岩石强度及破坏准则优缺点.

合集下载

岩石的强度理论及破坏判据[详细]

岩石的强度理论及破坏判据[详细]

分析,库仑准则的有效取值范围由图 6-8给出,并可
用方程表示为:
σ3 σ1=σ3
1
f
2
1
f
3
f
2
1
f
2c
P β
3 1
1
1 2
c
1
1 2
c
0
σc / 2
σc
σ1
-σt
A
S
图7-8 σ1-σ3坐标系中的库仑准则的完整强度曲线
在此库仑准则条件下,岩石可能发生以下四种方式的破坏。
(1)当 0 11 11 22时cc,33岩石t属t单轴拉伸破裂; (2)当 1122cc11 c时c,t岩t石3 属3 0双0轴 拉伸破裂;
四、 格里菲斯强度理论
格里菲斯(Griffith ,1920年)认为:脆性材料断 裂的起因是分布在材料中的微小裂纹尖端有拉应力 集中(这种裂纹称之为Griffith裂纹)。
格里菲斯原理认为:当作用力的势能始终保持不 变时,裂纹扩展准则可写为:
(Wd Wc ) 0 C
式中:C为裂纹长度参数;Wd为裂纹表面的表面能; We为储存在裂纹周围的弹性应变能。
1
τ3
2

式中:为t 岩石的单轴抗拉强度σ;0 σ3 t
n 为待定系数。
σ σ
σ
c
利用图 7-10中的关系,有:
σ 3
1 2
(1 3)
1 2
(1
3)
ctg 2
sin 2
1.双向压7缩应4力2圆,2.双向拉压应力圆,
3..双向拉伸应力圆 图7-10 二次抛物型强度包络线
其中:
n( t )
d ctg2
n
d

岩体强度破坏判断准则

岩体强度破坏判断准则
高等岩石力学
第七讲:岩体强度破坏判断准则
目前,人们根据岩石的不同破坏 机理,已经建立了多种强度判据。强度理 论是指人们认为在某种应力或组合应力的 作用下,岩石就会破坏,从而建立了相应 的判据。
一点的应力表示方法
三维应力状态
z
zx
二维应力状态 zx
x
xy y yz
z
x
xz
ij=

c t
3
第2章 岩石的物理力学性质
优点 ①同时考虑了拉剪和压剪应力状态;可判断 破坏面的方向。
②强度曲线向压区开放,说明 c t 与岩
石力学性质符合。 ③强度曲线倾斜向上说明抗剪强度与压应力 成正比。 ④受拉区闭合,说明受三向等拉应力时岩石 破坏;受压区开放,说明三向等压应力不破 坏。 缺点 忽略了中间主应力的影响(中间主应力对强 度影响在15%左右)。
6C cos 3(3 sin)



6
时,受压破坏:
2sin , k
3(3 sin)
6C cos 3(3 sin)
当顶式对 微分,并使之为零,此时F取极小
sin , k 3C cos
3 3 sin2
3 sin2
Drucker-Prager

1 3
1 2 2 2 3 2 3 1 2
最大应变能理论
第2章 岩石的物理力学性质
屈服条件的研究历史
Coulumb (1773)
– 把土及岩石看成摩擦材料。
f c n tan
Tresca (1864)
– 作了一系列的挤压实验,发现金属材料在屈

岩石_岩体的动力强度与动力破坏准则

岩石_岩体的动力强度与动力破坏准则
[5 ]
动力强 度/ at m
2 730 1 890 4 900 4 000
动力 、 静力 强度之比
6. 5 9. 0 7. 8 5. 7
图 1 和图 2 是相应于实验室中动力等速加载试 验 [ 7 ] ,其中 ,τ 为加载至破坏的时间 , s ;σ 为破坏应 σ 力 ;σ dyn , st 为相应的动力与静力加载下的破坏应 力 ;ε( t ) 为应变率 ;ε 区与 Ⅱ 区之间的分界线 ; 1为 Ⅰ ε 区与 Ⅲ 区的分界线 . 2为 Ⅱ
Fig. 2 The strain rate dependence of strength
1
γ τ
G0 + K T ln
γ γ 0
・ ・

( 5)
式中 : Yτ 为动力剪切强度 ;γ τ 为剪切变形情况下的 活化体积 ; G0 为剪切情况下的活化能 ;γ为剪切应 变率 ;γ0 = γ0 / τ 0 ,其中 γ 0 为材料的极限剪切应变 . 研究表明 [ 10 ] , 在不同的应变率区段 , 不同的机 制起主导作用 . 在应变率较低阶段 ,变形的热活化机 制起主导作用 ; 当应变率大于某一值时 ,材料强度随 应变率的增加而急剧增加 , 此时材料的变形和破坏 具有绝热性质 ,粘性阻尼机制起主导作用 ; 当应变率 很大时 ,粘性系数随应变率增加而减少 ,热活化机制 又重新出现 , 此时 , 裂纹的临界应力不依赖裂纹尺 寸 ,这样在广泛的裂纹尺寸范围内 ,裂纹增长同时启 动 ,多裂纹的增长和连接使得破坏产生 . 岩石等脆性 材料随应变率变化实验曲线的定性一般规律如图 3 所示 .
(1. 解放军理工大学 工程兵工程学院 ,南京 210007 ; 2. 北京建筑工程学院 土木交通学院 ,北京 100044)

岩石破坏准则

岩石破坏准则

2.1岩石破坏强度准则岩石的破坏主要与外荷载的作用方式、温度及湿度有关。

一般在低温、低围压及高应变率的条件下,岩石表现为脆性破坏,而在高温、高围压、低应变率作用下,岩石则表现为塑性或者塑性流动。

对于较完整的岩石来说,其破坏形式可以分为:1)脆性破坏;3)延性破坏。

图2-1给出了不同应力状态下岩石破裂前应变值、破坏形态示意图和典型的应力-应变曲线示意图。

图2-1岩石破坏形态示意图从图2-1中可以看出岩石破裂种类繁多、岩石破坏过程中的应力、变形、裂纹产生和扩展极为复杂,很难用一种模型进行描述,很多学者针对不同岩石破坏特征提出多种不同岩石的强度破坏准则。

本节主要对已有的岩石强度破坏准则进行总结,找出它们各自的优缺点。

2.1.1最大正应力强度理论最大正应力强度理论也称朗肯理论,该理论是1857年提出的。

它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。

朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。

考察挡土墙后主体表面下深度z 处的微小单元体的应力状态变化过程。

当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力sz 保持不变,而水平向应力sx 逐渐减小,直至达到土体处于极限平衡状态。

土体处于极限平衡状态时的最大主应力为s1=gz ,而最小主应力s3即为主动土压力强度pa 。

根据,当主体中某点处于极限平衡状态时,大主应力1σ和小主应力3σ之间应满足以下关系式:粘性土:213...2tan tan 454522c ϕϕσσ⎛⎫⎛⎫︒︒=-++ ⎪ ⎪⎝⎭⎝⎭(1)无粘性土231.tan 452ϕσσ⎛⎫︒=- ⎪⎝⎭(2)该理论认为材料破坏取决于绝对值最大的正应力。

因此,作用于岩石的三个正应力中,只要有一个主应力达到岩石的单轴抗压强度或岩石的单轴抗拉强度,岩石便被破坏。

岩石的破坏准则汇总

岩石的破坏准则汇总

岩石的破坏准则岩石的破坏准则对岩石试样的室内及现场试验,可获得岩石试样的强度指标,但对复杂应力状态下的天然岩体,又是如何判断其破坏呢?因此,就必须建立判断岩石破坏的准则(或称强度理论)。

岩石的应力、应变增长到一定程度,岩石将发生破坏。

用来表征岩石破坏条件的函数称为岩石的破坏准则。

岩石在外力作用下常常处于复杂的应力状态,许多试验指出,岩石的强度及其在荷载作用下的性状与岩石的应力状态有着很大的关系。

在单向应力状态下表现出脆性的岩石,在三向应力状态下具有延1岩石的破坏准则2性性质,同时它的强度极限也大大提高了。

岩石的破坏准则许多部门和学者从不同角度提出不同的破坏准则,目前岩石破坏准则主要有:最大正应力理论最大正应变理论最大剪应力理论(H.Tresca)八面体应力理论莫尔理论及库伦准则格里菲思理论(Griffith)伦特堡理论(Lundborg)经验破坏准则3岩石的破坏准则41、最大正应力理论这是较早的一种理论,该理论认为岩石的破坏只取决于绝对值最大的正应力。

即岩石内的三个主应力中只要有一个达到单轴抗压或抗拉强度时,材料就破坏。

适用条件: 单向应力状态。

对复杂应力状态不适用。

写成解析式:破坏岩石的破坏准则52、最大正应变理论该理论认为岩石的破坏取决于最大正应变,即岩石内任一方向的正应变达到单向压缩或拉伸时的破坏数值时,岩石就发生破坏。

则破坏准则为式中 m ax ε——岩石内发生的最大应变值;u ε——单向拉、压时极限应变值;这一破坏准则的解析式为(由广义虎克定律)岩石的破坏准则6R — R t 或R c推出:实验指出,该理论与脆性材料实验值大致符合,对塑性材料不适用。

岩石的破坏准则73、最大剪应力理论(H.Tresca )该理论认为岩石材料的破坏取决于最大剪应力,即当最大剪应力达到单向压缩或拉伸时的危险值时,材料达到破坏极限状态。

其破坏准则为:在复杂应力状态下,最大剪应力231max σστ-=岩石的破坏准则8单位拉伸或压缩时,最大剪应力的危险值则有 R ≥-31σσ或写成 {}{}{}0)][)][)][221222232231=------R R R σσσσσσ这个理论适用于塑性岩石,不适用于脆性岩石。

(完整版)岩石力学试题

(完整版)岩石力学试题

中国矿业大学2010~2011学年第 2 学期《矿山岩体力学》试卷(A)卷一、名词解释(20分,每题2分)1、岩体:是由岩块和各种各样的结构面共同组成的综合体。

2、体力:分布在物体整个体积内部各个质点上的力,又称为质量力。

3、结构面:在岩体中存在着各种不同的地质界面,这种地质界面称为结构面。

4、岩石的孔隙度:是岩石中各种孔洞、裂隙体积的总和与岩石总体积之比,常用百分数表示,故也称为孔隙率。

5、岩石的软化系数:是指水饱和岩石试件的单向抗压强度与干燥岩石试件单向抗压强度之比。

6、岩石强度:岩石在各种荷载作用下破坏时所能承受的最大应力。

7、破坏准则:用以表征岩石破坏条件的应力状态与岩石强度参数间的函数关系,是在极限状态下的“应力—应力”关系。

8、岩石的弹性:指卸载后岩石变形能完全恢复的性质。

9、岩石的流变性:指岩石在长期静载荷作用下应力应变随时间加长而变化的性质。

10、地应力:指存在于地层中的未受工程扰动的天然应力。

也称原岩应力、初始应力。

二、单项选择题(30分,每题2分)1、下列那个不是矿山岩体力学的特点(B )A)工程支护多为临时结构物B)只关心岩石在弹性阶段的力学性质C)工作面不断移动D)煤岩经常受瓦斯气体作用与影响2、围压对岩石极限强度(峰值强度)有较大影响,随着围压的增加,岩石的三轴极限强度将(B )A)减小B)增大C)不变D)不一定增大3、在岩石的室内单轴压缩试验中,对同一岩石试样所进行的试验中,如其余的条件均相同,则下列试样强度最高的是( A )A)圆柱形试件B)六角菱柱形试件C)四角菱柱形试件D)三角菱柱形试件4、岩石的破坏形式不取决于下列哪个(C )A)岩石的性质与结构面性质B)岩石受力状态有关C)岩石强度D)岩石环境条件5、巴西劈裂法测量岩石的抗拉强度要求(C )A)线荷载不通过试件的直径B)试件含有裂隙C)破坏面必须通过试件的直径D)岩石试件为方形6、岩石的Griffith破坏准则是(B )A)压破坏准则B)拉破坏准则C)剪破坏准则D)压剪破坏准则7、多个极限应力圆上的破坏点的轨迹称为莫尔强度线/莫尔包络线,实际中对于给定的岩石是否存在下图中的应力圆3( C )A)很定存在B)不一定C)不存在D)与所受外力有关8、下列哪类岩体结构面不是按地质成因分类(C )A)原生结构面B)构造结构面C)张性结构面D)次生结构面9、岩体强度受(D )控制A)岩块强度B)结构面强度C)岩块和结构面强度D)岩块和结构面强度及其组合方式10、岩体质量指标RQD分类是将钻探时长度在10cm(含10cm)以上的岩芯累计长度占钻孔总长的百分比,下列对该分类方法的评价哪个是错的( C )A)简单易行B)没有考虑节理方位的影响C)考虑了充填物的影响D)是一种快速、经济而实用的分类方法11、围岩作用于支护结构上的力称为(C )A)支承压力B)围岩应力C)围岩压力D)采动应力12、通常把在外力作用下破坏前总应变大于(C )的岩石称为塑性岩石。

岩土力学屈服准则及其特点

岩土力学屈服准则及其特点

岩土力学屈服准则及其特点岩土力学是土木工程领域中的重要学科之一,研究土体和岩石在外力作用下的力学性质和行为。

岩土力学中的屈服准则是指在应力条件下,土体或岩石的屈服发生的准则,也被称为破坏准则或破坏判据。

不同的屈服准则适用于不同的材料和应变条件,常用的几种屈服准则包括摩尔—库仑准则、穆克—库仑准则、德里奇—龙格准则和麦克考利准则等。

1. 摩尔—库仑准则:摩尔—库仑准则是最常用的岩土力学屈服准则之一,适用于岩石和混凝土等脆性材料。

该准则认为,当材料中最大主应力达到其抗压强度时,材料发生屈服和破坏。

2. 穆克—库仑准则:穆克—库仑准则适用于黏塑性土体,认为土体的屈服和破坏是由于主应力差异引起的。

当土体中最大主应力差异达到一定程度时,土体发生屈服和破坏。

3. 德里奇—龙格准则:德里奇—龙格准则适用于砂土和黏土等细粒土体,认为土体的屈服和破坏是由于应力路径引起的。

当土体中的应力路径达到一定条件时,土体发生屈服和破坏。

4. 麦克考利准则:麦克考利准则适用于岩石和土体,认为材料的屈服和破坏是由于剪切应变能达到一定程度引起的。

当剪切应变能达到一定条件时,材料发生屈服和破坏。

这些屈服准则具有以下特点:1. 适用性广泛:不同的屈服准则适用于不同类型的土体和岩石,能够满足不同材料的力学性质和行为。

2. 简单易用:这些屈服准则通常基于简化的假设和实验数据得出,具有较高的实用性和可操作性。

3. 数学表达简洁:这些屈服准则通过简洁的数学表达式描述材料的屈服和破坏条件,便于工程应用和计算。

4. 实验验证可靠:这些屈服准则的提出和应用通常基于大量的实验数据,经过多次验证和修正,具有较高的可靠性和准确性。

5. 工程应用广泛:这些屈服准则在土木工程领域广泛应用于岩土工程设计、施工和安全评估等方面,对工程实践具有重要意义。

岩土力学中的屈服准则是研究土体和岩石在外力作用下的力学性质和行为的基础,不同的屈服准则适用于不同材料和应变条件,具有广泛的适用性和工程应用价值。

岩石破坏准则

岩石破坏准则

2.1岩石破坏强度准则岩石的破坏主要与外荷载的作用方式、温度及湿度有关。

一般在低温、低围压及高应变率的条件下,岩石表现为脆性破坏,而在高温、高围压、低应变率作用下,岩石则表现为塑性或者塑性流动。

对于较完整的岩石来说,其破坏形式可以分为:1)脆性破坏;3)延性破坏。

图2-1给出了不同应力状态下岩石破裂前应变值、破坏形态示意图和典型的应力-应变曲线示意图。

图2-1岩石破坏形态示意图从图2-1中可以看出岩石破裂种类繁多、岩石破坏过程中的应力、变形、裂纹产生和扩展极为复杂,很难用一种模型进行描述,很多学者针对不同岩石破坏特征提出多种不同岩石的强度破坏准则。

本节主要对已有的岩石强度破坏准则进行总结,找出它们各自的优缺点。

2.1.1最大正应力强度理论最大正应力强度理论也称朗肯理论,该理论是1857年提出的。

它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。

朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。

考察挡土墙后主体表面下深度z 处的微小单元体的应力状态变化过程。

当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力sz 保持不变,而水平向应力sx 逐渐减小,直至达到土体处于极限平衡状态。

土体处于极限平衡状态时的最大主应力为s1=gz ,而最小主应力s3即为主动土压力强度pa 。

根据,当主体中某点处于极限平衡状态时,大主应力1σ和小主应力3σ之间应满足以下关系式:粘性土:213...2tan tan 454522c ϕϕσσ⎛⎫⎛⎫︒︒=-++ ⎪ ⎪⎝⎭⎝⎭(1)无粘性土231.tan 452ϕσσ⎛⎫︒=- ⎪⎝⎭(2)该理论认为材料破坏取决于绝对值最大的正应力。

因此,作用于岩石的三个正应力中,只要有一个主应力达到岩石的单轴抗压强度或岩石的单轴抗拉强度,岩石便被破坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
岩石力学中常用的几种强度准则
对Grriffith强度准则评价:
优点: 岩石抗压强度为抗拉强度的8倍,反映了岩石的真实情况 证明了岩石在任何应力状态下都是由于拉伸引起破坏 指出微裂隙延展方向最终与最大主应力方向一致
缺点:
仅适用于脆性岩石,对一般岩石莫尔强度准则适用性远大于Griffith 准则 对裂隙被压闭合,抗剪强度增高解释不够 Griffith准则是岩石微裂隙扩展的条件,并非宏观破坏
13
14
10
岩石力学中常用的几种强度准则
Griffith强度准则
基本假设: ①物体内随机分布许多裂隙; ②所有裂隙都张开、贯通、独立; ③裂隙断面呈扁平椭圆状态; ④在任何应力状态下,裂隙尖端产生拉应力集中,导致裂隙沿 某个有利方向进一步扩展; ⑤最终在本质上都是拉应力引起岩石破坏。
外力作用下,材料中裂隙的端部及其附近由于应力集中而产生很大的 拉应力,超过岩石抗拉强度时,裂隙便不断扩展而导致材料破坏。
Mohr强度准则
τ
=f
强度曲线上每一点的坐标值 均代表材料沿着某一面破坏 时所需的正应力及剪应力
O
σ
3
岩石力学中常用的几种强度准则
对Mohr强度理论的评价:
优点: 适用于塑性岩石,也适用于脆性岩石的剪切破坏; 较好解释了岩石抗拉强度远远低于抗压强度特征; 解释了三向等拉时破坏,三向等压时不破坏现象; 简单、方便:同时考虑拉、压、剪,可判断破坏方向。 缺点:
函数形式
式中 为应力张量第一不变量
1 2 2 2 J 2 [ 1 2 2 3 3 1 ] ,为第二应力偏量不变量 6
α 和K为 D-P 准则材料常数
7
岩石力学中常用的几种强度准则
忽视了σ2 的作用,误差:±15% 没有考虑结构面的影响 不适用于拉断破坏,破裂面趋于分离 不适用于膨胀、蠕变破坏
4
岩石力学中常用的几种强度准则 Mohr-Coulomb准则
当压力不大(小于10MPa) 时,包络线可采用直线型 近似
τ
f C tan
破坏角(剪裂面与最大主 应力 σ1 的夹角)满足:
岩石力学与石油工程
岩石力学中常用的几种强度准则
指导老师: 组 时 员: 间:
梁利喜




2015年11月19日
1
岩石力学与石油工程
Mohr强度准则 Mohr-Coulomb准则
Drucker-Prager强度准则
Hoek-Brown强度准则 Griffith强度准则
2
岩石力学中常用的几种强度准则
准则的提出
常规三轴强度试验中发现大多数岩石强度曲线并不是直线,而是各种类型 的曲线,也就是说随着围压的增加,破坏角是变化的 函数形式
1 = 3 + m c 3 s c
2
9
岩石力学中常用的几种强度准则
对Hoek-Brown强度准则评价:
优点: 综合考虑了岩块强度、结构面强度、岩块结构等多种因素的影 响,能更好的反映岩块的非线性破坏特征; 提供岩块破坏时强度条件,而且能对岩块破坏机理进行描述; 弥补了Mohr-Coulomb强度准则中岩体不能承受拉应力,以及 对低应力区不太适应的不足,能解释低应力区、拉应力及最小 主应力 σ3 对强度的影响,因而更符合岩块的破坏特点。 缺点: 该准则没有考虑中间主应力对岩石真三轴强度的影响; 该准则在高围压条件下评估的岩石三轴强度与试验实测 强度数据偏差较大; 准则各参数的确定受主观性影响程度较大。
6
岩石力学中常用的几种强度准则
Drucker-Prager强度准则
准则的提出
M-C 准则不能反映中间主应力对屈服和破坏的影响及单纯静水压力引起的屈服特性;
M-C屈服面在主应力空间中是一个带尖顶的六棱锥面,如果应力点位于棱线或锥顶上,将引起数学处 理上的困难;
1952 年 Drucker 和 Prager 构造了一个内切于 M-C 准则的六棱锥的圆锥屈服面;
C
φ
1 ( 1 3 ) 2

O C· ctgφ
σ
3
=

4
+

1 ( 1 3 ) 2
σ
σ
1
2
库仑—莫尔强度条件
5
岩石力学中常用的几种强度准则
对Mohr-Coulomb强度准则评价:
优点: 公式简单实用,各参数一般都可以利用常规试验器材和方法 来确定; 不仅能反映岩体的碎性破坏,而且能反映其塑性破坏特征。 缺点: 该准则为线性破坏准则,在高围压压缩条件下,该准则 评估的岩石三轴强度与试验实测强度数据偏差较大; 该准则没有考虑中间主应力对岩石真三轴强度的影响; 该强度准则还指出,岩体的破坏角θ,但在拉伸条件下, 其破坏面一般垂直拉应力方向,实质为张破裂,与压缩 条件属于两种不同的破坏机理。
11
岩石力学中常用的几种强度准则
Griffith强度准则
1 3 3 0时, 3 - t ( 1 3 ) 2 1 3 3 0时, 8 t 1 3
①数学式
②最有利破裂的方向角
1 2 1 arccos 2 2( 1 3 )
对D-P强度准则评价:
优点: 考虑了中间主应力和静水压力的影响; 考虑了平均应力σm=I1/3的影响; 在岩石力学中应用较广,特别是在弹塑性有限元计算中 应用广泛;
缺点: 把岩石看成完整、无裂隙的连续介质,而实际上,岩石是多裂隙的 结构体;
8
岩石力学中常用的几种强度准则
Hoek-Brown强度准则
相关文档
最新文档