆的交点坐标,再利用两点间的距离公式求解. (2)利用圆的弦长公式l =1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2(其中x 1,x 2为两交点的横坐标).(3)利用垂径定理:分别以圆心到直线的距离d 、圆的半径r 与弦长的一半l 2为线段长的三条线段构成直角三角形,故有l =2r 2-d 2.4.圆与圆的位置关系:(1)利用圆心间距离与两半径和与差的大小关系判断两圆的位置关系. (2)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交.则两圆方程相减后得到的新方程:(D 1-D 2)x +(E 1-E 2)y +(F 1-F 2)=0表示的是两圆公共弦所在直线的方程.11.(1)直线x +y -2=0与圆(x -1)2+(y -2)2=1相交于A ,B 两点,则|AB |=( )A.22B.32C. 3D. 2(2)若直线x -my +1=0与圆x 2+y 2-2x =0相切,则m 的值为( ) A .1 B .±1 C .±3D. 3(3)已知圆C :(x -3)2+(y -4)2=4,直线l 过定点A (1,0). ①若l 与圆C 相切,求l 的方程;②若l 与圆C 相交于P ,Q 两点,且|PQ |=22,求此时直线l 的方程. [解析] (1)∵圆心(1,2)到直线x +y -2=0的距离d =22,∴|AB |=212-⎝ ⎛⎭⎪⎫222=2,故选D.(2)由x 2+y 2-2x =0,得圆心坐标为(1,0),半径为1,因为直线与圆相切,所以圆心到直线的距离等于半径,即|1-0+1|1+m2=1,解得m =±3. 答案:(1)D (2)C(3)解:①若直线l的斜率不存在,则直线l:x=1,符合题意.若直线l的斜率存在,设直线l的方程为y=k(x-1),即kx-y-k=0.由题意知,圆心(3,4)到直线l的距离等于2,即|3k-4-k|k2+1=2,解得k=34,此时直线l的方程为3x-4y-3=0.综上可得,所求直线l的方程是x=1或3x-4y-3=0.②由直线l与圆C相交可知,直线l的斜率必定存在,且不为0,设直线l的方程为k0x-y-k0=0,圆心(3,4)到直线l的距离为d,因为|PQ|=24-d2=22,所以d=2,即|3k0-4-k0|k20+1=2,解得k0=1或k0=7,所以所求直线l的方程为x-y-1=0或7x-y-7=0.注:研究直线与圆位置关系综合问题时易忽视直线斜率k不存在情形,要注意作出图形进行判断.12.由直线y=x+1上的一点向圆x2-6x+y2+8=0引切线,则切线长的最小值为()A.1 B.2 2C.7 D.3解析:选C切线长的最小值在直线y=x+1上的点与圆心距离最小时取得,圆心(3,0)到直线的距离为d=|3-0+1|2=22,圆的半径为1,故切线长的最小值为d2-r2=8-1=7.13.P是直线l:3x-4y+11=0上的动点,P A,PB是圆x2+y2-2x-2y+1=0的两条切线,C是圆心,那么四边形P ACB面积的最小值是()A. 2 B.2 2C. 3 D.2 3解析:选C圆的标准方程为(x-1)2+(y-1)2=1,圆心C(1,1),半径r=1.根据对称性可知四边形P ACB的面积等于2S△APC =2×12×|P A|×r=|P A|=|PC |2-r 2=|PC |2-1.要使四边形P ACB 的面积最小,则只需|PC |最小,最小值为圆心C 到直线l :3x -4y +11=0的距离d =|3-4+11|32+42=105=2,所以四边形P ACB面积的最小值为4-1= 3.14.已知圆C :x 2+y 2-2x +4y -4=0.问是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 满足:以AB 为直径的圆经过原点.解:假设存在且设l :y =x +m ,圆C 化为(x -1)2+(y +2)2=9,圆心C (1,-2),则过圆心C 垂直弦AB 的直线为y +2=-x +1,解方程组⎩⎨⎧y =x +m ,y +2=-x +1得AB 的中点N 的坐标为⎝ ⎛⎭⎪⎫-m +12,m -12,由于以AB 为直径的圆过原点,所以|AN |=|ON |. 又|AN |=|CA |2-|CN |2= 9-2×⎝⎛⎭⎪⎫m +322, |ON |=⎝⎛⎭⎪⎫-m +122+⎝ ⎛⎭⎪⎫m -122.所以9-2×⎝⎛⎭⎪⎫3+m 22=⎝ ⎛⎭⎪⎫-m +122+⎝ ⎛⎭⎪⎫m -122, 解得m =1或m =-4.所以存在直线l ,其方程为x -y +1=0和x -y -4=0,并可以检验,这时l 与圆是相交于两点的.。