1.1.1集合的含义与表示
1.1.1集合的含义与表示

作业
教材P.11
T1~4.
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
目 录/contents
1. 什么是学习力 2. 高效学习模型 3. 超级记忆法 4. 费曼学习法
费曼学习法-实操
第四步 循环强化
什么是学习力
什么是学习力-你遇到这些问 题了吗
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人 学得慢
总是 比别人学得差 不会举一反三
什么是学习力含义
学习知识的能力 (学习新知识 速度、质量等)
管理知识的能力 (利用现有知识 解决问题)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学 习方式
• 例3:已知A={a-2,2a2+5a,10},且 -3∈A,求a。
例4若A={x|x=3n+1,n ∈ Z}, B= {x|x=3n+2,n ∈ Z} C={x|x=6n+3,n ∈ Z}
(1) 若c ∈ C,问是否有a ∈ A,b ∈ B,使得 c=a+b; (2)对于任意a ∈ A,b ∈ B,是否 一定有a+b ∈ C ?并证明你的结论;
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
【数学】1.1.1集合的含义与表示

3、元素与集合的关系
关系 元 素 与 集 合 的 关 系 概念 记法 读法
如果a是集合A中的 于 属于 元素,就说a属于集 a∈A 集合 合A 如果a不是集合A中 不 的元素,就说a不属 a∉A 属于 于集合A
a属 A a不 A
属于 集合
4、常用的数集及记法 名称 意义 记法 非负整数集 全体非负整数组成的 N (自然数集) 集合 所有正整数组成的集 * 正整数集 N 或N+ 合 整数集 有理数集 实数集 全体整数组成的集合 全体有理数组成的集 合 全体实数组成的集合 Z Q R
练习2:已知集合A={a+2,(a+1)2,a2+3a +3},若1∈A,求实数a的值.
解:若a+2=1,则a=-1,所以A={1,0,1}, 与集合中元素的互异性矛盾,应舍去; 若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3},满足题意. 当 a =- 2 时, A = {0,1,1} ,与集合中元素的互 异性矛盾,舍去; 若a2+3a+3=1,则a=-1或a=-2(均舍去). 综上可知,a=0.
例4
用适当的方法表示下列集合.
* *
(1)A={(x,y)|x+y=4,x∈N ,y∈N };
6 ; ∈ Z| x ∈ N (2)B= 1+x
(3)方程 x +y -4x+6y+13=0 的解集; (4)平面直角坐标系中所有第二象限的点.
先明确集合中元素的特点,再选择 适当的方法来表示.
(4)我国古代四大发明; (5)抛物线y=x2上的点.
知识梳理: 1、定 义 一般地, 指定的某些对象的全体称 为集合. 集合中每个对象叫做这个集合的元素.
2、集合与元素 (1)、元素:一般地,我们把研究对象统 称为元素,元素常用小写拉丁字母 a , b , c„表示. (2)、集合:把一些元素组成的总体叫做 集合 ( 简称集 ) ,集合通常用大写拉丁字 母A,B,C,„表示. (3)、集合元素的三个特性:确定性、互 异性、无序性.
1.1.1集合的含义与表示

3≠x 3 ≠ x ²- 2x x ≠ x ²- 2x 解得x ≠ -1, x ≠ 0,且x ≠ 3
讨论题2: 集合A={1,3,5}与集合 B={3,1,5}是同一集合吗?
解:根据集合的三要素,可以知道两个 集合是同一集合.
讨论题3: 若{1,2}={a-2,2h},则求 a, h?
知识要 点
集合的表示方法之二: 像这样把集合的元素一一列举出来,并用花括号 “{ }”括起来表示集合的方法叫做列举法.
课堂检测: 用列举法表示下列集合: (1)小于10的所有自然数; (2)方程 x2 + 3x + 2 = 0 的解; (3) 小于10的所有奇数.
解:(1)A={0,1,2,3,4,5,6,7,8,9}
1.地球上的七大洲这一集合可以表示成什么呢? 2. 12的所有约数可以表示成什么呢? 3.方程x-1=0的解的集合可以表示成什么呢?
1.地球上的七大洲可表示为{亚洲,非 洲,南极洲,北美洲,南美洲,欧 洲,大洋洲}.
2.12的所有约数可表示为{1,2,3, 4,6,12}.
3.方程x-1=0的解集可以表示为{1}.
⑵ 方程 x2 5x 6 0的解集.
用列举法表示集合时,不必考虑
分析 这两. 个元集素合的都排是列有顺序限,集但是.列举的元素 (1)题的元素不可能以出现直重接复列.举出来; (2)题的元素需要解方程 x2 5x 6 0 得到.{-1,6}.
高教社
课堂练习:P5,上,练习。3
个元素,求a的值和这个元素.
解:A中只有一个元素, (1)当a=0时,4x+4=0,x=4
A={-1};
(2)当a 0时, 16-16a=0,a=1 即x2+4x+4=0 ,x=-2 A={-2}.
1.1.1集合的含义与表示

设 是集合A上的一个运算,若对任意a,b ,有a b ,则称A对运算 封闭,若集合A是由正整数的平方组成的集合,即A={1,4,9,16,25,…}.若 分别是;①加法,②减法③乘法,④除法,则A对运算 封闭的序号有.
10.求参数的取值范围
(1)已知集合元素个数求参数问题的解题策略:已知集合中元素的个数,求参数的值或取值范围时,关键是对集合的表示方法灵活掌握,弄清其实质,即集合中的元素是什么.
高考水平突破:
1、由a,-a,|a|, 构成的集合中,最多含有元素的个数是().
A. 1个B. 2个C. 3个D. 4个
2、含有三个实数的集合可表示为{a, ,1},也可表示为{a2,a+b,0},则a2013+b2014=()
A. 0B. 1 C.-1 D. 2
3、已知x,y都是非零实数,z= + + 可能的取值组成集合A,则().
(2)集合问题方程化的思想:对于一些已知某个集合(此集合中涉及方程)中的元素个数,求参数的问题,常把此集合的问题转化为方程的解的问题.
(3)集合与方程的综合问题,一般要求对方程中最高次项的系数的取值进行分类讨论,确定方程的根的情况,进而求得结果.需特别关注判别式在一元二次方程的实数根个数的讨论中的作用.
集合中的元素,必须具备确定性、互异性、无序性。反过来,一组元素若不具备这三个特性,则这组对象也就不能构成集合。故集合中元素的这三个特性是判断指定对象是否构成集合的元素。
例题2判断下列说法是否正确,并说明理由。
(1)全体高个子的中国人构成一个集合;
(2)由1, , ,|- |, 组成的集合有五个元素;
D.上海的所有高楼
2、已知A={x|3-3x>0},则有().
高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集
集
Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.
1.1.1 集合的含义与表示

有理数于3小于11的偶数; { 4,6,8,10 } A=
②1∼10以内的奇数;
1、列举法 B= { 1,3,5,7,9 }
就是将集合中的元素一一列举出来并放在 大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内; 3、别忘了大括号。
例1.用列举法表示下列集合: (1)小于10的所有自然数组成的集合 (2)方程
{ x | p(x) }
x为该集合的 代表元素 p(x)表示该集 合中的元素x 所具有的性 质
例如:x―7<3的解集可以表示为:
{x∈R|x<10}
例2.用描述法表示下列集合:
1. 小于10的所有有理数组成的集合; 2. 所有偶数组成的集合; 2 3. 二次函数 y x 2 的函数值组成 的集合; 2 4. 抛物线 y x 2 上的点组成的 集合;
4、集合与元素的关系:
若a是A中元素,记为
a A,
若a不是A中元素,记为
a A
5、有限集:元素个数有限的集合. 无限集:元素个数无限的集合.
集合的三种表示方法:
1、列举法:
2、描述法:
3、图示法:
集合中元素具有 确定性 互异性 无序性
一般 地:我们用小写拉丁字母a,b,c…表示元 素,用大写拉丁字母A,B,C,…表示集合.
若a是A中元素,记为 a A 若a不是A中元素,记为 a A
1、常见数集的表示
N:自然数集(含0)即非负整数集 N+或N*:正整数集(不含0) Z: 整数集
Q:
R:
练习,用适当的方法表示下列集合
1. 小于100的自然数组成的集合; 2. 不等式 2 x 3 3x 的解集 2 3. 方程 x x 6 0 的解集
1.1.1集合的含义与表示

一、集合的含义 1.什么是集合?
一般的,我们把研究对象统称为元素,把一些元 素组成的总体叫做集合(简称为集)。
元素:用小写字母a,b,c...表示 集合:用大写字母A,B,C...表示
2.集合与元素的关系 • 如果a是集合A的元素,就说a属于集合A,记作 a A 如果a不是集合A中的元素,就说a不属于集合A,
• 正整数集:N*或N+ • 整数集:Z
• 有理数集:Q
• 实数集:R
二、集合的表示
• 列举法:把集合的元素一一列举出来,写在大括号内 注:1.元素之间要用逗号隔开 2.元素不能重复
如:地球上的四大洋组成的集合表示为{太平洋,大西洋, 印度洋,北冰洋}
方程(x 1)( x 2) 0 组成的集合表示为{1,-2}
梦 境
集合? 例:(1)1~20内的所有整数 1,2,3,4,5..... • (2)亚洲的所有国家 中国,韩国,日本,印度..... • (3)所有的正方形 • (4)方程x2 3x 2 0 的所有实数根 - 1 , - 2 • (5)化德一中2020年9月入学的所有高一学生
二、集合的表示
• 描述法:用集合所含元素的共同特征表示集合 注:集合的代表元素
如:不等式 x 7 3的解集,共同特征:x R ,且 x 7 3
集合表示为:{x R x 10}
列举法主要针对集合中元素个数较少的情况,而描述法 主要适用于集合中的元素个数无限或不宜一一列举的情况
记作 a A
• 例:1~20内的所有素数记为集合A,则 3 A,4 A
素数:除1和它本身外,不能被其他自然数整除的 数。
判断下列对象能否组成集合: • 1.小于6的正整数 • 2.大于3小于11的偶数 • 3.中国男子足球队中技术很差的队员 • 4.中国的富翁 • 5.爱好足球的人 • 6.世界上所有的高山
1.1.1集合的含义及表示

考点:元素与集合的关系
一、用合适的符号填空 1、已知A表示大于1且小于10的 所有质数,则 1___A; 2___A;4___A;5___A 2、用P表示我国的直辖市,则 广州___P;重庆___P;北京___P
四、常用数集的符号表示(熟记)
N 正整数集: 或N
整数集:Z 自然数集:N
有理数集:Q
{, 12 }与{, 21 }是相同的集合√ { }与{ 是相同的集合 3.14 }
×
二、集合的概念和性质
3、集合相等:两个集合中的元素 完全相同
{, 12 }与{, 21 }是相同的集合 {1 2 , {, }= 2 1 }
三、元素与集合的关系
1、元素与集合的表示 元素:用a,b,c…表示 集合:用A,B,C…表示 2、元素与集合的关系: 属于,不属于 符号表示:a A, a A
一、接触过的集合的概念
垂直平分线:到线段两端点的距 离相等的点的集合
角平分线:到角两边的距离相等的 点的集合 圆:到定点的距离等于定长的点 的集合
学过的数集: 自然数集→ 整数集 →有理数集→ 实数集 → Z → Q → R N
注: 1、正整数集与自然数集的区别 2、研究的每一个对象称为元素; 这些元素的全体则构成一个集合
实数集:R
五、分析与研究
1、给出下列四个关系:
3 R,0.7 Q,0 {0},0 N
其中正确的个数是_______ A、1 B、2 C、3 D、4
2、下列四个命题:
(1)集合N中最小的元素是1
若 (2) a N , 则
小值是2
a N
(3)若a N , b N ,则a+b中的最 (4) x 4 4 x 的解集是{2,2}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级姓名
第一章集合与函数概念
§1.1.1集合的含义与表示
【预习要点】
1、初步理解集合的含义,了解集合元素的性质。
2、知道常用数集及其记法。
3、了解“属于”关系的意义。
4、了解有限集、无限集、空集的意义。
5、集合的两种表示方法.
【预习要求】
1、能判断元素与集合的关系。
2、记忆并运用常用数集符号。
3、能够运用集合元素的基本性质辨析集合问题。
4、能选择适当的方法正确的表示一个集合。
【知识再现】
1、回顾数集的分类。
2、圆是怎样定义的?
【概念探究】
阅读课本2页到5页练习上方,完成下列问题
1、集合是怎样定义的?什么叫做集合的元素?
2、回忆一下初中所学知识,你还能举出哪些集合的例子?
3、集合通常用怎样的符号来表示?元素习惯上用什么符号来表示?
元素与集合是什么关系?其关系用什么符号表示?
4、空集是怎样定义的?用什么符号来表示?
5、集合中的元素有哪些特征?思考:你能否确定,你所在班级中,高个子同学的构成的集合?你能否确定你所在班级中最高的3位同学构成的集合?并说明理由
6、根据集合含有元素的个数可以把集合分为哪几类?你能否再举出一些有限集和无限集的例子?
7、常用数集用什么符号表示?自然数集;正整数集;整数集;有理数集;实数集;
8、何为列举法、描述法?在用列举法和描述法表示一个集合时应分别注意什么问题?你能总结一下什么样的集合用列举法好?什么样的集合用描述法好吗?
【例题解析】
例1、下面的各组对象能组成集合的是
(1)正三角形的全体
(2)血压很高的人
(3)鲜艳的颜色
(4)某校2008级高一新生
(5)所有数学难题
(6)所有不大于3,不小于0的整数
(7)充分接近100的全体实数
例2、用“=”、“>”、“<”、“∈”、“∉”填空
(1)3.14 Q;(2
;(3)0 *
N;(4;
(5)π 3.14;(6)0 N;(7)0 φ;
【巩固提高】
1、已知集合A=2
{2,25,12}
a a a
-+,且3-∈A,求实数a的值。
2、当a、b满足什么条件时,方程0
ax b
+=的解构成的集合为(1)、有限集(2)、无限集(3)、空集?
【课堂检测】
1、下列各组对象不能形成一个集合的是( )
A 、大于2的所有整数
B 、所有无理数
C 、正实数
D 、《数学第一册》中的所有难题 2、已知集合M 是由1,2,3构成的,则下列表示方法正确的是( ) A 、2M ∉ B 、1M ∉ C 、1M ∈ D 、1M ∈或1M ∉
3、给出下列关系:(1)1
2
R ∈;(2
Q ;(3)3N -∉;(4
)Q 其中正确的个数是( )
A 、1
B 、2
C 、3
D 、4
4、下列集合中,不同于另外三个集合的是( )
A.{}1=x x
B.{}
0)1(2=-y y C.{}1=x D.{
}1 5、集合M=⎭
⎬⎫⎩⎨⎧∈+=∈Z x x y Z y ,38
的元素个数是( )
A.2
B.4
C.6
D.8
6、数集2{1,,}x x -中的x 不能取哪些数。
7、已知m N ∈且(8)m N -∈,则m 的可能值为
8、集合A={}51≥+m m ,B={}522++=x x y y ,则A,B (填”是”,”否”)表示同一集合. 9.用列举法表示A={}Z x x x y y ∈≤+=,2,12
= .
10、设{},0552=--∈-ax x x 则集合{}
042=--a x x x 中所有元素之和为 . 11、判断对错:
(1)m N ∈,n N ∈且m n ≠,则m n +的最小值是2 ( ) (2)a Z ∈,b Z ∈则a b Z +∈ ( ) (3)“个子较高的人”不能构成集合 ( ) (4)若a N ∈,则21a ≥ ( )
12、设A 表示集合2{2,3,23}a a +-,B 表示集合{3,2}a +,若已知5A ∈,且5B ∉,
求实数a 的值。
13、已知A={},2x q px x x =++B={}
3)1()1(2+=+-+-x q x p x x ,当A={}2时, 求集合B
思考:你能说一说{}0Φ和的异同么?{}ΦΦ和是什么关系呢?
若B={}x x A =,则A 与B 是何关系?。