(整理)陶瓷电容失效分析

合集下载

多层陶瓷电容破裂失效原因

多层陶瓷电容破裂失效原因

多层陶瓷电容破裂失效原因英文回答:The cracking and failure of multilayer ceramic capacitors (MLCCs) can be attributed to various reasons. Here are some common causes:1. Mechanical stress: MLCCs are often subjected to mechanical stress during handling, assembly, or operation. Excessive stress can lead to cracking and failure. This stress can arise from thermal expansion and contraction mismatch between the MLCC and the surrounding materials, as well as from external forces or vibrations.2. Thermal stress: MLCCs can experience thermal stress due to rapid temperature changes or high operating temperatures. The coefficient of thermal expansion (CTE) mismatch between the MLCC and the substrate or solderjoints can cause the MLCC to crack.3. Moisture and humidity: Ceramic materials are susceptible to moisture absorption. When moisture enters the MLCC, it can cause expansion and contraction during temperature cycling, leading to cracking and failure. Humidity can also cause corrosion of the internal electrodes, resulting in electrical failure.4. Manufacturing defects: MLCCs can have inherent defects introduced during the manufacturing process. These defects can include voids, delamination, or improper electrode connections. These defects can weaken the structural integrity of the MLCC and make it more susceptible to cracking and failure.5. Voltage and current overload: Exceeding the maximum voltage or current ratings of an MLCC can cause it to fail. High voltage or current can generate excessive heat, leading to thermal stress and cracking. It is important to operate MLCCs within their specified limits to avoid failure.中文回答:多层陶瓷电容破裂失效的原因有多种。

(整理)陶瓷电容失效分析

(整理)陶瓷电容失效分析

多层陶瓷电容器(MLCC)的典型结构中导体一般为Ag或AgPd,陶瓷介质一般为(SrBa)TiO3,多层陶瓷结构通过高温烧结而成。

器件端头镀层一般为烧结Ag/AgPd,然后制备一层Ni阻挡层(以阻挡内部Ag/AgPd材料,防止其和外部Sn 发生反应),再在Ni层上制备Sn或SnPb层用以焊接。

近年来,也出现了端头使用Cu的MLCC产品。

根据MLCC的电容数值及稳定性,MLCC划分出NP1、COG、 X7R、 Z5U 等。

根据MLCC的尺寸大小,可以分为1206,0805,0603,0402,0201等。

MLCC 的常见失效模式多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。

但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。

陶瓷多层电容器失效的原因分为外部因素和内在因素内在因素主要有以下几种:1.陶瓷介质内空洞 (Voids)导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。

空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。

该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。

2.烧结裂纹 (firing crack)烧结裂纹常起源于一端电极,沿垂直方向扩展。

主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。

3.分层 (delamination)多层陶瓷电容器的烧结为多层材料堆叠共烧。

烧结温度可以高达1000℃以上。

层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。

分层和空洞、裂纹的危害相仿,为重要的多层陶瓷电容器内在缺陷。

外部因素主要为:1.温度冲击裂纹(thermal crack)主要由于器件在焊接特别是波峰焊时承受温度冲击所致,不当返修也是导致温度冲击裂纹的重要原因。

2.机械应力裂纹(flex crack)多层陶瓷电容器的特点是能够承受较大的压应力,但抵抗弯曲能力比较差。

片式多层陶瓷电容器电镀失效分析与控制

片式多层陶瓷电容器电镀失效分析与控制
HUANG H, TENG B, YANG C G, et al. Failure analysis and control of electroplating on multilayer ceramic capacitor [J]. Electroplating & Finishing, 2021, 40 (5): 332-334.
电流密度控制在 0.5 ~ 1.0 A/dm2 范围内之外,镀镍的关键还在于通过加入添加剂使镀层具有一定的压应力,
• 333 •
片式多层陶瓷电容器电镀失效分析与控制
图 2 浸完强酸后的伪脱层状态 Figure 2 Pseudo-delamination after immersion in strong acid
DOI: 10.19289/j.1004-227x.2021.05.003
片式多层陶瓷电容器电镀失效分析与控制
黄皓*,滕斌,杨翠刚,游健,李云仕,赵景勋,朱万宇
(成都宏明双新科技股份有限公司,四川 成都 610091)
摘要:为了解决片式多层陶瓷电容器(MLCC)电镀后脱层及溢镀缺陷,研究了除油、浸蚀和电镀的工艺条件对产品脱层及溢镀
浸蚀液对脱层的影响极大。笔者前期按照常规电镀所用的盐酸或硫酸浸蚀液,水洗后镀镍,检查工
件时发现几乎 100%脱层。开始一直以为是镀镍工艺的原因,后来才发现工件在盐酸或硫酸中浸泡 2 ~ 3 s
便出现了伪脱层(指目视没有脱层,但 Cu 层和陶瓷之间结合力很差,如图 2 所示),受到轻微外力影响(如
与陪镀钢珠摩擦)便脱层。有资料指出,该类产品不能用强酸浸蚀[3],因为强酸会影响玻璃粉,进而影响
MLCC 的生产工艺流程十分复杂,包括了流延、印刷内电极、叠层、切块、排胶、烧结成瓷、倒角、 涂端、烧结端电极、电镀等工序[2],只有保证了每道工序的质量,才能生产出合格的产品。笔者所在公 司接到该产品电镀工艺的研发任务,要求采用三层端头电极技术,即在 MLCC 端头 Cu 电极上电镀 Ni 层和 Au 层。由于之前未接触过类似产品,研发过程走了不少弯路,尤其是遇到电镀后脱层和溢镀问题。 本文总结了此次研发的经验,供同仁参考。

陶瓷电容内部缺陷

陶瓷电容内部缺陷

陶瓷电容内部缺陷
陶瓷电容器的内部缺陷主要包括结瘤和介质空洞。

结瘤缺陷是由于在制造过程中金属化电极材料涂敷不均匀,导致金属化电极堆积变形。

这种变形会引发瓷介介质变形,使电容器的介质变薄,从而使击穿电压下降。

同时,金属化电极的变形也可能导致电容在加电时电场不均匀,引发击穿失效。

介质空洞是陶瓷电容器内部的另一个常见缺陷,它是电容器在制造过程中瓷介质的空洞所造成的。

这种空洞会对陶瓷电容器产生多方面的影响,包括导致电容器局部击穿电压降低,从而导致击穿失效或两个电极之间的绝缘电阻降低。

在电压较高的情况下,空洞处的空气还可能被电离化,从而产生漏电通道,引发漏电失效。

以上内容仅供参考,如需获取更多信息,建议查阅相关文献或咨询专业人士。

电子产品组装中陶瓷电容常见失效模式及改善建议

电子产品组装中陶瓷电容常见失效模式及改善建议

电子产品组装中陶瓷电容常见失效模式及改善建议电子产品中常见的陶瓷电容失效模式有漏电、断线、破裂等。

以下是对这些失效模式的分析以及改善建议。

1.漏电:陶瓷电容的漏电是指电容器在工作过程中出现电流通过绝缘材料,导致电容器失效。

这可能是由于陶瓷电容的绝缘层质量不良引起的,也可能是由于电容器使用环境中的湿度过高引起的。

改善建议:a.选择高质量的陶瓷电容器,确保陶瓷材料具有良好的绝缘性能。

b.控制电容器使用环境中的湿度,避免湿度过高导致漏电。

2.断线:陶瓷电容器的断线通常发生在电容器的引线位置。

这可能是由于工艺不良引起的,也可能是由于电容器的引线材料质量不良引起的。

改善建议:a.提高制造工艺的质量控制,确保电容器引线与电容体之间的连接牢固可靠。

b.选择高质量的引线材料,确保引线的连接性能良好。

3.破裂:陶瓷电容器的破裂通常发生在电容器的外壳上。

这可能是由于外界应力过大引起的,也可能是由于制造工艺不良引起的。

改善建议:a.设计和选择合适尺寸的陶瓷电容器,以满足实际应用场景的需求,避免外界应力过大。

b.提高制造工艺的质量控制,确保电容器外壳的强度满足要求。

此外,还有几个改善建议适用于以上三种常见失效模式:a.进行多次的温度循环测试,以确保陶瓷电容能够在不同温度范围下稳定工作。

b.对陶瓷电容器进行严格的耐压测试,以确保其能够在额定电压范围内正常工作。

c.对陶瓷电容器进行振动和冲击测试,以确保其能够在不同振动和冲击条件下正常工作。

综上所述,在电子产品的组装中,陶瓷电容常见的失效模式是漏电、断线和破裂。

为了改善这些失效模式,应选择质量优良的陶瓷材料和引线材料,改善制造工艺的质量控制,并进行必要的温度循环、耐压、振动和冲击测试等。

这些措施可以确保陶瓷电容器在电子产品中的可靠性和稳定性。

陶瓷电容失效模式和失效机理_概述说明以及解释

陶瓷电容失效模式和失效机理_概述说明以及解释

陶瓷电容失效模式和失效机理概述说明以及解释1. 引言1.1 概述陶瓷电容是一种常见且广泛应用于电子设备中的元件。

它具有体积小、重量轻、稳定性高、温度特性好等优点,因此在各个领域都有着广泛的应用。

然而,陶瓷电容在使用中也会出现失效现象,导致其功能无法正常发挥或完全失去功能。

了解陶瓷电容的失效模式和失效机理对于设计和维护电子设备至关重要。

1.2 文章结构本文将首先对陶瓷电容进行概念和应用领域的介绍,接着对其失效模式进行分类和定义,并简要介绍相关的失效机理。

随后,我们将分别详细探讨两种常见失效模式及其相关要点,并提供实际示例加以说明。

最后,本文将总结研究成果并展望未来的研究方向。

1.3 目的本文旨在提供一个系统且全面的概述,以帮助读者更好地了解陶瓷电容的失效模式和失效机理。

通过清晰地描述每种失效模式及其相关要点,并给出实例以加深理解,读者将能够发现并解决陶瓷电容在实际应用中可能出现的问题,并提供改进和优化的方向。

此外,本文也为未来相关研究提供了参考和展望。

以上是“1. 引言”部分的内容,希望对你的长文撰写有所帮助。

2. 陶瓷电容失效模式和失效机理概述2.1 陶瓷电容概念和应用领域陶瓷电容是一种广泛使用于电子产品中的passives 元件,其主要由导体和绝缘体构成。

导体常采用金属,例如银或钨,并具有可靠的电导性能。

绝缘体通常采用陶瓷材料,如硬陶瓷(多为氧化铁、氧化锰、二氧化硅等),以提供良好的介电性。

由于其优异的特性,陶瓷电容被广泛应用于各种电子设备中,包括通信设备、计算机及消费类电子产品等。

它们常用于储存与释放电能、稳定电流和阻抗匹配等功能。

2.2 失效模式分类和定义对于陶瓷电容而言,失效模式指元件在使用过程中可能出现的故障或损坏类型。

这些失效模式可以基于不同因素进行分类,如环境条件、操作方式和设计问题等。

常见的陶瓷电容失效模式包括但不限于以下几种:a) 短路:陶瓷电容内部存在导体间接触或导体与外壳产生直接短路现象。

片状多层陶瓷电容机械应力失效分析

片状多层陶瓷电容机械应力失效分析

电子产品世界片状多层陶瓷电容机械应力失效分析Mechanical stress failure analysis of chip multilayer ceramic capacitors周 睿,项永金,王少辉,陈秀秀 (格力电器(合肥)有限公司,合肥 230088)摘 要:因片式多层陶瓷电容器脆性较强、抗弯曲能力较差,封装尺寸直接影响电器产品使用寿命。

组装生产过程中对片状多层陶瓷电容产生应力极易导致贴片电容开裂。

本文通过优化电容器选型,更改电容器结构,从根本上杜绝贴片电容机械应力问题。

关键词:片式多层陶瓷电容;机械应力;弹性银层;封装选型0 引言片式多层陶瓷电容器是各电路中重要的电子元器件,因其体积小、电容量范围宽、介质损耗小、稳定性高等优点,被广泛使用在各种电路中。

但在使用过程中片式电容器一旦失效将对整体电路造成严重影响。

因此需对片式电容的选型、失效机理及材质特性进行深入研究分析。

1 片状多层陶瓷电容简介片式多层陶瓷电容器是多层叠合结构,相当于多个简单平板电容器的并联体,之所以采用多层结构是为了以较小的体积获取较大的电容量。

多层片式陶瓷电容器的结构主要包括三大部分:陶瓷介质、金属内电极和金属外电极。

图1所示的多层陶瓷电容器是由印好电极(内电极)的陶瓷介质膜片以错位方式叠合起来,经过一次性高温烧结形成陶瓷芯片,再在芯片的两端封上金属层(外电极)制成。

图1 片式陶瓷电容结构图1.1 失效特性描述平行电极之间的裂纹主要有两大原因:一是外部机械应力,这种开裂特征基本存在于电极两端,会造成电容器数个平行电极之间开裂。

二是电容器制造过程中的工艺缺陷,在电容器非常窄的两个相邻电极之间产生微裂纹,或电容器电极间存在裂缝,电极之间介质开裂,可导电的污染物夹杂其中,介质介电能力下降而发生漏电甚至击穿。

1.2 材质特性片式多层陶瓷电容通常采用钛酸或钛酸银等陶瓷材料作为电介质,陶瓷材料具有硬脆的物理特性,其塑性形变范围很小,断裂时呈脆性,这使得片式多层陶瓷电容的弯曲形变超过其承受范围时极易产生破裂失效。

陶瓷电容来料失效原因

陶瓷电容来料失效原因

陶瓷电容来料失效原因陶瓷电容是一种常见的电子元器件,用于储存和释放电荷。

然而,陶瓷电容也会出现失效的情况,导致其无法正常工作。

本文将探讨陶瓷电容失效的原因。

陶瓷电容可能因为电压过高而失效。

陶瓷电容具有一定的工作电压范围,超出这个范围,会导致电容器内部的电介质击穿,电容器失效。

因此,在使用陶瓷电容时,需要根据电路的需求选择合适的工作电压范围,以避免电容失效。

温度也是导致陶瓷电容失效的原因之一。

陶瓷电容的电介质材料对温度敏感,当温度超过一定范围时,电容器的电介质会发生物理或化学变化,导致电容器失效。

因此,需要在设计和使用电路时,考虑到陶瓷电容的工作温度范围,以确保其正常工作和寿命。

振动和机械应力也可能导致陶瓷电容失效。

陶瓷电容通常是通过焊接或固定在电路板上的,如果电容器在使用过程中遭受到强烈的振动或机械应力,可能会导致焊点断裂或电容器内部结构破坏,进而引起电容失效。

因此,在安装和使用过程中,需要注意保护陶瓷电容,避免其受到过大的振动和机械应力。

陶瓷电容还可能由于电容器本身的质量问题而失效。

在制造过程中,陶瓷电容可能存在一些制造缺陷,如气泡、裂纹等,这些缺陷可能导致电容器在使用过程中失效。

因此,在选购和使用陶瓷电容时,需要选择质量可靠的产品,并注意检查电容器表面是否有明显的缺陷。

陶瓷电容还可能由于电容器的老化而失效。

陶瓷电容在使用过程中,会受到电场的影响,导致电容器内部的电介质逐渐老化,电容值发生变化,甚至失效。

因此,在使用过程中,需要定期检测和更换老化的陶瓷电容,以确保电路的正常工作。

陶瓷电容失效的原因主要包括电压过高、温度过高、振动和机械应力、质量问题以及电容器老化等。

在设计和使用电路时,需要考虑到这些因素,选择合适的陶瓷电容,并注意保护和维护电容器,以确保电路的正常工作和寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多层陶瓷电容器(MLCC)的典型结构中导体一般为Ag或AgPd,陶瓷介质一般为(SrBa)TiO3,多层陶瓷结构通过高温烧结而成。

器件端头镀层一般为烧结
Ag/AgPd,然后制备一层Ni阻挡层(以阻挡内部Ag/AgPd材料,防止其和外部Sn 发生反应),再在Ni层上制备Sn或SnPb层用以焊接。

近年来,也出现了端头使用Cu的MLCC产品。

根据MLCC的电容数值及稳定性,MLCC划分出NP1、COG、 X7R、 Z5U 等。

根据MLCC的尺寸大小,可以分为1206,0805,0603,0402,0201等。

MLCC 的常见失效模式
多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。

但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。

陶瓷多层电容器失效的原因分为外部因素和内在因素
内在因素主要有以下几种:
1.陶瓷介质内空洞 (Voids)
导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。

空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。

该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。

2.烧结裂纹 (firing crack)
烧结裂纹常起源于一端电极,沿垂直方向扩展。

主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。

3.分层 (delamination)
多层陶瓷电容器的烧结为多层材料堆叠共烧。

烧结温度可以高达1000℃以上。

层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。

分层和空洞、裂纹的危害相仿,为重要的多层陶瓷电容器内在缺陷。

外部因素主要为:
1.温度冲击裂纹(thermal crack)
主要由于器件在焊接特别是波峰焊时承受温度冲击所致,不当返修也是导致温度冲击裂纹的重要原因。

2.机械应力裂纹(flex crack)
多层陶瓷电容器的特点是能够承受较大的压应力,但抵抗弯曲能力比较差。

器件组装过程中任何可能产生弯曲变形的操作都可能导致器件开裂。

常见应力源有:贴片对中,工艺过程中电路板操作;流转过程中的人、设备、重力等因素;通孔元器件插入;电路测试、单板分割;电路板安装;电路板定位铆接;螺丝安装等。

该类裂纹一般起源于器件上下金属化端,沿45℃角向器件内部扩展。

该类缺陷也是实际发生最多的一种类型缺陷。

MLCC器件的失效分析方法
扫描超声分析:
扫描超声方法是分析多层陶瓷电容器的最重要的无损检测方法。

可以十分有效地探测空洞、分层和水平裂纹。

由于超声的分析原理主要是平面反射,因而对垂直裂纹如绝大多数的烧结裂纹、垂直分量较大的弯曲裂纹的分辨能力不强。

同时一般多层陶瓷电容器的检测需要较高的超声频率。

图2为典型的空洞和分层的扫描超声检测结果。

甲醇检漏法:
对于严重的分层或开裂,可以使用甲醇检漏法,即将失效器件浸入甲醇溶液中。

由于甲醇为极性分子,且具有很强的渗透力,因而可以通过毛细管作用渗透进入严重分层或开裂部位。

加电后产生很大的漏电流,从而可帮助诊断。

金相剖面法:
金相剖面既是最经典,同时也是最有效的陶瓷电容器的失效分析方法。

其优点是通过剖面及相应的光学或扫描电子显微镜检测,可以得到失效部位的成分、形貌等精细结构,从而帮助失效机理的分析。

但其缺点是制备比较复杂,对制备技术要求比较高,同时为破坏性检测手段。

图3-5 为金相剖面分析多层陶瓷电容器的失效的典型案例。

多层陶瓷电容器的质量控制
多层陶瓷电容器的特点是在没有内在缺陷并且组装过程也未引入其它缺陷的前提下,可靠性优越。

但是如果存在缺陷,则无论是内在的还是外在的都可能对器件可靠性产生严重影响。

同时组装后的陶瓷电容器潜在缺陷很难通过无损、在线检测等发现,因而多层陶瓷电容器的质量控制主要必须通过预防性措施解决。

常见预防措施包括:
1.对供应商进行认真选择、对其产品进行定期抽样检测等。

2.对组装工艺中所有可能导致热应力、机械应力的操作进行认真的分析及有效的控制。

考虑到多层陶瓷电容器的特点,对器件进行的检测可以主要包括:
1.结构分析: 即采用金相剖面手段抽检样品。

可以对器件产生的制造水平,内在缺陷等有一全面了解。

2.扫描超声分析 : 可以十分有效地探测空洞、分层、水平裂纹等缺陷耐温度试验考察高温及温度冲击可能带来的器件开裂、Ag/Pd层外露等缺陷。

弯曲试验: 按照相关标准将器件组装在规定的印刷电路板上,进行弯曲试验,以考察器件抗弯曲能力。

当然陶瓷电容器还有很多其它检测指标,可根据具体情况增加或减少检查项目,以达到用最低的成本达到最有效的控制。

组装工艺中主要考察及控制项目:
1.回流或波峰焊温度曲线,一般器件工艺商都会提供相关的建议曲线。

通过组装良品率的积累和分析,可以得到优化的温度曲线。

2.在组装工艺中印刷线路板操作和流转过程中特别是手工插件、铆钉连接、手工切割等工艺需要特别加以注意。

必要时甚至需要对产品设计进行修改,以最大限度地使多层陶瓷电容器避开在工艺过程中可能产生较大机械应力的区域。

3.检查组装过程中的电检测 ICT工艺,必须注意尽量减小测试点机械接触所带来的机械应力。

4.返修工艺中温度曲线的设置。

如使用烙铁返修,则焊头接触焊点的位置、时间等都必须加以规范。

多层陶瓷电容器的质量控制为一系统工程,首先必须对实际生产中的失效样品进行分析以确定失效的根本原因,在此基础上逐步提出改进措施并最终达到最优化的控制。

2.1 陶瓷电容规格
日本国内以JIS标准为准。

JIS标准本身也是随着技术进步逐渐和国际标准IEC接轨的。

世界各国有各自的标准,稍有差异,美国为EIA标准,军工标准MIL,按照用途差异有不同的要求水准。

各国各自标准的存在与运用,实际上就是非关税贸易壁垒,WTO(世贸组织)/TBT协议现在要求实现国际标准的统一,电容器也不例外。

JIS标准中陶瓷电容相关标准见表4,这三个标准中,关于试验方法和测定方法都引用品种别标准JIS-C5101-1,所以日本陶瓷电容标准就是由这4项标准组成。

表4JIS
随着最近积层陶瓷电容器的高容量化、低额定电压化、以及高耐压化的需求增加,诞生了许多上述JIS-C5101-10覆盖范围外的新产品,例如高容量品中的10V以下额定电压品种、以及高耐压的200V以上额定电压品种。

现在,这些新品种的标准正由EIAJ(日本电子机械工业标准)进行起草。

表5是EIAJ标准分类表。

分类代号还根据形状、尺寸、特性等项目进行细分。

作为补充,EIAJ标准的来源是美国EIA标准。

2.2 陶瓷电容温度特性
JIS标准中,如下表4将陶瓷电容分为种类1(温度补偿用陶瓷电容器)和种类2(高介电率型陶瓷电容器)。

按照形状分的话,陶瓷电容有圆盘状和片状,其中片状占到全部的80%以上。

陶瓷电容的一个重要特征是,可以按照需要制造满足特定温度特性要求的产品,因此,标准对温度特性进行了细分,EIA的静电容量和温度特性分类代号见表6和7,表中的例子X8R特性的意义是,从-55℃到150℃的范围内,静电容量的温度变化在±15%以内。

表6EIA 标准CLASS Ⅰ(种类1 温度补偿用)分类代号
容量温度系数温度系数公差
Ppm/℃代号倍数代号ppm/℃代号
0.0 C -1 0 ± 30 G
1.0 M -10 1 ± 60 H
1.5 P -100 2 ± 120 J
2.2 R -1000 3 ± 250 K
3.3 S -10000 4 ± 500 L
4.7 T +1 5 ± 1000 M
7.5 U +10 6 ± 2500 N
+100 7
+1000 8
+10000 9
表7
导入论坛收藏分享给好友推荐到圈子管理举报
TAG:。

相关文档
最新文档