《核反应堆物理分析》名词解释及重要概念整理

合集下载

核反应堆物理分析复习总结

核反应堆物理分析复习总结

第七章
• 核燃料中重同位素成分随时间的变化(重 同位素的燃耗链及裂变产物链、核燃料中 重同位素的燃耗方程、燃耗方程的解) 裂 变产物中毒(氙-135中毒、钐-149中毒、其 它裂变产物中毒) 反应性随时间的变化与 燃耗深度,核燃料的转换与增殖(转换与 增殖、几种动力堆的燃料循环、核燃料管 理)
第八章
第九章
• 缓发中子的作用,点堆中子动力学,阶跃 扰动时的点堆模型动态方程的解,反应堆 周期(反应堆周期、不同反应性引入时反 应堆的响应特征),点堆动态方程的数值 解法。

第三章
• 单能中子扩散方程(斐克定律、单能扩散 方程的建立、扩散方程的边界条件、斐克 定律和扩散理论的适用范围),非增殖介 质内中子扩散方程的解,扩散长度、慢化 慢长度、徙动长度。
第四章
• 均匀裸堆的单群理论(均匀裸堆的单群扩 散方程及其解、热中子反应堆的临界条件、 各种几何形状的裸堆的几何曲率和中子通 量密度分布、反应堆曲率和临界计算任务、 单群理论的修正),有反射层反应堆的单 群扩散理论(反射层的作用、一侧带有反 射层的反应堆、反射层节省),中子通量 密度分布不均匀系数和中子通量密度分布 展平的概念。
• 反应性温度系数(反应性温度系数及其对核反 应堆稳定性的影响、燃料温度系数、慢化剂温 度系数、其它反应性系数、温度系数的计算), 反应性控制的任务和方式(反应性控制中所用 的几个物理量、反应性控制的任务、反应性控 制的方式),控制棒控制(控制棒作用和一般 考虑、控制棒价值的计算控制棒插入深度对控 制棒价值和功率分布的影响、控制棒间的干涉 效应、控制棒插入不同深度对堆芯功率分布的 影响),可燃毒物控制(可燃毒物的作用、可 燃毒物的分布及其对反应性的影响、可燃毒物 的计算),化学补偿控制。
核反应堆物理分析

黑龙江省考研核科学与技术复习资料核反应堆物理重要理论解析

黑龙江省考研核科学与技术复习资料核反应堆物理重要理论解析

黑龙江省考研核科学与技术复习资料核反应堆物理重要理论解析核反应堆物理是核科学与技术中的重要核心内容,对于核能产业的发展和核安全的保障具有至关重要的作用。

本文将从核反应堆物理的基本概念、反应堆参数的描述、物质的相变与核反应堆物理的关系、核反应堆稳定性和安全性等方面进行解析,以帮助考研核科学与技术的学习者更好地复习核反应堆物理知识。

一、核反应堆物理基本概念核反应堆物理研究的对象是核反应的发生和发展规律,其中重要概念包括核裂变、核聚变、裂变能和聚变能等。

核裂变是指原子核分裂成两个或多个较轻的碎片核的过程,核聚变则是多个核聚集成一个较重的新核的过程。

裂变能和聚变能则是裂变和聚变过程中释放出的能量。

二、反应堆参数的描述反应堆物理中,反应堆的参数主要包括功率、中子速度分布、反应性和利用系数等。

功率是指单位时间内的核反应能量,中子速度分布描述从高速中子到低速中子的能量分布情况。

反应性是指反应堆的反应强度和稳定性的度量,而利用系数则是评价反应堆燃料的利用率。

三、物质的相变与核反应堆物理的关系物质的相变是指物质由一种状态转变为另一种状态的过程,核反应堆物理中也涉及到物质的相变问题。

例如,液态金属钠在不同温度下会发生相变,这对于燃料棒的冷却剂起到重要的影响。

物质的相变还与反应堆的热力学性质和动力学过程有关。

四、核反应堆稳定性和安全性核反应堆的稳定性和安全性是核科学与技术中关注的重点,也是核能产业的发展所必需的。

稳定性主要指反应堆在长时间运行的稳定性,而安全性则是指在各种异常情况下保持反应堆的安全运行,防止核事故的发生。

为了达到这一目标,需要进行反应堆的设计和运行控制,以及建立相应的监测和保护系统。

综上所述,核反应堆物理是核科学与技术中的重要内容,对核能产业的发展和核安全的保障至关重要。

通过对核反应堆物理的基本概念、反应堆参数的描述、物质的相变与核反应堆物理的关系、核反应堆稳定性和安全性等方面的解析,有助于考研核科学与技术的学习者更好地理解和掌握核反应堆物理知识。

《核反应堆物理分析》名词解释及重要概念整理

《核反应堆物理分析》名词解释及重要概念整理

第一章-核反应堆的核物理基础直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里发射出来,而中子却留在了靶核内的核反应。

中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反应过程。

非弹性散射:中子首先被靶核吸收而形成处于激发态的复合核,然后靶核通过放出中子并发射γ射线而返回基态。

弹性散射:分为共振弹性散射和势散射。

111001100[]AA A ZZ Z AA Z Z X n X X n X n X n +*+→→++→+微观截面:一个粒子入射到单位面积内只含一个靶核的靶子上所发生的反应概率,或表示一个入射粒子同单位面积靶上一个靶核发生反应的概率。

宏观截面:表征一个中子与单位体积内原子核发生核反应的平均概率大小的一种度量。

也是一个中子穿行单位距离与核发生相互作用的概率大小的一种度量.平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。

核反应率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。

中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内所有中子在单位时间内穿行距离的总和。

多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也逐渐减小,这种现象称为多普勒效应或多普勒展宽。

瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约10—14s)发射出来的,把这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中发射出来的,把这些中子叫缓发中子.第二章-中子慢化和慢化能谱慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。

扩散时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。

平均寿命:在反应堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最后被俘获的平均时间,称为中子的平均寿命.慢化密度:在r 处每秒每单位体积内慢化到能量E 以下的中子数。

核反应堆物理分析各章节重要知识点整理汇总资料

核反应堆物理分析各章节重要知识点整理汇总资料

核反应堆物理分析各章节重要知识点整理汇总资料第一章1、在反应堆内中子与原子的相互作用方式主要有:势散射、直接相互作用和复合核的形成。

其中复合核的形成是中子和原子相互作用的最重要方式。

2、复合核的衰变分解的方式有:共振弹性散射、共振非弹性散射、辐射俘获和核裂变,可以概括为散射和吸收。

3、共振现象:但入射中子的能量具有某些特定值,恰好使形成的复合核激发态接近于某个量子能级时,中子被靶核吸收而形成复合核的概率就显著增加,这种现象就叫作共振现象。

4、非弹性散射特点:只有当入射中子的动能高于靶核的第一激发态的能量时才能使靶核激发,也就是说,只有入射中子的能量高于某一数值时才能发生非弹性散射,由此可知,非弹性散射具有阈能的特点。

5、弹性散射特点:它可以分为共振弹性散射和势散射两种,区别在于前者经过复合核的形成过程,后者则没有。

在热中子反应堆内,对中子从高能慢化到低能的过程起主要作用的是弹性散射。

6、易裂变同位素:一些核素,如233U 、235U 、239Pu 和241Pu 等核素在各种能量的中子作用下均能发生裂变,并且在低能中子作用下发生裂变的可能性较大,通常把它们称为易裂变同位素。

7、可裂变同位素:同位素232Th 、238U 和240Pu 等只有在能量高于某一阈值的中子作用下才发生裂变,通常把它们称为可裂变同位素。

8、中子束强度I :在单位时间内,通过垂直于中子飞行方向的单位面积的中子数量,记为I 。

9、单位体积中的原子核数N :计算公式为AN N ρ0=0N :阿伏加德罗常数,取值为6.0221367*1023/molρ:材料密度A :该元素的原子量10、微观截面σ:微观截面是表示平均一个给定能量的入射中子与一个靶核发生作用的概率大小的一种度量,通常用“巴恩”(b )作为单位,1b=10-28m 2。

11、核反应下标:s--散射;a--吸收;γ--辐射俘获;f--裂变;t--总核反应 12、靶内平行中子束强度:Nx e I x I σ-=0)(13、宏观截面∑:宏观截面是一个中子与单位体积内所有原子核发生核反应的平均概率大小的一种度量,单位为m -1,公式为:σN =∑由几种元素组成的均匀混合物质的宏观截面x ∑:∑=∑ixi i x N σ14、富集度:某种元素在其同位素中的(原子)重量百分比。

核反应堆物理分析

核反应堆物理分析

核反应堆物理分析是核反应堆设计、建造和运行的关键。

核反应堆的反应率、安全性
和经济性等特性都取决于其物理分析的结果。

核反应堆物理分析是一个复杂的系统,它包
括核反应堆热工特性分析、核反应堆稳定性分析、核反应堆安全适当性分析、核反应堆堆
芯及附件物理分析等多个方面的物理分析。

核反应堆热工特性分析是核反应堆的基础物理分析,它是核反应堆经济性、安全性及
其对外界的影响等物理数据的基础。

核反应堆热工特性分析主要包括核反应堆内部热载荷
分析、核反应堆内部温度场分析、核反应堆内部流场分析、核反应堆内部气体场分析、核
反应堆外部热载荷分析等。

核反应堆稳定性分析是核反应堆安全性的重要保障,根据核反应堆稳定性分析的结果,可以判断核反应堆的安全性。

核反应堆稳定性分析的主要内容包括核反应堆内部稳定性分析、核反应堆外部稳定性分析、核反应堆程控反应堆稳定性分析等。

核反应堆安全适当性分析,主要是对核反应堆安全性进行全面分析,对核反应堆的设计、建造和运行都有重要的指导作用。

核反应堆安全适当性分析的主要内容包括核反应堆设计安全性分析、核反应堆安全性实验分析、核反应堆安全性实验扩展分析等。

核反应堆堆芯及附件物理分析,是对核反应堆堆芯及附件的物理结构和性能进行全面
分析,它是核反应堆安全性和可靠性分析的重要基础。

核反应堆堆芯及附件物理分析的主
要内容包括核反应堆堆芯及附件材料物理分析、核反应堆堆芯及附件结构及性能分析等。

核反应堆物理分析是核反应堆设计、建造和运行的重要组成部分,它是核反应堆安全
性及其经济性的重要保障。

核反应堆物理分析的结果可以为核反应堆的设计和运行提供重
要的参考和指导。

核反应堆物理分析复习重点

核反应堆物理分析复习重点

6、 宏观截面:表征一个中子与单位体积内所有原子核发生核反应的平均概率;表征一个中子在介质中穿行 单位距离与核发生反应的概率。单位:1/m 7、 平均自由程 λ: 中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离。或:平均每 飞行λ距离发生一次碰撞。 λ= 1/ 8、核反应率:单位时间、单位体积内的中子与介质原子核发生作用的总次数(统计平均值) 。 9、中子通量密度:表示 1 立方米内所有的中子在 1 秒钟内穿行距离的总和。 10、中子能谱分布:在核反应堆内,中子并不具有同一速度 v 或能量 E,中子数关于能量 E 的分布称为中子 能谱分布。 11、平均截面(等效截面) : 12、截面随中子能量的变化: 一、微观吸收截面: ① 低能区(E<1eV) : :中、重核在低能区有共振吸收现象 ② 高能区(1eV<E<keV) : 重核:随着中子能量的增加,共振峰间距变小,共振峰开始重叠,以致不再能够分辨。因此随 E 的 变化,虽有一定起伏,但变得缓慢平滑了,而且数值甚小,一般只有几个靶。 轻核:一般要兆电子伏范围内才出现共振现象,且其共振峰宽而低。 二、微观散射截面: 弹性散射截面 σe :多数元素与较低能量中子的散射都是弹性的。基本上为常数,截面值一般为几 靶。 轻核、中等核:近似为常数; 重核:在共振能区将出现共振弹性散射。 非弹性散射截面 σin :有阈能的特点,质量数愈大,阈能愈低 三、微观裂变截面: (与重核的吸收截面的变化规律类似) ① 热能区(E<1eV) :裂变截面随中子能量减小而增加,且其截面值很大。 ② 共振区(1eV<E<keV) :出现共振峰 ③ 快中子区(E>keV) :裂变截面中子能量的增加而下降到几靶。 13、描述共振截面变化特性的三个共振参数: 共振能:E0 ; 峰值截面:σ0; 能级宽度 Γ:等于在共振截面曲线上,当 σ= σ0/2 时所对应的能量宽度。 14、单能级布赖特-维格纳公式: r E0 2 辐射俘获共振: r (E) 0 2 2

核反应堆物理分析各章节重要知识点整理汇总资料

核反应堆物理分析各章节重要知识点整理汇总资料

核反应堆物理分析各章节重要知识点整理汇总资料第一章1、在反应堆内中子与原子的相互作用方式主要有:势散射、直接相互作用和复合核的形成。

其中复合核的形成是中子和原子相互作用的最重要方式。

2、复合核的衰变分解的方式有:共振弹性散射、共振非弹性散射、辐射俘获和核裂变,可以概括为散射和吸收。

3、共振现象:但入射中子的能量具有某些特定值,恰好使形成的复合核激发态接近于某个量子能级时,中子被靶核吸收而形成复合核的概率就显著增加,这种现象就叫作共振现象。

4、非弹性散射特点:只有当入射中子的动能高于靶核的第一激发态的能量时才能使靶核激发,也就是说,只有入射中子的能量高于某一数值时才能发生非弹性散射,由此可知,非弹性散射具有阈能的特点。

5、弹性散射特点:它可以分为共振弹性散射和势散射两种,区别在于前者经过复合核的形成过程,后者则没有。

在热中子反应堆内,对中子从高能慢化到低能的过程起主要作用的是弹性散射。

6、易裂变同位素:一些核素,如233U 、235U 、239Pu 和241Pu 等核素在各种能量的中子作用下均能发生裂变,并且在低能中子作用下发生裂变的可能性较大,通常把它们称为易裂变同位素。

7、可裂变同位素:同位素232Th 、238U 和240Pu 等只有在能量高于某一阈值的中子作用下才发生裂变,通常把它们称为可裂变同位素。

8、中子束强度I :在单位时间内,通过垂直于中子飞行方向的单位面积的中子数量,记为I 。

9、单位体积中的原子核数N :计算公式为AN N ρ0=0N :阿伏加德罗常数,取值为6.0221367*1023/molρ:材料密度A :该元素的原子量10、微观截面σ:微观截面是表示平均一个给定能量的入射中子与一个靶核发生作用的概率大小的一种度量,通常用“巴恩”(b )作为单位,1b=10-28m 2。

11、核反应下标:s--散射;a--吸收;γ--辐射俘获;f--裂变;t--总核反应 12、靶内平行中子束强度:Nx e I x I σ-=0)(13、宏观截面∑:宏观截面是一个中子与单位体积内所有原子核发生核反应的平均概率大小的一种度量,单位为m -1,公式为:σN =∑由几种元素组成的均匀混合物质的宏观截面x ∑:∑=∑ixi i x N σ14、富集度:某种元素在其同位素中的(原子)重量百分比。

第一章:核反应堆物理分析讲解

第一章:核反应堆物理分析讲解

2.010 1
9.810 3
3.110 1
1.610 2
6.210 1 7.610 1
3.110 2 3.810 2
9.810 1
4.910 2
2.2
0.11
3.4
0.17
3.9
0.20
4.4
0.22
20
0.98
3.710 2
18
3.110 3
1.610 2
核反应堆是一种能以可控方式产生自持链式裂变 反应的装置。
它由核燃料、冷却剂、慢化剂、结构材料和吸收 剂等材料组成。
链式核反应(nuclear chain reaction):核反 应产物之一能引起同类的反应,从而使该反应能链式 地进行的核反应。根据一次反应所直接引起的反应次 数平均小于、等于或大于1,链式反应可分为次临界的、 临界的或超临界的三种。
9.810 4 1.410 5
4.910 3 6.910 3
1.2中子与原子核相互作用的机理
中子与原子核的相互作用过程有三种:势散射、直接 相互作用和复合核的形成。
在反应堆内,中子与原子核的相互作用可分为两大 类:
2.1 中子的吸收
通常不稳定, β衰变
共振吸收
逃脱共 振吸收? U-238对超热中子的强烈吸收
(新鲜靶):
1.51011 n/s

这在中子应用中已经算是高产额了。


回旋加速器的限制

能量: 102 MeV 级

束流: mA 级 1μA 1.6 1012 p/s

反应
T(d,n) (0.2 MeV)
W(e,n) (35 MeV)
9Be(d,n) (15 MeV)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章—核反应堆的核物理基础
直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里发射出来,而中子却留在了靶核内的核反应。

中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反应过程。

非弹性散射:中子首先被靶核吸收而形成处于激发态的复合核,然后靶核通过放出中子并发射γ射线而返回基态。

弹性散射:分为共振弹性散射和势散射。

111001
100[]A
A A Z
Z Z A
A Z Z X n X X n X n X n +*+→→++→+
微观截面:一个粒子入射到单位面积内只含一个靶核的靶子上所发生的反应概率,或表示一个入射粒子同单位面积靶上一个靶核发生反应的概率。

宏观截面:表征一个中子与单位体积内原子核发生核反应的平均概率大小的一种度量。

也是一个中子穿行单位距离与核发生相互作用的概率大小的一种度量。

平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。

核反应率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。

中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内所有中子在单位时间内穿行距离的总和。

多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也逐渐减小,这种现象称为多普勒效应或多普勒展宽。

瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约10-14s)发射出来的,把这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中发射出来的,把这些中子叫缓发中子。

第二章—中子慢化和慢化能谱
慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。

扩散时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。

平均寿命:在反应堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最后被俘获的平均时间,称为中子的平均寿命。

慢化密度:在r 处每秒每单位体积内慢化到能量E 以下的中子数。

分界能或缝合能:通常把某个分界能量E c 以下的中子称为热中子, E c 称为分界能或缝合能。

第三章—中子扩散理论
中子角密度:在r 处单位体积内和能量为E 的单位能量间隔内,运动方向为Ω的单位立体角内的中子数目。

慢化长度:中子从慢化成为热中子处到被吸收为止在介质中运动所穿行的直线距离。

徙动长度:快中子从源点产生到变为热中子而被吸收时所穿行的直线距离为r M 。

第四章—均匀反应堆的临界理论
反射层的作用:
1. 减少芯部中子泄漏,从而使得芯部的临界尺寸要比无反射层时的小,节省一部分燃料;
2. 提高反应堆的平均输出功率。

反射层材料选取:
1. 散射截面大
2. 吸收截面小
3. 良好的慢化能力
功率分布展平:
1. 芯部分区布置;
2. 可燃毒物的合理布置;
3. 采用化学补偿剂及部分长度控制棒以展平轴向通量分布。

第六章—栅格的非均匀效应与均匀化群常数的计算
空间自屏效应:热中子进入燃料块后,首先为块外层的燃料核所吸收,造成燃料块内部的热中子通量密度比外层的要低,结果使燃科块里层的燃料核未能充分有效地吸收热中子,就是说,块外层燃料核对里层燃料核起了屏蔽作用,通常把这种现象叫做空间自屏效应。

第七章—反应性随时间的变化
慢饱和裂变产物(SSFP ):吸收截面相对较大,浓度随运行时间的增加而缓慢的趋于饱和的; 非饱和裂变产物(NSFP ):截面很小,达不到饱和。

裂变产物中毒:由于裂变产物的存在,吸收中子而引起的反应性变化。

堆芯寿期:一个新装料堆芯从开始运行到有效增值系数降到1时,反应堆满功率运行的时间。

转换比:反应堆中每消耗一个易裂变材料原子所产生新的易裂变材料的原子数
第八章—温度效应与反应性控制
反应性系数:反应堆的反应性相对于反应堆的某个参数的变化率成为该参数的反应性系数。

反应性温度系数:单位温度变化引起的反应性变化。

燃料温度系数:由单位燃料温度变化所引起的反应性变化。

慢化剂温度系数:由单位慢化剂温度变化所引起的反应性变化。

空泡系数:在反应堆中,冷却剂的空泡份额变化百分之一所引起的反应性变化。

功率反应性系数:单位功率变化所引起的反应性变化。

功率亏损:从零功率变化到满功率时反应性的变化。

0
0P PD d dP dP
ρρ∆=⎰ 剩余反应性:堆芯中没有任何控制毒物时的反应性。

控制毒物:控制毒物是指反应推中用于反应性控制的各种中子吸收体。

控制毒物价值:某一控制毒构投入避芯所引起的反应性变化量称为该控制毒物的反肢性或价值。

停堆深度:当全部控制毒物都投入堆芯时,反应维所达到的负反应性。

反应性控制的任务
1. 采取各种切实有效的控制方式,在确保安全的前提下,控制反应堆的剩余反
应性,以满足反应堆长期运行的需要;
2. 通过控制毒物适当的空间布置和最佳的提棒程序,使反应堆在整个堆芯寿期
内保持较乎坦的功率分布,使功率蜂因子尽可能地小;
3. 在外界负荷变化时,能调节反应堆功率,使它能适应外界负荷变化;
4. 在反应维出现事故时.能迅速安全地停堆,并保持适当的停堆深度。

反应堆控制分类
1.紧急控制:当反应堆需要紧急停堆时,反应堆的控制系统能迅速引入一个大
的负反应性,快速停堆,并达到一定的停堆深度。

要求有极高的可靠性。

2.功率调节:当外界负荷或堆芯温度发生变化时,引入一个适当的反应性,以
满足反应堆功率调节的需要。

要求既简单又灵活。

3.补偿控制:反应堆的初始剩余反应性比较大,因而在堆芯寿期初,在堆芯中
必须引入较多的控制毒物。

但随着反应堆运行,剩余反应性不断减小。

为了保持反应堆临界,必须逐渐地从堆芯中移出控制毒物。

反应性控制方式
1.改变堆内种子吸收
2.改变中子慢化性能
3.改变燃料的含量
4.改变中子泄漏
目前反应堆采用的反应性控制方式:
控制棒控制;固体可燃毒物控制;化学补偿控制。

控制棒控制
控制棒控制反应性的快速变化:
1.燃料的多普勒效应;
2.慢化剂的温度效应和空泡效应;
3.变工况时,瞬态氙效应;
4.硼冲稀效应;
5.热态停堆深度。

控制棒材料要求:
1.具有很大的中子吸收截面;
2.要求控制棒材料有较长的寿命;
3.要求控制棒材料具有抗辐照、抗腐蚀和良好的机械性能,价格便宜。

控制棒价值
控制棒积分价值:当控制棒从一初始参考位置插入到某一高度时,所引入的反应性。

控制棒积分价值:控制棒在堆芯不同高度处移动单位距离所引起的反应性变化。

控制棒之间的干涉效应:当一根控制棒插入堆芯后将引起堆芯中中子通量密度分布的畸变,势必会影响其它控制棒的价值。

这种现象称之为控制棒间的相互干涉效应。

可燃毒物控制
可燃毒物材料的要求:
1.具有比较大的吸收截面;
2.要求由于消耗了可燃毒物而释放出开的反应性基本上要与堆芯中由于燃料
燃耗所减少的剩余反应性相等;
3.在吸收中子后,它的产物的吸收截面要尽可能地小;
4.在维芯寿期末,可燃毒物的残余量应尽可能少;
5.要求可燃毒物及其结构材料应具有良好的机械性能。

非均匀布置:非均匀布置的主要特点是在可燃毒物中形成了强的自屏效应,使可燃毒物的有效吸收截面减小。

化学补偿控制
在一回路冷却剂中加入可溶性化学毒物,以代替补偿滓的作用,因此称为化学补偿控制,简称化控。

对化学毒物的要求:
1.能溶解于冷却刑中,化学性质和物理性质稳定;
2.具有较大的吸收截面;
3.对堆芯结构部件无腐蚀性且不吸附在部件上。

化控主要用来补偿的反应性:
1.反应堆从冷态到热态(零功串)时,慢化剂温度效应所引起的反应性变化;
2.裂变同位素燃耗和长寿命裂变产物积累所引起的反应性变化;
3.平衡员和平衡锣所引起的反应性变化。

化控的优点:
1.化学补偿毒物在堆芯中分布比较均匀;
2.化控不但不引起堆芯功率分布的畸变,而且与燃料分区相配合,能降低功率
峰因子,提高平均功率密度;
3.化控中的硼浓度可以根据运行需要来调节,而固体可燃毒物是不可调节的;
化控不占栅格位置.不需要驱动机构,可以简化反应堆的结构,提高反应堆的经济性。

化控的缺点:主要缺点是水中硼浓度的大小对慢化剂温度系数有显著的影响,当水中的硼浓度超过某一值时,有可能使侵化剂温度系数出现正值。

硼微分价值:堆芯冷却剂中单位硼浓度变化所引起的堆芯反应性的变化量。

临界硼浓度:随着反应堆的运行,堆芯中反应性逐渐地减小,所以必须不断的降低硼浓度,使堆芯保持在临界状态。

这时的硼浓度称为临界硼浓度。

第九章—核反应堆动力学
反应堆周期:反应堆内中子密度变化e倍所需要的时间,也称为反应堆时间常数。

倍周期(倍增周期,T d):堆内中子通量密度增长一倍所需的时间。

相关文档
最新文档