1-1-1集合的含义与表示(一)概论

合集下载

高一数学必修1教案:1-1集合的含义与表示 含解析 精品

高一数学必修1教案:1-1集合的含义与表示 含解析 精品

模块纵览课程目标通过集合的教学,使学生学会使用基本的集合语言描述有关的数学对象,发展学生运用数学语言进行交流的能力;使学生初步感受到运用集合语言描述数学对象时的简洁性和准确性通过函数概念与基本初等函数Ⅰ的教学,使学生理解函数是描述客观世界变化规律的重要数学模型;使学生感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步学会运用函数思想理解和处理现实生活中的简单问题;培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力.学习要求本模块是高中数学的起点.本模块的内容包括:集合、函数概念与基本初等函数Ⅰ(指数函数、对数函数及幂函数).主要要求如下:1.了解集合的含义,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.理解集合之间包含与相等的含义,能识别给定集合的子集.理解两个集合的并集与交集的含义;会求两个简单集合的并集与交集.会用Venn 图表示集合的关系及运算.2.理解函数与映射的概念;会求一些简单函数的定义域和值域;理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数;理解函数的单调性、奇偶性,会判断一些简单函数的单调性、奇偶性;理解函数最大(小)值的概念及其几何意义;会画函数的图象,并运用函数图象理解和研究函数的性质.3.理解有理数指数幂的含义;理解对数的概念及其运算性质;理解指数函数、对数函数的概念、意义和性质,会画指数函数、对数函数的图象.了解指数函数、对数函数模型的实际案例,会用指数函数、对数函数模型解决简单的实际问题.了解幂函数的概念;结合函数y=x ,y =x 2,y =x 3,y=x1,y=x 21的图象,了解幂函数的图象变化情况. 4.了解二次函数的零点与相应的一元二次方程的根的联系.了解用二分法求方程近似解的过程,能借助计算器求形如x 3+ax+b=0,a x +bx+c=0,lgx+bx+c=0的方程的近似解.了解指数函数、对数函数、幂函数、分段函数等函数模型的意义,并能进行简单的应用.教学建议1.关于集合的教学,应注意以下问题:集合是一个不加定义的概念,教学中应结合学生的生活经验和已有的数学知识,通过列举丰富的实例,使学生理解集合的含义.学习集合语言最好的方法是使用.在教学中要创设使学生运用集合语言进行表达和交流的情境和机会,使学生在实际运用中逐渐熟悉自然语言、集合语言、图形语言各自的特点,能进行三种语言之间的相互转换,并掌握集合语言.对集合的相等关系、包含关系不要求证明,只要求能判断两个简单集合的相等关系、包含关系.2.关于函数与基本的初等函数(Ⅰ)的教学,应注意以下问题:要从实际背景和定义两个方面帮助学生理解函数的本质.函数概念的引入应通过具体实例,让学生体会非空数集之间的一种特殊的对应关系(即函数),函数概念需要多次接触,反复体会,螺旋上升,逐步加深理解,才能真正掌握,灵活应用.在教学中,应强调对函数概念本质的理解,要结合y=x 2,y=x 3,y=|x|,y=x1等函数,了解函数奇偶性的概念、图象和性质,并能判断一些简单函数的奇偶性(对一般函数的奇偶性,不要作深入讨论).在回顾整数指数幂的概念及其运算性质的基础上,结合具体实例,引入有理数指数幂及其运算性质,以及实数指数幂的意义及其运算性质,进一步体会“用有理数逼近无理数”的思想,可以让学生利用计算器(机)进行实际操作,感受“逼近”的过程.反函数的教学中,只要求通过比较同底的指数函数和对数函数,说明指数函数y =a x 和对数函数y =log a x 互为反函数(a >0,a≠1).不要求讨论一般形式的反函数定义,也不要求求已知函数的反函数.方程实根分布问题,仅限于掌握:①利用一元二次方程根的判别式判别根的个数;②借助图象了解:若f(x)=ax 2+bx+c ,且f(p)f(q)<0(p <q),则方程f(x)=0必有一根x 0∈(p ,q).用二分法求方程的近似解,关键是结合具体例子感受过程与方法.本方法限于用计算器求三类方程:x 3+ax+b=0,a x +bx+c=0,lgx+bx+c=0的近似解.应注意鼓励学生运用信息技术学习、探索和解决问题.例如,利用计算器(机)画出指数函数、对数函数等的图象,探索、比较它们的变化规律,研究函数的性质,求方程的近似解等. 在本章教学中,应引导学生阅读有关资料,了解对数的发现历史,了解函数概念的形成、发展及应用.第1章 集合本章概述一、课标要求本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.1.了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2.理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3.理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4.能在具体情境中,了解全集与空集的含义.5.理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集,培养学生从具体到抽象的思维能力.6.理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7.能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.二、本章编写意图与教学建议1.教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而发展其运用数学语言进行交流的能力.教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.培养学生的抽象概括能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2.教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn 图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念.教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用.3.教材在例题、习题教学中注重运用集合的观点研究、处理数学问题,这一观点,一直贯穿到以后的数学学习中.4.在例题和习题的编排中,渗透了集合中的分类思想,让学生体会到分类思想在生活中和数学中的广泛运用,这是学生在初中阶段所缺少的.在教学中,一定要循序渐进,从繁到难,逐步渗透这方面的训练.三、教学内容及课时安排建议1.1集合的含义及其表示整体设计教材分析本节课是学生进入高中的第一节课,教材试图通过清新的风格、流畅的语言,讲述一个乏味的枯燥的理论—集合理论,从而树立学生学习数学的信心,所以在讲授这节课的时候,多通过一些实际的例子,让学生感受集合这一原始的概念,从集合的确定性、互异性、无序性去识别哪些可以组成集合,慢慢地带领学生进入数学语言的王国.通过数学,自然界在论述;通过数学,世界的创造者在表达;通过数学,世界的保护者在讲演.讲授时,可通过数学史,让我们的学生更深入地去了解数学和为数学而献身的数学家,体现数学的人文教育的功能.在教学中不要过分强调细枝末节的讲解和训练,避免人为地编制一些繁难的偏题.三维目标1.通过实例,了解集合的含义,体会元素与集合的属于关系.2.知道常用数集及其专用记号.3.了解集合中元素的确定性、互异性、无序性.4.会用集合语言表示有关数学对象.5.让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.重点难点教学重点:集合的含义与表示方法.教学难点:集合表示法的恰当选择.课时安排1课时教学过程导入新课设计思路一(情境导入)情境1.在充满诱惑的非洲大草原上一群大象正缓步走来;蓝蓝的天空中有一群鸟在欢快地飞翔;清清的湖水里,一群鱼儿在自由而欢快地畅游.以上描述中的“一群象”“一群鸟”“一群鱼”等概念有什么共同特征?答:它们都是可以识别的、确定的一个群体.情境2.军训刚结束不久,大家还记忆犹新,在军训前大家接到一个通知,大致内容是:8月20日8点,高一年级在体育馆集合,进行军训动员.试问在这个通知里的对象是高一学生还是个别的学生?答:是高一的学生.设计思路二(问题导入)问题:就有关A、B两事,向50位同学调查赞成与否,赞成A的人数是全体的五分之三,其余不赞成;赞成B的人数比赞成A的人数多3人,其余不赞成,另外对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多一人.试问在对A、B两事上,就上面的论述知道有几个群体?你能算出问题中的每个群体的人数吗?答:问题中分为:赞成A,赞成B,A、B都赞成,A、B都不赞成四个群体.赞成A有30人,赞成B有33人,A、B都赞成有21人,A、B都不赞成有8人.推进新课新知探究1.集合论的创始者康托尔曾说过:“集合是我们直觉或思维的并且是确定的彼此可以识别的对象的一个群体.”显然这仅是给出一个描述性的说明.集合的概念是数学中不定义的原始的概念.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫做这个集合的元素.集合的元素一般具有下列特点和性质:确定性:对于一个已知的集合,它的元素是确定的.所谓的确定性就是:任何一个事物a 或者是A的元素.或者不是A的元素,二者必具其一,即a∈A与a A有且只有一个成立.这是证明集合之间关系特别是相等关系时,经常使用的重要依据.确定性是集合概念的根本特征,其实质是明确可以区分的,不容许有含糊不清、模棱两可的情形,例如,较小的数就不能构成一个集合,因为“较小的数”含义模糊.但确定性并不要求有a∈A的具体判定方法,例如,A={超越数},A作为全体超越数的集合是明确的,但直到现在人们还无法判定π+e是否属于A,尽管如此π+e属于A与不属于A二者必具其一,没有第三种可能,这是确定无疑的,此即集合确定性含义.互异性:一个集合中的所含元素不允许重复,确切地说,集合中的相同元素不能算作不同元素,而必须作为同一个元素看待,由此可知,在没有定义“元素相同”之前,元素互异句缺少逻辑基础,并且定义元素的相同又是确定性的必要补充.无序性:集合中的元素可以任意变动次序.此外,集合中元素的个数也没有限制,既可以是有限多个,又可以是无限多个,个数是有限多个是既可以知其确切数,又可以暂不知其确切数,如集合D={不超过10100的素数}.2.非负整数集内排除0的集,表示成N*或N+.3.集合的常用表示方法:列举法:将集合中的元素一一列举出来,并用大括号括起来.比如用列举法表示“中国古代的四大发明”构成的集合.可表示为{指南针,黑火药,印刷术,造纸术}描述法:把集合中元素的公共属性描述出来,写在大括号内的方法,它的一般形式是{x|p(x)}.图示法(韦恩图法):画一条封闭的曲线,用它的内部来表示一个集合.记忆技巧:对数集的符号记忆可以联系其英文单词记忆.应用示例思路1例1 一条直线可看作由___________组成的集合;一个平面可看作由___________组成的集合;一个圆可看作由___________组成的集合.分析:本题考查的是集合与元素的概念,以及集合与元素的关系.解:无数个点;无数条直线;无数个点.例2 考察下列每组对象是否能构成一个集合.(1)所有的好人;(2)不超过20的非负数;(3)我们班16周岁以下的学生;(4)高个子的人;(5)充分接近2的实数.解:(2)、(3)能构成集合;(1)、(4)、(5)不能构成集合.点评:数学的解题不是孤立的,它要求我们前后的知识要能联系在一起,抓住集合概念的基本特征,这类问题就很容易了.例3 满足0≤x≤1的实数能否构成一个集合,为什么?分析:依靠集合的特征说话,我们会发现任意一个实数,它要么满足不等式,要么不满足不等式.解:能构成集合,因为它满足集合的三个性质.点评:本题考查了对无限集合的判定,加强对集合的概念的理解.例4 已知集合M={a ,b ,c}中的三个元素可构成某一三角形的三边长,那么此三角形一定不是( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形 分析:本题主要考查了集合的互异性.答案:D点评:本题从三角形的角度将集合的互异性隐藏在题中,增加了解题难度.例5 (1)用自然语言描述集合{1,3,5,7,9};(2)用列举法表示集合A={x ∈N |1≤x <8};(3)试选择适当的方法表示集合:不等式x 2+2<0的解集.分析:这是一组对集合语言的运用,形成互相的翻译,这也是我们今后学习的方向,用数学的语言来诠释世界.解:(1){大于0而小于10的奇数};(2){1,2,3,4,5,6,7};(3)∅.点评:在选择适当的方法表示集合时,要注意其可行性和表示问题的简洁性.思路2例1 求不等式2x-3>5的解集.分析:这是一个无限集,所以选用描述法表示.解:由2x-3>5得x >4,所以2x-3>5的解集为{x|x >4}.例2 如何表示方程组⎩⎨⎧=-=+0,1y x y x 的解集呢? 分析:这个问题是一个熟悉的问题,但在集合的观点下,如何正确表示是一个关键.解:{(x,y)}|⎭⎬⎫⎩⎨⎧=⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧===⎩⎨⎧=-=+)21,21(2121|),(01y x y x y x y x . 点评:在讲解这个例题时要注意抓住集合的元素个数只有一个,避免产生错误的答案. 例3 求方程x 2+x+1=0所有实数解的集合.分析:运用一元二次方程的知识可以知道,其解集是空集.解:{x|x 2+x+1=0,x ∈R }=∅.点评:对于特殊问题,解题是一定化到最简形式.例4 写出x 2-1=0的解集.分析:有两个元素,所以写解集时要与例2区别开来.解:{x|x 2-1=0}={-1,1}.点评:不要写成{(-1,1)},这样就错了.知能训练一、课本第7页练习.解答:1.(1){x|x+1}={-1};(2){1,3,5,15};(3){2,4,6,8,10}.2.(1){x|x=2n+1,n ∈N }或{x|x 是奇数};(2){x|x=2n,n ∈N *}或{x|x 是偶数};(3){x|x 2+1≤0,x ∈R }.3.(1)∈,∉,∈,∉,∈,∈,∈,∈;(2)∈,∉;(3)∈,∉;(4)∉,∈.4.(1){0,1,2,3,4};(2){(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)};(3){a,c,e,h,i,m,s,t}.二、补充练习1.下列表达是否正确?说明理由.(1)Z ={全体整数};(2)R ={实数集};(3){(1,2)}={1,2};(4){1,2}={2,1}.2.已知M={2,a,b},N={2a,2,b 2},且M=N ,求a,b 的值.3.已知集合A={x|mx 2-2x+3=0,m ∈R },若A 中元素至多只有一个,求m 的取值范围.4.A={x│x ∈N ,x-68∈N },试用列举法表示A. 解答:1.(1)错,应为{整数};(2)错,应为{实数};(3)错,(1,2)表示一个元素;(4)正确,集合元素具有无序性.2.⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧==2.1,411,0b a b a 或3.m=0或m≥31. 4.A={2,4,5}.课堂小结一、在师生互动中,让学生了解或体会下列问题:1.本节课我们学习过哪些知识内容?2.你认为学习集合有什么意义?3.选择集合的表示法时应注意些什么?二、列举法的特点是:直观、明白,但有其局限性,如“小于1的一切正数”构成的集合就不能把它的元素一一列举出来或列举出有足够代表性且反映出规律的元素,故无限集一般不用列举法.描述法具有抽象概括、普遍性的特点.使用描述法时,应注意:写清楚集合中元素的代号;说明该集合中元素的性质;不能出现未被说明的字母;多层描述时,应准确使用“且”“或”;所有描述的内容都要写在大括号内;用于描述的语句力求简明、准确.集合的分类:按元素个数可分为:有限集、无限集、空集.作业1.课本第17页复习题1、2.2.举出你身边的关于集合的事例.不少于6个,要有创新.3.元素与集合的关系有多少种?如何表示?类似的集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习课本回答.设计感想1.利用丰富的背景事例创设问题情境,帮助学生理解抽象的数学概念集合语言是现代数学的基本语言,在高中数学课程中,它也是学习、掌握和使用数学语言的基础,但这对于刚步入高中学习的高一新生来说却是抽象、枯燥的一个数学概念,因此,从学生们身边熟悉的例子引入,拉近与学生的距离,引导学生透过一系列从具体到抽象、从特殊到一般的事例了解集合的概念.2.提供积极思考、自主探索的空间,使学生成为学习的主体丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念,学生的数学学习活动不能仅限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、合作交流、阅读自学等都应成为学生学习数学的重要方式,因此,在本节课的小结中设计了一些问题,让学生独立思考、合作交流,同时通过解决一系列具体问题,使学生自己体会到集合各种表示法的优缺点,针对不同问题,能选用合适的集合表示法.在练习过程中要熟练掌握集合语言与自然语言的转换.教师在教学过程中时时监控,对学生不可能解决的问题,如集合常见表示法的写法、常见数集及其记法应直接给出,以避免出现不必要的混乱,对学生解题过程中遇到的困难给予适当引导、点拨.。

1[1].1.1-1集合的含义及其表示

1[1].1.1-1集合的含义及其表示

1.1.1 集合的含义及其表示方法(1)教案【教学目标】1.通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.2.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.【教学重难点】教学重点:集合的基本概念与表示方法.教学难点:选择恰当的方法表示一些简单的集合.【教学过程】一、导入新课军训前学校通知:8月15日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合.二、提出问题①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A 分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?讨论结果:①能.②能.③我们把研究的对象统称为“元素”,那么把一些元素组成的总体叫“集合”.④a是集合A的元素,b不是集合A的元素.学生得出元素与集合的关系有两种:属于和不属于.⑤能,是珠穆朗玛峰.⑥不能.⑦确定性.给定的集合,它的元素必须是明确的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合的确定性.⑧3个.⑨互异性.一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的,这就是集合的互异性.⑩集合M和N相同.这说明集合中的元素具有无序性,即集合中的元素是没有顺序的.可以发现:如果两个集合中的元素完全相同,那么这两个集合是相等的.结论:1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,…集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…2、元素与集合的关系a是集合A的元素,就说a属于集合A ,记作a∈A ,a不是集合A的元素,就说a不属于集合A,记作a A3、集合的中元素的三个特性:(1).元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

1.1.1-1集合的含义与表示知识要点

1.1.1-1集合的含义与表示知识要点

1.1.1-1集合的含义与表示知识要点 一知识要点1.集合的概念(1)集合:一般地,一定范围内某些确定的、不同的对象的全体构成为一个集合(set )。

常用大写的拉丁字母来表示,如集合A 、集合B 。

(2)元素:集合中每个对象称为该集合的元素(element ),简称元素常用小写的拉丁字母来表示,如a 、b 、c ……2.关于集合的元素的特征(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:集合中的元素是无先后顺序的,也就是说,对于一个给定的集合,它的任何两个元素可以交换位置.3.常用数集及记法(1)自然数集:全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:自然数集内排除0的集合记作N *或N + ,{},3,2,1*=N (3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q(5)实数集:全体实数的集合记作R .4.集合元素与集合的关系用“属于”和“不属于”表示;(1)如果a 是集合A 的元素,就说a 属于(belong to)A ,记作a ∈A .注意“∈”的开口方向,不能把a ∈A 颠倒过来写(2)如果a 不是集合A 的元素,就说a 不属于(not belong to)A ,记作a ∉A5.集合的表示方法:集合的表示方法,常用的有列举法和描述法(1)列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{x 2,3x+2,5y 3-x ,x 2+y 2},…;各元素之间用逗号分开。

注:1.大括号不能缺失.2.有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:{1,2,3, (100)自然数集N :{1,2,3,4,…,n ,…}3.区分a 与{a }:{a }表示一个集合,该集合只有一个元素.a 表示这个集合的一个元素.4.用列举法表示集合时不必考虑元素的前后次序.相同的元素不能出现两次.(2)描述法:把集合中的所有元素都具有的性质(满足的条件)表示出来,写成{|()}x p x 的形式。

1.1.1集合的含义与表示(一)

1.1.1集合的含义与表示(一)

---------------------------------------------------------------最新资料推荐------------------------------------------------------1.1.1集合的含义与表示(一)【教材分析】集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础.课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义,课本注重体现逻辑思考的方法,如抽象、概括等. 【学情分析】由于本小节的新概念、新符号较多,建议教学时先引导学生阅读课本,然后进行交流,让学生在阅读与交流中理解概念并熟悉新符号的使用.在信息技术条件较好的学校,可以利用网络平台让学生交流学习概念后的认识;也可以由教师给出问题,让学生读后回答问题,再由教师给出评价.这样做的目的是培养学生主动学习的习惯,提高阅读与理解、合作与交流的能力.在处理集合问题时,根据需要,及时提示学生运用集合语言进行表述. 【教学目标】 1、了解集合与元素的含义并总结集合中元素的特性。

2、知道元素与集合的关系并会用符号表示。

3、熟记常用数集的记法。

【教学重点】了解集合与元素的含义并总结集合中元素的特性。

【教学难点】知道元素与集合的关系并会用符号表示【教学课时】 1 课时【教学方法】自主探究、互助学习【教学过程】教师活动学生活动设计意图问题一:阅读教材p2思考栏目之前的内容,写出集合和元素的定义,并1 / 3举出实例。

问题二: 阅读教材p2思考下方及p3思考之前的内容,并回答以下问题: (1)高一某班的高个子、年轻人、接近0的数能构成集合吗?(2)1,2,3,4,1组成的集合有五个元素,对吗?(3)一个班重新调整座次之后,是否还是原来的班集体?由以上三个问题,你能总结出集合的三个特性吗?并回答基础题1题问题三:阅读教材p3思考下三段内容,回答以下问题: (1)高一1班的同学组成集合A,a是1班的学生,b不是1班的学生,那么a与A,b与A之间分别有什么关系?(2)你能记住常见数集及表示符号吗?(3)若N a,但N a,那么a为何值?【主题】1.1.1 集合的含义与表示(一)时间 2019.8.29 【使用时间】第 1 周第 1 课时【编辑】毛庆龄张建廷【审核】赵红玲【编号】10220191【使用时间】第 1 周第 1 课时【编辑】毛庆龄张建廷【审核】赵红玲【编号】10220191 达标检测: 基础题达标检测: 基础题 1、判断下列对象能否组成一个集合?(1)河津二中高一年级全体男生(2)2019年世界杯足球赛参赛的国家(3)某个班级中年龄较小的所有同学(4)的所有近似值(5)大于3的所有自然数 2、完成课本第5页练习1题,第11页习题A组1、2题。

1.1集合的概念及表示

1.1集合的概念及表示

1.1集合的概念及表示【知识储备】1.集合的概念(1)含义:一般地,我们把所研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).(2)集合相等:只要构成两个集合的元素是一样的,即这两个集合中的元素完全相同,就称这两个集合相等.[知识点拨]集合中的元素必须满足如下性质:(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于或不属于这个集合是确定的,要么是该集合中的元素,要么不是,二者必居其一.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合中的元素是没有顺序的,比如集合{1,2,3}与{2,3,1}表示同一集合.2.元素与集合的关系关系概念记法读法属于如果a是集合A中的元素,就说a属于集合Aa∈A a属于集合A不属于如果a不是集合A中的元素,就说a不属于集合Aa∉A a不属于集合A[知识点拨]符号“∈”和“∉”只能用于元素与集合之间,并且这两个符号的左边是元素,右边是集合,具有方向性,左右两边不能互换.3.集合的表示法(1)自然语言表示法:用文字语言形式来表示集合的方法.例如:小于3的实数组成的集合.(2)字母表示法:用一个大写拉丁字母表示集合,如A,B,C等,用小写拉丁字母表示元素,如a,b,c等.常用数集的表示:名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R(3)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(4)描述法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.【题型精讲】【题型一集合概念的理解】必备技巧判断一组对象是否能构成集合的三个依据判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.例1下列对象中不能构成一个集合的是()A.某校比较出名的教师B.方程−2=0的根C.不小于3的自然数D.所有锐角三角形例2(多选)下列各组对象能构成集合的是()A.拥有手机的人B.2024年高考数学难题C.所有有理数D.小于π的正整数【题型精练】1.给出下列说法:①在一个集合中可以找到两个相同的元素;②好听的歌能组成一个集合;③高一(1)班所有姓氏能构成集合;④把1,2,3三个数排列,共有6种情况,因此由这三个数组成的集合有6个.其中正确的个数为()A.0B.1C.2D.32.下列各组对象中能构成集合的是()A.充分接近的实数的全体B.数学成绩比较好的同学C.小于20的所有自然数D.未来世界的高科技产品【题型二用列举法表示集合】例3用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(+1)(2−4)=0的所有实数根组成的集合;(3)一次函数=2与=+1的图象的交点组成的集合.【题型精练】1.用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A;(2)方程2−9=0的实数根组成的集合B;(3)一次函数=+2与=−2+5的图象的交点组成的集合C.2.用列举法表示下列集合.(1)不大于10的非负偶数组成的集合A;(2)小于8的质数组成的集合B;(3)方程22−−3=0的实数根组成的集合C;(4)一次函数=+3与=−2+6的图象的交点组成的集合D.【题型三用描述法表示集合】必备技巧利用描述法表示集合的关注点(1)写清楚该集合代表元素的符号.(2)所有描述的内容都要写在花括号内.(3)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例4用适当的方法表示下列集合:(1)方程组2314,328x y x y -=⎧⎨+=⎩的解集;(2)方程2210x x -+=的实数根组成的集合;(3)平面直角坐标系内所有第二象限的点组成的集合;(4)二次函数2210y x x =+-的图象上所有的点组成的集合;(5)二次函数2210y x x =+-的图象上所有点的纵坐标组成的集合.【题型精练】1.用描述法表示下列集合:(1)不等式3+2>5的解集;(2)平面直角坐标系中第二象限的点组成的集合;(3)二次函数=2−2+3图象上的点组成的集合.(4)平面直角坐标系中第四象限内的点组成的集合;(5)集合1,12,13,14(6)所有被3整除的整数组成的集合;(7)方程2++1=0的所有实数解组成的集合.2.试说明下列集合各表示什么?1|A y yx ⎧⎫==⎨⎬⎩⎭;{|B x y ==;()1,|C x y y x ⎧⎫==⎨⎬⎩⎭(),|13y D x y x ⎧⎫==⎨⎬-⎩⎭;{}0,1E x y ===;{}1,1F x y x y =+=-=-.【题型四元素与集合的关系】必备技巧判断元素和集合关系的两种方法(1)直接法:集合中的元素是直接给出的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.例5用符号“∈”或“∉”填空:(1)0______∅;(2)2-_______2{|5}x x <;(3)(2,3)_______{(,)|23}x y x y +=;(4)2017_______{|41,}x x n n =-∈Z .例6(吉林长春市期中)已知集合M=6*,5a N a ⎧∈⎨-⎩且}a Z ∈,则M 等于()A .{2,3}B .{1,2,3,4}C .{1,2,3,6}D .{1-,2,3,4}【题型精练】1.(多选)(浙江高一期末)若集合{}22|,,A x x m n m n ==+∈Z ,则()A .1A∈B .2A∈C .3A∈D .4A∈2.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是()①1+;;A .4B .3C .2D .1【题型五确定集合中的元素】必备技巧确定集合中的元素(1)充分理解集合的描述法,(2)注意检验元素互异性.例7(1)(山东济南高一期末)已知集合(){},2,,A x y x y x y N =+≤∈,则A 中元素的个数为()A .1B .5C .6D .无数个(2)集合*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭中含有的元素个数为()A .4B .6C .8D .12例8(1)(江苏苏州市期中)设集合{123}{45}}A C x B y x A y B ===+∈∈,,,,,,,则C 中元素的个数为()A .3B .4C .5D .6(2)(江苏南通市月考)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为()A .9B .10C .12D .13(3)(黑龙江大庆市期中)由实数2,,|,x x x -所组成的集合,最多可含有()个元素A .2B .3C .4D .51.若集合()(){}326A x N x x =∈--<,则A 中的元素个数为()A .3B .4C .5D .62.若集合{}0123A =,,,,()}{,,B x y x A y A x y A =∈∈-∈,,则B 中所含元素的个数为()A .4B .6C .7D .103.(青海高一月考)已知集合{1,2,3,4,5}A ={},(,),,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为()A .3B .6C .8D .10【题型六元素特性中的求参问题】必备技巧利用集合中元素的确定性、互异性求参数的策略及注意点(1)策略:根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对求得的参数值进行检验.(2)注意点:利用集合中元素的互异性解题时,要注意分类讨论思想的应用.例9(上海市进才中学高一期末)已知集合22{2,(1),33}Aa a a =+++,且1A∈,则实数a 的值为________.例10(山东济南月考)已知集合{}2210,A x ax x a R =++=∈.(1)若A 中只有一个元素,求a 的值;(2)若A 中至少有一个元素,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围.1.(吴起高级中学高一月考)若{}22111a a ∈++,,,则a =()A .2B .1或-1C .1D .-12.已知{}222,(1),33A a a a a =++++,若1A∈,则实数a 构成的集合B 的元素个数是()A .0B .1C .2D .33.(云南丽江市期末)若集合2{|210}A x kx x =++=中有且仅有一个元素,则k 的值为___________.。

高一数学必修1第一章知识点总结

高一数学必修1第一章知识点总结
二.函数的性质 1.函数的单调性(局部性质) (1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任 意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在 区间D上是增函数.区间D称为y=f(x)的单调增区间.
如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数
关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
1) 凑配法
2) 待定系数法
3) 换元法
4) 消参法
10.函数最大(小)值(定义见课本p36页)
时,都
有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为
y=f(x)的单调减区间.
注意:函数的单调性是函数的局部性质;
(2) 图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在
这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右
是上升的,减函数的图象从左到右是下降的.
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字 母无关);②定义域一致 (两点必须同时具备) (见课本21页相关例2) 2.值域 : 先考虑其定义域 (1)观察法 (2)配方法 (3)代换法 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐 标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A) 的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以

1-1-1集合的含义与表示

1-1-1集合的含义与表示

[分析] 首先搞清楚集合的元素是什么,然 后选用适当的方法表示集合.
[解析] (1){1,2,3,4,6,8,12,24}; (2){大于3小于10的整数}={x∈Z|3<x<10} ={4,5,6,7,8,9}; (3){x|x2+ax+b=0}; (4){(x,y)|x<0且y>0};
(5)∵ x+3≥0,|y-2|≥0,
[解析]
(1)∵1 是 A 的元素∴1 是方程 ax2+2x+1=0
的一个根,∴a×12+2×1+1=0,即 a=-3, ∴方程即为-3x2+2x+1=0, 1 1 ∴x1=1,x2=- ,∴集合 A 中的其它元素为- . 3 3 (2)若 a=0,方程化为 2x+1=0,此时有且仅有一个根 1 x=-2;
若a≠0,则当且仅当方程的判别式Δ=4-4a =0,即a=1时,方程有两个相等的实根x1 =x2=-1,此时集合A中有且仅有一个元 素, ∴所求集合B={0,1}; (3)集合A中至多有一个元素包括两种情况: ①A中有且只有一个元素,由(2)知此时a=0 或a=1; ②A中一个元素也没有,即A=∅,此时a≠0, 且Δ=4-4a<0,∴a>1; 综合①、②知所求a的取值范围是{a|a≥1或a
[例2] 若x∈{1,3,x3},则有 ( ) A.x=0或x=-1B.x=-1或x=3 C.x=0或x=-1或x=3D.x=0或x=3 [答案] C [解析] ∵x∈{1,3,x3} ∴x=1或3或x3 当x=x3时x=0,±1,由于x3≠1,3, ∴x≠1,故x=0,-1,3,故选C.
[例3] 若集合{-1,|x|}与{x,x2}相等,求 实数x的值. [解析] ∵{-1,|x|}与{x,x2}两集合相等, ∴两集合含有相同的元素 即{x,x2}一定含有-1这个元素 由于x2≥0,∴x=-1.

1.1.1集合的含义与表示

1.1.1集合的含义与表示
解 : (1)设方程x 2 − 2 = 0的实数根为x, 并且满足条 件x 2 − 2 = 0, 因此, 用描述法表示为 A = {x ∈ R | x 2 − 2 = 0}. 方程 x − 2 = 0有两个实数根 2 ,− 2 , 因此,
2
用列举法表示为A = { 2 ,− 2}.
(2)设大于 小于20的整数为 , 它满足条件 ∈ Z 10 x x 且10 < x < 20,因此, 用描述法表示为 B = {x ∈ Z | 10 < x < 20}. 大于 小于20的整数有 ,12,13,14,15,16,17,18, 10 11 19,因此, 用列举法表示为 B = {11,12,13,14,15,16,17,18,19}.
我们以前已经接触过的集合: 我们以前已经接触过的集合
自然数集合,正分数集合,有理数集合; 自然数集合,正分数集合,有理数集合; 到角的两边的距离相等的所有点的集合; 到角的两边的距离相等的所有点的集合;
是角平分线
到线段的两个端点距离相等的所有点的集合; 到线段的两个端点距离相等的所有点的集合;
是线段垂直平分线
1.1.1 集合的含义与表示
1、集合的含义: 、集合的含义:
把研究对象统称为元素, 把研究对象统称为元素,把一些 元素 元素组成的总体叫做集合 简称集)。 集合( 元素组成的总体叫做集合(简称集)。 用大写字母A, , 表示集合, 用大写字母 ,B,C…表示集合,用 表示集合 小写字母a,b, 小写字母 ,c …表示集合中的元素 表示集合中的元素
2、 若方程x2-5x+6=0和方程 若方程x 5x+6=0和方程 x2-x-2=0的解为元素的集合 则 2=0的解为元素的集合M,则 的解为元素的集合 M中元素的个数为 ( C) 中元素的个数为 A.1 . B.2 . 3、已知集合 、 C.3 . D.4 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合元素具有确定性、互异性、无序性
⑴确定性-因集合是由一些元素组成的总体,当然,我 们所说的“一些元素”是确定的.
⑵互异性-即集合中的元素是互不相同的,如果出现 了两个(或几个)相同的元素就只能算一个,即集合中的 元素是不重复出现的. ⑶无序性-即集合中的元素没有次序之分.集合的相等
3.集合与元素的记法: 集合常用大写字母A,B,C,D……表示; 元素常用小写字母a,b,c,d……表示;
1、列举法: 把集合的元素一一列举出来,并用花括号括起来表示 集合.
例2 用列举法表示下列集合:
(1) 小于10的所有自然数组成的集合;
(2)由方程 x2 x 的所有实数根组成的集合
(3) 由1~20以内的所有质数组成的集合.
(4)不等式 x 7 3 的解集???
x73
2、描述法:用集合所含元素的共同特征表示集合.
➢ 特殊数集的表示法:
非负整数集(或自然数集):记作N;
正整数集:记作N*或N+; 整数集:记作Z; 有理数集:记作Q;
实Hale Waihona Puke 集:记作R.4.元素和集合的关系: 如果a是集合A的元素,就说a属于集合A, 记作a A,
如果a不是集合A的元素,就说a不属于集合A, 记作a A,
P5练习1
二、集合的表示法
作业 1.课本习题1.1 A组1-4做在书上
1.1.1集合的含义与表示
在小学和初中,我们已经接触过一些集合. 例如,自然数集合,有理数集合,不等式x-7<3的 解的集合,到定点的距离等于定长的点的集合, 到一条线段的两个端点距离相等的点的集 合……
(1)中国的四大发明; (2)1~20以内的所有质数; (3)所有的正方形; (4)不等式x-5<9的解集; (5)方程x2+3x-2=0的所有实数根; (6)崇仁中学2015年9月入学的所有的高一学生;
一、集合的含义
1、集合的概念:
一般地,我们把研究对象统称为元素 (element),把一些元素组成的总体叫做集合 (set),简称集.
例1.判断下列对象是否组成集合 (1)大于3小于11的偶数; (2)高一(5)班个子高的同学; (3)全国的小河流; (4)方程x2-3x+2=0的所有实数根.
2、集合中元素具有的几个特征
形式如 :{ | }
例3 试用列举法和描述法表示下列集合:
(1)方程x2 2 0的所有实数根组成的集 合; (2) 由大于10小于20的所有整数组成的集合.
例4.用恰当的方法表示以下集合 (1)小于5的所有自然数组成的集合; (2)方程x2=x的所有实数根组成的集合; (3)大于10小于20的所有实数组成的集合; (4)不等式x-2<13的解集.
集合的表示
表示方法
自然语言
集合语言
列举法 描述法
一般情况,对有限集,在元素不太多的情况下,宜 采取列举法,它具有直观明了的特点;
注意元素的互异性
对无限集,一般采用描述法表示.
P5练习2
课堂小结
1.集合的定义;
2.集合元素的性质:确定性,互异性,无序性; 3.数集及有关符号; 4. 集合的表示方法;
相关文档
最新文档