竞赛试题选编之排列组合

合集下载

(完整word版)排列组合竞赛训练题(含答案),推荐文档

(完整word版)排列组合竞赛训练题(含答案),推荐文档

排列组合一、选择题1、公共汽车上有4位乘客,其中任何两人都不在同一车站下车,汽车沿途停靠6个站,那么这4位乘客不同的下车方式共有A、15种B、24种C、360种D、480种2、把10个相同的球放入三个不同的盒子中,使得每个盒子中的球数不少于2,则不同的放法有A、81种B、15种C、10种D、4种3、12辆警卫车护送三位高级领导人,这三位领导人分别坐在其中的三辆车中,要求在开行后12辆车一字排开,车距相同,车的颜色相同,每辆车内的警卫的工作能力是一样的,三位领导人所坐的车不能相邻,且不能在首尾位置。

则共()种安排出行的办法A、A99×A310B、A99×A38C、A38D、C384、在正方体的8个顶点、12条棱的中点、6个面的中心及正方体的中心共27个点中,不共线的三点组的个数是A、2898B、2877C、2876D、28725、有两个同心圆,在外圆上有相异的6个点,内圆上有相异的3个点,由这9个点所确定的直线最少可有A、15条B、21条C、36条D、3条6、已知两个实数集A={a1,a2,…,a60}与B={b1,b2,…b25},若从A到B的映射f使得B中每个元素都有原象,且f(a1)≥f(a2)≥…≥f(a60),则这样的映射共有A、C60B、C2459C、C2560D、C2559二、填空题7、4410共有个不同的正约数。

8、有7个人站成一排,其中A、B不能相邻,C、D必须挨在一起,且C要求在A的右侧,则共有站队方法数是。

9、如图,两圆相交于A、B两点,在两圆周上另有六点C、D、E、F、G、H,其中仅E、B、G共线,共他无三点共线,这八点紧多可以确不同圆的个数是。

10、一个圆周上有5个红点,7个白点,要求任两个红点不得相邻,那么共有种排列方法。

11、平面上给定5点,这些点两两间的连线互不平行,又不垂直,也不重合,现从任一点向其余四点两两之间的连线作垂线,则所有这些垂线间的交点数最多是。

(完整版)排列组合练习试题和答案解析

(完整版)排列组合练习试题和答案解析
4.有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有
A.9种B.12种C.15种D.18种
5.将7只相同的小球全部放入4个不同盒子,每盒至少1球的方法有多少种?
6.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种?
A.1:14 B.1:28 C.1:140 D.1:336
十、插空
1.要排一个有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?
2、4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()
A.2880 B.1152 C.48 D.144
3.要排一个有5个歌唱节目和3个舞蹈节目的演出节目单,如果舞蹈节目不相邻,则有多少种不同排法?
(2)奇约数中步不含有2的因数,因此75600的每个奇约数都可以写成 的形式,同上奇约数的个数为4×3×2=24个.
3. 2名医生和4名护士被分配到两所学校为学生体检,每校分配1名医生和2名护士,不同分配方法有多少种?
4.有四位同学参加三项不同的比赛,
(1)每位同学必须参加一项竞赛,有多少种不同的结果?
十一、隔板法
1.不定方程 的正整数解的组数是,非负整数解的组数是。
2.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有
A.84种B.120种C.63种D.301种
3.要从7所学校选出10人参加素质教育研讨班,每所学校至少参加1人,则这10个名额共有种分配方法。
(1)可以组成多少个数字不重复的三位数?

排列组合典型题大全含答案

排列组合典型题大全含答案

排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种 (B) 20种 (C) 25种 (D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

高中数学竞赛专题练习——排列组合

高中数学竞赛专题练习——排列组合

高中数学竞赛专题讲座之 排列组合 二项式定理和概率一. 排列组合二项式定理 1 (2005年浙江)设()n n n x a x a a x x 221021+++=++ ,求n a a a 242+++ 的值( ) (A )n 3 (B )23-n (C )213-n (D )213+n 【解】: 令0=x 得 10=a ;(1) 令1-=x 得 123210=++-+-n a a a a a ;(2)令1=x 得 n n a a a a a 323210=+++++ ; (3)(2)+(3)得 13)(22420+=++++n n a a a a ,故 2132420+=++++n n a a a a , 再由(1)得 213242-=+++n n a a a 。

∴选 【 C 】 2、(2004 全国)设三位数n abc =,若以a ,b ,c 为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n 有 ( )A. 45个B. 81个C. 165个D. 216个解:a ,b ,c 要能构成三角形的边长,显然均不为0。

即,,{1,2,...,9}a b c ∈(1)若构成等边三角形,设这样的三位数的个数为1n ,由于三位数中三个数码都相同,所以,1199n C ==。

(2)若构成等腰(非等边)三角形,设这样的三位数的个数为2n ,由于三位数中只有2个不同数码。

设为a 、b ,注意到三角形腰与底可以置换,所以可取的数码组(a ,b )共有292C 。

共20种情况。

同时,每个数码组(a ,b )中的二个数码填上三个数位,有23C 种情况。

故2222399(220)6(10)156n C C C =-=-=。

综上,12165n n n =+=。

3.(2005四川)设}10,,2,1{ =A ,若“方程02=--c bx x 满足A c b ∈,,且方程至少有一根A a ∈”,就称该方程为“漂亮方程”。

奥数讲义计数专题:排列组合(含答案)

奥数讲义计数专题:排列组合(含答案)

华杯赛计数专题:2排列组合基础知识:1.排列:从n个对象中选出m(不超过n)个并进行排序,共有的方法数称为排列数,写成。

2.排列数的计算:约定:0!=1排列数是由乘法原理得到的,因此排列可以看成是乘法原理的一种应用。

3.组合:从n个对象中选出m(不超过n)个,不进行排序,共有的方法数称为组合数,写成。

4.排列与组合的关系:。

5.组合数的计算:6.排列数与组合数的一些性质:例题:例1.4名男生和3名女生站成一排:(1)一共有多少种不同的站法?(2)甲,乙二人必须站在两端的排法有多少种?(3)甲,乙二人不能站在两端的排法有多少种?(4)甲不排头,也不排尾,有多少种排法?(5)甲只能排头或排尾,有多少种排法?【答案】(1)5040;(2)240;(3)2400;(4)3600;(5)略【解答】例2.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共多少种?【答案】4186种【解答】至少有3件是次品,分两种情况第一种情况:3件是次品的抽法:从4件次品中中抽出3件是种,其中,,然后,从46件正常品中抽2件,总共种。

其中,所以,3件是次品的抽法共种。

第二种情况:4件是次品的抽法共:种。

任意抽出5件产品,至少有3件是次品的抽法,是将上述两种情况加在一起,所以,总共是4×23×45+46=23×182=4186种。

总结:有序是排列,无序是组合。

例3.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种?【答案】540种【解答】可设三所学校为甲、乙、丙,三位医生去3所学校的分配方案:用排列数表示为=3×2×1=6。

用乘法原理表示为3!=6。

六名护士去学校甲有种选法,剩下4名护士去乙学校,有种选法,剩下两名自然去学校丙。

所以,不同的分配方法共有种。

例4.有多少个五位数,满足其数位上的每个数字均至少出现两次?【答案】819【解答】方法一:(1)出现一个数字的情况是9种;(2)出现两个数字,首位不能是0,共有9种情况,(i)首位确定之后,如果首位数总共出现3次,则从后面的4个数位中,选出两位,共种情况,剩下的两个数位,还需要选相同的数,因为可以是0,所以,有9种选择。

高中排列组合试题及答案

高中排列组合试题及答案

高中排列组合试题及答案一、选择题1. 从5个人中选出3个人参加比赛,不同的选法有()种。

A. 10B. 15C. 20D. 60答案:B2. 有3个不同的球和3个不同的盒子,每个盒子只能放一个球,不同的放法有()种。

A. 3B. 6C. 9D. 27答案:D3. 从6本不同的书中选3本送给3个不同的人,每人一本,不同的送法有()种。

A. 20B. 60C. 120D. 720答案:B二、填空题4. 一个班级有20名学生,需要选出5名学生组成一个小组,那么不同的选法有______种。

答案:15,5045. 从10个人中选出3个人担任班长、副班长和学习委员,不同的选法有______种。

答案:720三、解答题6. 某学校有5个不同学科的竞赛,每个学生可以选择参加1个或多个竞赛,求至少参加一个竞赛的学生的选法总数。

答案:首先,每个学生有6种选择:不参加任何竞赛,只参加一个竞赛,参加两个竞赛,参加三个竞赛,参加四个竞赛,参加所有五个竞赛。

对于每个学科,学生有两种选择:参加或不参加,所以总共有2^5=32种可能的组合。

但是,我们需要排除不参加任何竞赛的情况,所以选法总数为32-1=31种。

7. 一个班级有30名学生,需要选出一个5人的篮球队,其中必须包括1名队长和4名队员。

如果队长和队员可以是同一个人,那么不同的选法有多少种?答案:首先,选择队长有30种可能,然后从剩下的29人中选择4名队员,有C(29,4)种可能。

但是,由于队长和队员可以是同一个人,我们需要减去只选了4名队员的情况,即C(30,4)种。

所以,总的选法为30*C(29,4) - C(30,4) = 30*1911 - 27,405 = 57,330种。

四、计算题8. 一个数字密码由5个不同的数字组成,每位数字可以是0-9中的任意一个,求这个密码的所有可能组合。

答案:每位数字有10种可能,所以总的组合数为10^5 = 100,000种。

9. 一个班级有15名学生,需要选出一个7人的足球队,不同的选法有多少种?答案:从15名学生中选出7人,不同的选法有C(15,7) = 6,435种。

数学竞赛组合试题及答案

数学竞赛组合试题及答案

数学竞赛组合试题及答案试题一:排列组合问题题目:某班级有30名学生,需要选出5名代表参加校际数学竞赛。

如果不考虑性别和成绩,仅考虑组合方式,问有多少种不同的选法?答案:这是一个组合问题,可以用组合公式C(n, k) = n! / (k! *(n-k)!)来计算,其中n为总人数,k为选出的人数。

将数值代入公式,得到C(30, 5) = 30! / (5! * 25!) = 142506。

试题二:概率问题题目:一个袋子里有10个红球和20个蓝球,随机抽取3个球,求至少有1个红球的概率。

答案:首先计算没有红球的概率,即抽到3个蓝球的概率。

用组合公式计算,P(3蓝) = C(20, 3) / (C(30, 3)) = (20! / (3! * 17!)) / (30! / (3! * 27!))。

然后,用1减去这个概率得到至少有1个红球的概率,P(至少1红) = 1 - P(3蓝)。

试题三:几何问题题目:在一个半径为10的圆内,随机选择两个点,连接这两点形成弦。

求这条弦的长度小于8的概率。

答案:首先,弦的长度小于8意味着弦所对的圆心角小于某个特定角度。

通过几何关系和圆的性质,可以计算出这个特定角度。

然后,利用面积比来计算概率。

圆的面积为πr²,而弦所对的扇形面积可以通过角度来计算。

最后,将扇形面积除以圆的面积得到概率。

试题四:数列问题题目:给定一个等差数列,其首项为3,公差为2,求前10项的和。

答案:等差数列的前n项和公式为S_n = n/2 * (2a + (n-1)d),其中a为首项,d为公差,n为项数。

将数值代入公式,得到S_10 = 10/2* (2*3 + (10-1)*2) = 10 * 13 = 130。

试题五:逻辑推理问题题目:有5个盒子,每个盒子里都有不同数量的球,分别是1个,2个,3个,4个和5个。

现在有5个人,每个人随机选择一个盒子,每个人只能拿一个盒子。

问至少有一个人拿到的盒子里球的数量与他选择的顺序号相同的概率。

数学竞赛之排列组合(有解析)

数学竞赛之排列组合(有解析)

34. 按规律填数。 35.下面哪两行数字的排列规律相同 ?请画 “√。"
36. 按规律填数。
37.10 人围成一圈,从中选出三个人,其中三人均不相邻,共有多少种不同的选法?
38. 早餐店有馄饨,大饼,包子,烧麦四种早点供选择,最少吃一种,最多吃四种,有多少种不同的选择
方法?
39.文艺汇演共有 6 个节目,分 3 种类型: 1 个小品, 2 个舞蹈, 3 个演唱.现在要编排一个节目单; ( 1)如果要求第一个节目是小品,那么共有多少种节目单的编排顺序?
【解析】 【解答】解: 1,2, 3, 4, 5, 6, 7 中 1, 3, 5, 7 是奇数, 2, 4,6 是偶数
3+5=2+6
1+7=2+6
1+5=2+4
1+3=4
1+5=6
3+7=4+6
5+7=2+4+6 共 7种
故选: B.
【分析】找出 1, 2, 3, …, 7 这 7 个自然数那些是奇数,哪些是偶数,列出符合条件偶数之和等于奇数
13.书架上有 3 本故事书, 2 本科技书和 4 本英语书,每本书的内容不同,从中取出故事书,科技书,英语 各一本;共有 ________种不同的取法.
14.从班内 3 名男生和 4 名女生中选出 2 人参加羽毛球混合双打比赛,共有 ________种组队方案。
15.若 3 名同学中选出两人做班长,有 ________种可能。
13.【答案】 24 【考点】 排列组合 【解析】 【解答】解: 3×2×4=2(4种) 故答案为: 24. 【分析】本题直接根据排列组合的方法进行解答即可。
14.【答案】 12 【考点】 排列组合 【解析】 【解答】解: 3×4=12(种); 故答案为: 12. 【分析】 3 名男生和 4 名女生选出一对乒乓球混合双打选手,则每一名男生都可和四名不同的女生搭配, 根据乘法原理可知,共有 3×4=12种不同的组队方案.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竞赛试题选编之排列组合
一.选择题
(2005年全国高中数学联赛)
},4,3,2,1,|7777{},6,5,4,3,2,1,0{4
433221=∈+++==i T a a a a a M T i 将M 中的元素按从大到小的顺序排列,则第2005个数是( )
A .
43273767575+++ B .4327
2767575+++ C .43274707171+++ D .43273707171+++ (2004年高中数学联赛)设三位数n abc =,若以a ,b ,c 为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )
A. 45个
B. 81个
C. 165个
D. 216个
(2002年全国高中数学联赛)已知两个实数集合},,,{10021a a a A =与},,,{5021b b b B =,若从A 到B 的映射f 使得B 中每个元素都有原象,且)()()(10021a f a f a f ≤≤≤ ,则这样映射共有
(A )50100C (B )5099C (C )49100C (D )4999C
某个货场有1997辆车排队等待装货,要求第一辆车必须装9箱货物,每相邻的4辆车装货总数为34箱.为满足上述要求,至少应该有货物的箱数是B
(A )16966 (B )16975 (C )16984 (D )17009
首位数字是1,且恰有两个数字相同的四位数共有D
(A )216个 (B )252个 (C )324个 (D )432个
对x i ∈{1,2,…,n },i =1,2,…,n ,有()2
11+=∑=n n x
n i i ,x 1x 2…x n =n !,使x 1,x 2,…,x n ,一定是1,2,…,n 的一个排列的最大数n 是C (A )4 (B )6 (C )8
(D )9 设集合M ={-2,0,1},N ={1,2,3,4,5},映射f :M →N 使对任意的x ∈M ,都有x +f (x )+xf (x )是奇数,则这样的映射f 的个数是A
(A )45 (B )27 (C )15 (D )11 一个五位的自然数abcde 称为“凸”数,当且仅当它满足a <b <c ,c >d >e (如12430,13531等),则在所有的五位数中“凸”数的
个数是B
(A )8568
(B )2142 (C )2139 (D )1134
集合A 、B 、C (不必两两相异)的并集A ∪B ∪C ={1,2,3,…,n }.则满足条件的三元有序集合组(A ,B ,C )的个数是 .7n .
在正方体的8个顶点中,能构成一个直角三角形的3个顶点的直角三点组的个数是C
(A )36 (B )37 (C )48 (D )49
S ={1,2,…,2003},A 是S 的三元子集,满足:A 中的所有元素可以组成等差数列.那么,这样的三元子集A 的个数是B
(A )3
2003C (B )2100221001C C + (C )2100221001A A + (D )3
2003A
一条铁路原有m 个车站,为适应客运需要新增加n 个车站(n >1),则客运车票增加了58种(注:从甲站到乙站需要两种不同的车票),那么原有车站的个数是
(A )12 (B )13 (C )14 (D )15
在1,2,3,4,5的排列a 1,a 2,a 3,a 4,a 5中,满足条件a 1<a 2,a 2>a 3,a 3<a 4,a 4>a 5的排列的个数是D
(A )8 (B )10 (C )14 (D )16
若m ,n 是不大于6的非负整数,则C 2n 62m 6y C x +=1表示不同的椭圆个数为
A.P 27
B.C 26
C.C 2
4 D.P 2
4
正方体八个顶点的两两连线中,异面直线共有( )对.
A. 114
B. 138
C. 174
D. 228
如图,从A 到B(方向只能从左->右或下->上或左下->右上)不同
走法路线种数为( ).
A. 16
B. 18
C. 20
D. 22 从正方体的8个顶点中取出3个,使至少有两个顶点在同一条棱上,其取法数为
A.44
B.48
C.50
D.52
二.填空题
(2005年全国高中数学联赛)如果自然数a 的各位数字之和等于7,那么称a 为“吉祥数”.将所有“吉祥数”从小到大排成一列,,,,321 a a a 若,2005=n a 则=n a 5_____.
(2002年全国高中数学联赛)已知点1021,,,P P P
分别是四面体的顶点或棱
的中点,那么在同一平面上的四点组),,,(1k j i P P P P (101≤<<<k j i )有 个.
(2001年全国高中数学联赛)在一个正六边形的六个区域栽
种观赏植物(如图),要求同一场块中种同一种植物,相
邻的两块种不同的植物。

现有4种不同的植物可供选择,
则有 种栽种方案。

(2000年全国高中数学联赛)如果:
(1)a ,b ,c ,d 都属于{1,2,3,4};
(2)a ≠b ,b ≠c ,c ≠d ,d ≠a ;
(3)a 是a ,b ,c ,d 中的最小值,
那么,可以组成的不同的四位数abcd 的个数是_________.
从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则可有 不同的取法.
圆周上有100个等分点,以这些点为顶点组成的钝角三角形个数为 117600. 在一次足球冠军赛中,要求每一队都必须同其余的各个队进行一场比赛,每场比赛胜队得2分,平局各得1分,败队得0分.已知有一队得分最多,但它胜的场次比任何一队都少.若至少有n 队参赛,则n =__6____.
平面上有相异的11个点,每两点连成一条直线,共得48条不同的直线,这11个点可以构成的不同的三角形的个数为_______________160
将一枚硬币掷出,若出现正面,点P 就在数轴上移动+1,若出现反面就不动,掷币次数不超过12次,而且点P 到达了坐标+10就不再掷了,则点P 到达坐标点+10的所有不同情况共有 种
一副桥牌有52张牌,将其排成一横行,任意两张A 都不相邻的排列数为______
从{1,2,3,…,20}中选出三个数,使得没有两个数相邻,有 种不同的选法.816;
12个朋友每周聚餐一次,每周他们分成三组,每组4人,不同组坐不同的桌
子.若要求这些朋友中任意两个人至少有一次同坐一张桌子,则至少需要 周.5.
一个三位自然数321a a a 称为凹数,如果同时有2321,a a a a >>(例如849,525,104都是凹数而200,684,123都不是凹数),则所有的凹数的个数是 285
有5个匣子,每个匣子有一把钥匙,并且钥匙不能通用,如果随意在每一个匣子内放入一把钥匙,然后把匣子全部锁上,要求砸开一个匣子后,能相继用钥匙打开其余4个匣子,那么钥匙的放法有___________种
.
三.解答题
有n(n≥6)名乒乓球选手进行单循环赛(无平局),比赛结果显示:任意5人中既有1人胜于其余4人,又有1人负于其余4人,问恰胜两场的人数有几个?。

相关文档
最新文档