材料的应力腐蚀

合集下载

应力腐蚀的特点

应力腐蚀的特点

应力腐蚀的特点
和影响
应力腐蚀是一种金属材料缺陷形成的过程,它是由于应力集中而引起的材料缺陷,是一种不寻常的腐蚀现象。

特点:
1. 应力腐蚀的发生不受腐蚀介质的影响,不需要外部腐蚀介质的存在,但是需要有一定的应力集中。

2. 应力腐蚀的形成受应力的大小和时间的影响,应力越大,腐蚀的速度越快,而且腐蚀的深度也越深。

3. 应力腐蚀的形成不受金属材料的种类的影响,几乎所有的金属材料都可以受到应力腐蚀的影响。

4. 应力腐蚀的形成受温度的影响,温度越高,应力腐蚀的形成越快。

影响:
1. 应力腐蚀会对金属材料的强度和硬度造成影响,会使金属材料的强度和硬度降低。

2. 应力腐蚀会对金属材料的表面形貌造成影响,会使金属材料的表面变得不平整,影响金属材料的外观。

3. 应力腐蚀会对金属材料的密度造成影响,会使金属材料的密度降低。

4. 应力腐蚀会对金属材料的耐腐蚀性造成影响,会使金属材料的耐腐蚀性降低。

应力腐蚀概述

应力腐蚀概述

3个阶段Three stages
2 SCC破裂类型
– 裂纹起源 – 介质缓慢攻击产生凹坑 – 慢速裂纹扩展 – 快速断裂
3. 一般过程
Stress corrosion cracking
3. 一般过程
4. 影响因素
1.物理冶金因素 例如,金属材料的冶炼方式、化学成分及其偏析情况 ,组织、晶粒度、晶格缺陷及其分布情况,材料的物理 、化学及机械等方面的性能,材料的热处理状态及表面 状况等等
一 SCC
材料在静应力和腐蚀介质共同作用下发生的脆性 开裂破坏现象称为应力腐蚀开裂,简称应力腐 蚀。应力腐蚀是危害最大的腐蚀形态之一。应 力腐蚀应是电化学腐蚀和应力机械破坏互相促 进裂纹的生成和扩展的过程。 敏感的合金、特定的介质和一定的静应力是发生 应力腐蚀的三个必要条件。对于一定的材料, 其应力腐蚀只在特定的介质中发生。这种材料 与敏感介质的组合关系,称为应力腐蚀体系。 应力腐蚀的机理分为阳极溶解和氢脆机理两种。
Stress corrosion cracking
5. 特点
Stress corrosion cracking
5. 特点
Stress corrosion cracking
5. 特点
低碳钢在硝 酸盐溶液中 的应力腐蚀 破裂是典型 的沿晶破裂 ,呈“冰糖 状”断口
Stress corrosion cracking
4. 影响因素 3. 介质环境因素 金属材料所处的介质的性质、成 分、浓度、pH值、温度等等因素 都对应力腐蚀破裂有很大的影响.
4. 影响因素
4 电极电位的影响 电位对应力腐蚀破裂起决定性作用。应力腐 蚀破裂只发生在一定的电位范围内,这个范围 大约只有几百mv。不同材料在不同介质中发 生应力腐蚀的电位区(敏感电位区)不同。

应力腐蚀概述

应力腐蚀概述

应力腐蚀概述应力腐蚀是一种材料在同时受到应力和特定腐蚀介质作用下发生的破坏现象。

它被广泛应用于金属材料的工程设计和失效分析。

应力腐蚀的研究对于提高材料的耐蚀性能以及确保工程结构的安全是至关重要的。

本文将对应力腐蚀的定义、机理、预防措施以及相关领域的应用进行概述。

一、应力腐蚀的定义应力腐蚀是指金属材料在受到应力和特定腐蚀介质作用下产生的破坏。

这种破坏的特点是剧烈,严重影响材料的使用寿命和安全性。

应力腐蚀与单独的应力或腐蚀介质作用下的腐蚀具有明显的区别,需要同时满足应力和特定腐蚀介质的作用才会发生。

二、应力腐蚀的机理应力腐蚀的机理非常复杂,一般包括三个要素:金属材料、应力和腐蚀介质。

在应力腐蚀环境中,金属表面的被动膜被破坏,导致金属原子与腐蚀介质发生直接作用。

这种作用会引起金属表面的溶解,形成裂纹或表面腐蚀。

同时,应力会加剧腐蚀过程,并促使裂纹的扩展和破坏。

三、应力腐蚀的预防措施为了减少应力腐蚀的发生,可以采取一系列的预防措施。

首先,选择适合的材料是非常重要的。

某些材料对特定腐蚀介质表现出更好的抗腐蚀性能,因此在设计和使用过程中应选择这些材料。

其次,通过适当的设计和加工可以减少应力的集中和作用时间,从而降低应力腐蚀的风险。

此外,应在设计和施工中注意腐蚀控制和材料保护,定期检测和维护工程结构的完整性。

四、应力腐蚀在相关领域的应用应力腐蚀广泛应用于金属材料的工程设计和失效分析。

在航空航天领域,应力腐蚀是导致飞机、火箭和导弹等航天器件失效的主要原因之一。

在核能领域,应力腐蚀研究对于保证核反应堆的安全运行至关重要。

此外,应力腐蚀还在化工、石油、冶金等工业领域具有重要意义,对于设备的正常运行和人们的生命财产安全具有重要的保障作用。

结论应力腐蚀是金属材料在应力和特定腐蚀介质作用下发生的破坏现象。

它需要同时满足应力和腐蚀介质的作用才会发生,具有剧烈的破坏性。

为了减少应力腐蚀的发生,可以采取材料选择、设计和加工、腐蚀控制等预防措施。

应力腐蚀断裂

应力腐蚀断裂

应力腐蚀断裂一.概述应力腐蚀是材料、机械零件或构件在静应力(主要是拉应力)和腐蚀的共同作用下产生的失效现象。

它常出现于锅炉用钢、黄铜、高强度铝合金和不锈钢中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显著。

常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。

由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。

加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。

这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。

应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。

一般认为压应力对应力腐蚀的影响不大。

应力腐蚀的机理仍处于进一步研究中。

为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。

其次应合理设计零件和构件,减少应力集中。

改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。

采用金属或非金属保护层,可以隔绝腐蚀介质的作用。

此外,采用阴极保护法见电化学保护也可减小或停止应力腐蚀。

本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。

,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。

二.应力腐蚀开裂特征(1)引起应力腐蚀开裂的往往是拉应力。

这种拉应力的来源可以是:1.工作状态下构件所承受的外加载荷形成的抗应力。

2.加工,制造,热处理引起的内应力。

3.装配,安装形成的内应力。

4.温差引起的热应力。

5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。

(2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。

应力腐蚀的名词解释

应力腐蚀的名词解释

应力腐蚀的名词解释应力腐蚀,作为材料科学领域的一个重要概念,指的是在特定的环境条件下,应力和腐蚀共同作用导致材料发生破坏的现象。

它是一种使工程材料失效的特殊腐蚀形式,可在各种工业领域中产生严重的后果。

本文将以解释应力腐蚀的含义为主题,探讨其原理、危害、应对措施以及相关研究的新进展。

首先,需要明确应力腐蚀的基本概念和工作原理。

应力腐蚀的发生需要同时存在应力和腐蚀介质,应力可以是外加的、或由材料自身的残余应力产生。

当材料处于一定应力环境下,腐蚀介质的存在将增加材料的腐蚀倾向。

在应力和腐蚀作用共同作用下,材料会出现裂纹和脱落等损伤,最终导致材料失效。

应力腐蚀与其他腐蚀形式相比,其破坏速度通常更快且难以预测,因此对于工程材料来说是一个非常重要的考虑因素。

接下来,我们将探讨应力腐蚀对材料性能和结构的危害。

首先,应力腐蚀可能导致材料的力学性能下降,比如降低材料的强度、延展性和韧性等,从而对工程结构的安全性产生重大负面影响。

其次,在一些特殊的应用场景中,例如航空航天、核电等领域,应力腐蚀对材料的耐久性和可靠性提出了更高的要求。

若接触到腐蚀性介质的材料发生应力腐蚀,不仅会导致经济损失,更为严重的是可能引发重大事故,甚至威胁人员生命安全。

为了解决应力腐蚀问题,人们采取了一系列的防护措施。

其中,对于金属材料来说,选择合适的材料对腐蚀介质的抗蚀性能至关重要。

此外,设计合理的结构减少应力集中、避免材料应力超过临界值也是有效的方法。

此外,对于某些特殊环境条件下的应用,如海水腐蚀、高温高压腐蚀等,还需要通过涂层、阻挡膜、阳极保护等技术手段来提高材料的耐蚀性能。

此外,通过改变材料的热处理工艺或添加抑制杂质的合金元素,也可以提升材料的抗腐蚀性能。

随着科学技术的不断进步,对于应力腐蚀机理和控制方法的研究也取得了长足的进步。

近年来,人们开始关注新型材料和新型防护技术在应力腐蚀领域的应用。

例如,针对应力腐蚀带来的裂纹扩展问题,光纤感应技术等新兴技术为提前监测应力腐蚀损伤提供了有效手段;利用纳米材料和复合材料的制备技术,人们也在不断探索能够提高材料抗腐蚀性能的新型防护材料。

金属材料抗应力腐蚀性能分析及预防措施

金属材料抗应力腐蚀性能分析及预防措施

金属材料抗应力腐蚀性能分析及预防措施摘要:在工业中,金属材料的应力腐蚀是个常见的问题。

本文通过深入分析金属材料应力腐蚀出现的原因及其特点,并提出了预防应力腐蚀的措施,比如合理选材,结构优化设计,工艺优化,缓腐蚀药剂来改变工作环境环境等,对金属材料防应力腐蚀有一定的积极作用。

关键词:金属材料焊接,应力腐蚀,预防措施一、金属材料应力腐蚀性产生的原因以及特点金属材料表面容易发生腐蚀开裂现象,这种腐蚀开裂是当金属材料暴露于在具有腐蚀性的环境中,且材料表面拉应力过大造成的。

产生金属材料表面应力腐蚀开裂特点,首先应力是产生腐蚀开裂首要条件,造成金属材料应力腐蚀开裂,必须要存在应力,尤其是存在拉应力。

那么这个应力又是如何产生的呢?金属材料表面产生的应力是由成型过程产生的。

比如,在焊接成型过程中,由于焊接热应力及焊接工装夹具夹紧力,致使部分残余应力不均匀的产生在零部件上,类似的有铸造应力,锻造应力,热处理应力等等,这些不均匀的应力就是金属材料表面脆弱的部位。

另外,金属材料大多应用在日常生活环境中,在这些环境中有大量腐蚀性物质,通过空气流通附着在金属材料的接口处和其他应力集中部位,嵌入到了金属材料中,腐蚀性物质在金属材料中堆积扩张,从而造成了扩张应力,进而引发了应力腐蚀裂纹。

第二,金属材料应力腐蚀性裂纹断裂,与时间成正比例关系,这种失效现象并不是出现应力后就立即产生的,而是随着时间的不断推移,逐渐产生扩大的一种腐蚀断裂问题,而这一点与氢致滞后开裂有非常大的相似性。

最后,造成金属腐蚀性断裂现象的应力一般都是低应力产生的,由于金属所处的环境具有一定的腐蚀性,这使得金属材料表面腐蚀部位整体变脆,在低应力出现的时候,就产生金属材料腐蚀性开裂现象。

在石油化工产业中,应力腐蚀性开裂是最常见的问题,也是主要造成石油化工产业中设备运行故障甚至出现失效现象的重要原因,金属材料应力腐蚀性裂缝,给石油化工企业正常施工造成了困扰,但是由于金属材料应力腐蚀性开裂的产生是无法预测的,所以这个问题也就成为石油化工产业中最大的安全隐患,他对石油化工产业的发展造成了极大的负面影响。

《445J2超纯铁素体不锈钢应力腐蚀行为研究》范文

《445J2超纯铁素体不锈钢应力腐蚀行为研究》范文

《445J2超纯铁素体不锈钢应力腐蚀行为研究》篇一一、引言随着现代工业的快速发展,不锈钢因其卓越的耐腐蚀性、高强度和良好的加工性能,被广泛应用于各种工程领域。

其中,445J2超纯铁素体不锈钢以其优异的力学性能和抗腐蚀性能,在石油、化工、海洋工程等领域得到了广泛的应用。

然而,在特定的环境下,如含有氯离子的介质中,这种材料可能会遭受应力腐蚀开裂(SCC)的威胁。

因此,对445J2超纯铁素体不锈钢的应力腐蚀行为进行研究,对于保障其安全、可靠的应用具有重要意义。

二、445J2超纯铁素体不锈钢概述445J2超纯铁素体不锈钢是一种高纯度、高强度的铁基合金,具有优良的耐腐蚀性、高温强度和良好的加工性能。

其化学成分和微观组织结构决定了其独特的力学和物理性能。

该材料在许多工业领域中都有广泛的应用。

三、应力腐蚀行为研究1. 应力腐蚀开裂机制应力腐蚀开裂是445J2超纯铁素体不锈钢在特定环境下的一种主要失效模式。

当材料处于拉应力状态,并暴露在含有氯离子的介质中时,容易发生应力腐蚀开裂。

这一过程涉及电化学腐蚀和机械应力的相互作用,导致材料局部区域的应力集中,最终形成裂纹并扩展,导致材料断裂。

2. 影响因素(1)环境因素:环境中的氯离子浓度、温度、pH值等都会影响445J2超纯铁素体不锈钢的应力腐蚀行为。

(2)材料因素:材料的化学成分、微观组织结构和力学性能都会对应力腐蚀行为产生影响。

(3)应力状态:材料的应力状态,包括拉应力的大小和方向,也会影响应力腐蚀开裂的敏感性和开裂速率。

3. 研究方法(1)实验方法:通过浸泡实验、慢应变速率拉伸实验等方法,研究445J2超纯铁素体不锈钢在不同环境条件下的应力腐蚀行为。

(2)数值模拟:利用有限元分析等方法,对材料的应力分布和裂纹扩展进行模拟,以深入了解应力腐蚀开裂的机制。

四、研究结果与讨论通过对445J2超纯铁素体不锈钢的应力腐蚀行为进行研究,我们发现:1. 在含有氯离子的介质中,材料的应力腐蚀开裂敏感性较高,且随着氯离子浓度的增加,开裂敏感性增加。

3.6 应力腐蚀

3.6  应力腐蚀

裂纹尖端、阳极溶解、裂纹扩展模型。
裂纹尖端的溶解速度
• 裂纹尖端的溶解速度(ia)与裂纹扩展速度V有如下关系: ia = V(nFρ/m) (3-18)
m— 金属的原子量 ,ρ— 金属的密度, n— 溶解金属的 离子价数, F—法拉第常数。 • 如沸腾的MgCl2溶液中, 18-8不锈钢在无拉应力条件下, 阳极溶解电流密度只有10-5A/cm2, 而在应力腐蚀条件 下,裂纹尖端处的阳极电流密度达到 0.4~2.0A/cm2 , 相当于裂纹尖端扩展速度 0.5~2.5mm/h 。结果表明, 实测的阳极电流密度与快速溶解理论相符合。 • V = ia m/nFρ[cm/s] = ia m/nFρ × 3600×10[mm/h]
864532常用的金属植入材料87植入用不锈钢的力学性能88cocrmo合金的力学性能89905材料的耐蚀性51纯金属的耐蚀性为更好地利用纯金属以及改进合金的耐蚀性了解掌握纯金属稳定性可根据其标准电极电位值作出近似的判断
3.6 应力腐蚀
• 3.6.1 应力腐蚀的概述 • 应力与环境共同作用下的腐蚀是局部腐蚀的一大类 型。材料除受环境作用外还受各种应力作用,因此会 导致较单一因素下更严重的腐蚀破坏形式。 • 由于材料在环境中受应力作用方式不同,其腐蚀形式 也不同。一般可分为:应力腐蚀、腐蚀疲劳、磨损腐 蚀,湍流腐蚀,冲蚀等。在这类腐蚀中受拉应力作用 的应力腐蚀是危害最大的局部腐蚀形式之一,材料会 在没有明显预兆的情况下突然断裂。 • 应力腐蚀(英文缩写SCC)是指金属材料在特定腐蚀介 质和拉应力共同作用下发生的脆性断裂
裂纹扩展速率(da/dt)与K1SCC关系
• 曲线上存在三个不同区域。 1)区域I 当K1稍大于K1SCC时,裂纹经过一段孕育突然 加速发展,即在 I 区内,裂纹生长速率对 K1 较敏感; 2)区域II da/dt与 K1无关,通常说的裂纹扩展速率就 是指该区速率,因为它主要由电化学过程控制,较 强烈地依赖于溶液的pH值,粘度和温度; 3)区域III 失稳断裂区,裂纹深度已接近临界尺寸acr , 当超过这个值时,应力强度因子达到K1c时,裂纹生 长率迅速增加直至发生失稳断裂。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料应力腐蚀
材料在应力和腐蚀环境的共同作用下引起的破坏叫应力腐蚀。

这里需强调的是应力和腐蚀的共同作用。

材料应力腐蚀具有很鲜明的特点,应力腐蚀破坏特征,可以帮助我们识别破坏事故是否属于应力腐蚀,但一定要综合考虑,不能只根据某一点特征,便简单地下结论。

影响应力腐蚀的因素主要包括环境因素、力学因素和冶金因素。

原理
应力腐蚀是指在拉应力作用下,金属在腐蚀介质中引起的破坏。

这种腐蚀一般均穿过晶粒,即所谓穿晶腐蚀。

应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。

应力腐蚀导致材料的断裂称为应力腐蚀断裂。

应力腐蚀一般认为有阳极溶解和氢致开裂两种。

常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极
处的金属成为离子而被溶解,产生电流流向阴极。

由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。

加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。

这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。

影响
应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。

一般认为压应力对应力腐蚀的影响不大。

一般存在拉应力,但实验发现压应力有时也会产生应力腐蚀。

对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。

一般应力腐蚀都属于脆性断裂。

应力腐蚀的裂纹扩展速率一般为10- 6~10-3 mm/min,而且存在孕育期,扩展区和瞬断区三部分。

容易发生应力腐蚀的设备发生这种腐蚀的主要设备有热交换器、冷却器、蒸汽发生器、送风机、干燥机和锅炉
特点
(1)造成应力腐蚀破坏的是静应力,远低于材料的屈服强度,而且一般是拉伸应力(近年来,也发现在不锈钢中可以有压应力引起)。

这个应力可以是外加应力,也可以是焊接、冷加工或热处理产生的残留拉应力。

最早发现的冷加工黄铜子弹壳在含有潮湿的氨气介质中的腐蚀破坏,就是由于冷加工造成的残留拉应力的结果。

假如经过去应力退火,这种事故就可以避免。

(2)应力腐蚀造成的破坏,是脆性断裂,没有明显的塑性变形。

(3)只有在特定的合金成分与特定的介质相组合时才会造成应力腐蚀。

例如α黄铜只有在氨溶液中才会腐蚀破坏,而β黄铜在水中就能破裂。

(4)应力腐蚀的裂纹扩展速率一般在10-9-10-6m/s,有点象疲劳,是渐进缓慢的,这种亚临界的扩展状况一直达到某一临界尺寸,使剩余下的断面不能承受外载时,就突然发生断裂。

(5)应力腐蚀的裂纹多起源于表面蚀坑处,而裂纹的传播途径常垂直
于拉力轴。

(6)应力腐蚀破坏的断口,其颜色灰暗,表面常有腐蚀产物,而疲劳
断口的表面,如果是新鲜断口常常较光滑,有光泽。

(7)应力腐蚀的主裂纹扩展时常有分枝。

但不要形成绝对化的概念,
应力腐蚀裂纹并不总是分枝的。

(8)应力腐蚀引起的断裂可以是穿晶断裂,也可以是晶间断裂。

如果
是穿晶断裂,其断口是解理或准解理的,其裂纹有似人字形或羽毛状的标记。

测试方法
早期对应力腐蚀开裂的研究是采用光滑试样,在特定介质中于不同应力下测定金属材料的滞后破坏时间。

用这种方法已积累了大量的
数据,对于了解应力腐蚀破坏问题起了一定作用。

但还有很多不足之处,主要有:
(1)因数据分散,有时可能得出错误的结论。

(2)不能正确得出裂纹扩展速率的变化规律。

(3)费时,且不能用于工程设计。

现在对应力腐蚀的研究,都是采用预制裂纹的试样。

将这种试样放在一定介质中,在恒定载荷下,测定由于裂纹扩展引起的应力强度因子K随时间的变化关系(具体测试方法将在下面介绍),据此得出材料的抗应力腐蚀特性。

例如图5-1所示Ti-8Al-1Mo-1V,其K1c=100MPa.m1/2。

在3.5%盐水中,当初始K值仅为40MPa.m1/2时,仅几分钟试样就破坏了。

如果将值K稍微降低,则破坏时间可大大推迟。

当K值降低到某一临界值时,应力腐蚀开裂实际上就不发生了。

这一K值我们称之为应力腐蚀门槛值,以K1SCC表示(SCC是Stress Corrosion Cracking的缩写)。

(1)K<K1SCC时,在应力作用下,材料或零件可以长期处于腐蚀环境中而不发生破坏。

(2)K1SCC<K<K1C时,在腐蚀性环境和应力共同作用下,裂纹呈亚临界扩展,随着裂纹不断增长,裂纹尖端K值不断增大,达到K1C时即发生断裂。

(3)K>K1C时,加上初始载荷后立即断裂。

尽管初始K值不同,裂纹扩展速率和断裂时间也不同,但材料的最终破坏都是在K=K1C时发生的。

应该指出,高强度钢和钛合金都有一定的门槛值K1SCC,但铝合金却没有明显的门槛值,其门槛值只能根据指定的试验时间而定。

一般认为对于这类试验的时间至少要1000小时,使用这类K1SCC数据时必须十分小心。

特别是如果所设计的工程构件在腐蚀性环境中应用的时间比产生K1SCC数据的试验时间长时,更要小心。

除了用K1SCC来表示材料的应力腐蚀抗力外,也可测量裂纹扩展速率da/dt。

下面简单介绍应力腐蚀破裂的测试方法。

一种是载荷恒定,使K1不断增大的方法,最常用的是恒载荷的悬臂梁弯曲试验装置。

另一种测定K1SCC的方法是位移恒定,使K1不断减少,用紧凑拉伸试样和螺栓加载。

这两种方法各有其优缺点。

用悬臂梁弯曲方法可得到完整的K1初始-断裂时间曲线,能够较准确的确定K1SCC,缺点是所需试样较
多。

恒位移法不需特殊试验机,便于现场测试,原则上用一个试样即可测定K1SCC值,缺点是裂纹扩展趋向停止的时间很长。

当停止试验时,扩展的裂纹前沿有时不太规整,在判定裂纹究竟是扩展了还是已停止扩展发生困难,因此在计算K1SCC时就有一定误差。

影响因素
环境因素
奥氏体不锈钢对卤化物元素是十分敏感的;同样,一些铜合金对含氨的环境也是很敏感的。

奥氏体不锈钢固然对氯化物产生应力腐蚀很敏感,但氯或卤素离子并不是唯一的决定因素,产生SCC还必须有氧存在。

对加铌的18-8不锈钢研究发现,只要其中有百万分之几的氧就能和氯化物共同造成应力腐蚀。

奥氏体不锈钢在沸腾的MgCl2溶液中,只有氮浓度超过500X10-6才产生SCC,而在氮浓度小于
500X10-6时,则不发生应力腐蚀。

溶液的PH值对应力腐蚀的敏感性也有很大的影响。

力学因素
经轧制的高强度铝合金7075-T6板材,当沿着轧制方向取样作拉伸试验时,对应力腐蚀的抗力最高,门槛应力可达420MPa;当沿着板宽方向取样时,其门槛应力则为224MPa;如沿板厚方向取样作拉伸试验时,门槛应力只有49MPa,几乎只有轧制方向的1/10。

7075-T6铝合金所显示的应力方向性。

图5-3表示四种高强度钢淬火回火至大约抗拉强度为1650MPa时,它们的应力强度因子和断裂时间的关系。

试样经预制裂纹在蒸馏水中施加不同载荷,可看出四种钢均有一恒定的K1SCC,在K1SCC以下试样不断裂。

在这四种钢处理成相同的抗拉强度时,它们的K1SCC也相同,但是当K1>K1SCC时,这四种钢的断裂时间相差还是较多的。

热处理成不同强度的40CrNiMo(4340),其应力腐蚀的裂纹扩展
速率和应力强度因子的关系,可见当屈服强度较高时,裂纹扩展表现出两个阶段,开始时裂纹扩展速率随应力强度因子的增加而升高,当应力强度因子增加到一定数值时,裂纹扩展速率便保持恒定不再与应力强度因子有关了。

这一实验结果具有一定的典型性,几乎所有的高强度钢包括马氏体时效钢,还有高强度铝合金都有此规律。

冶金因素
(1)材料成份的影响;
(2)材料组织的影响;
(3)材料强度的影响。

机理
应力腐蚀机理就是滑移-溶解理论。

它可以简单地归结为四个过程,这就是滑移-膜破-阳极溶解-再钝化。

这一机理所提出的基本概念广为多数人接受。

但是,滑移-溶解机理只能很好地解释沿晶断裂
的应力腐蚀,而对穿晶型断裂如奥氏体不锈钢的氯脆,却遇到了很大困难。

因为穿晶断裂型的应力腐蚀,其断裂表面不是在滑移面上,断裂具有类似解理的特征。

防止应力腐蚀的办法要视具体的材料-介质而定。

例如低碳钢容易产生碱脆和硝脆。

在锅炉的铆接和焊接部位,少量的渗漏使溶融的盐形成局部高浓度的苛性钠,易产生碱脆。

对于碱脆就要时时注意锅炉用水处理,减少PH值或加入强氧化剂使钢表面钝化,加入一些抑制剂如硝酸盐、硫酸盐、磷酸盐都可减缓应力腐蚀,也可用阴极保护的办法。

而对于硝脆则正相反,要增加溶液的PH值,或加入苛性钠等碱性物质延缓应力腐蚀,当然,从电化学防护来说也可用阴极保护。

对奥氏体不锈钢的氯脆,首先从合金的成分加以改进,如从低镍的18-8型(304、302型)改变成高镍并加钼的316型,进而采用A+F的双相钢。

对奥氏体不锈钢也要特别注意冷变形或者焊接后的去除应力处理。

相关文档
最新文档