第5讲 二次根式

合集下载

灵武市师院附中八年级数学上册第5章二次根式二次根式的乘法说课稿新版湘教版2

灵武市师院附中八年级数学上册第5章二次根式二次根式的乘法说课稿新版湘教版2

《二次根式的乘法》说课稿各位评委老师好:我是XX号,今天我说的课题是湘教版八年级下册第5章第二节第一课时《二次根式的乘法》。

一、说教材(一)教材的地位及作用分析:“二次根式”是初中代数重要的内容之一。

本节内容是在学习了二次根式的概念、性质的基础上进一步学习二次根式的乘法,同时也为后面学习二次根式的除法、加、减法等运算做准备,具有承上启下的作用,在教材中处于重要的地位。

对于学生,通过之前学习了二次根式的性质、化简,现在所学的乘法是对性质的一个应用,一个实践。

学生在观察讨论交流的过程中,能主动探索,勇于发现,培养学生知识的迁移和联系能力以及转化的数学思想。

(二)教学重点:(a≥0,b≥0),二次根a≥0,b≥0),并利用它们进行计算和化简。

(三)教学难点:在具体化简问题中,发现规律,利用积的算术平方根性质和二次根式乘法法则进行化简。

二、教学目标:依据课标要求,结合教材和学生实际,我指定了如下教学目标:(一)知识与技能目标1.通过学习,是学生进一步熟练掌握积的算术平方根的性质。

2.通过引导,让学生会运用积的算术平方根的性质进行二次根式的乘法运算和根式化简。

(二)过程与方法目标通过探索灵活运用积的算术平方根,使学生感知数学知识具有普遍的联系性。

熟练掌握运算法则,培养学生由特殊到一般的思维能力(三)情感与态度目标通过主动探究,合作交流,让学生充分参与到数学学习的过程中来,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,同时进一步培养同学间的合作交流能力和团队合作精神。

三、教法简介:教学法:根据教材特点和八年级学生的心理特征和认知水平,本课我采用引导设问法、讨论法、练习法等方法,激发学生学习兴趣,并在教学过程中注意加强对学生的启发和引导,充分展示自己的观点和见解,创设一个宽松愉快的学习氛围。

学生通过自主学习、合作探究等方法学习,充分体现出学生的主体地位。

【下面,我重点说下本课题的教学过程】四、教学过程:(一)复习,导入新课1.(a≥0,b≥0)2.在黑板分别板书3道带有根号有关算术平方根的积和积的算术平方根的计算题,请同学们完成。

2020年春数学中考一轮复习5.重庆数学 第5讲数的开方与二次根式

2020年春数学中考一轮复习5.重庆数学 第5讲数的开方与二次根式

=0”时,每个部分
3.二次根式运算时,一定要先化简,再运算.步骤是先乘方开方,再乘除, 最后加减;有括号的由内到外、由小到大进行计算. 4.重要技巧:y= x-a+ a-x+1. 解:∵x-a≥0,a-x≥0(保证二次根式有意义,才能运算), ∴x≥a,且x≤a,即x=a, ∴y=1.
03 考场 ·笑傲全国题
10.(2019·梧州)计算:3 8=____2_.
11.(2019·内江)若|1001-a|+ a−1002=a,则a-10012=__1_0_0_2__. 1
12.(2019·重庆模拟)已知y= x−3+ 3−x-2,则xy的值为__9___.
13.(2019·扬州)计算:( 5-2)2018( 5+2)2019的结果是____5_+_2__.
第一单元 数与式
第5讲 数的开方与二次根式
01 考点 ·梳理知识点
考标点击
1.了解平方根、算术平方根、立方根的概念,会表示数的平方根、算术平 方根、立方根. 2.了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会 用立方运算求百以内整数(对应的负整数)的立方根. 3.能用有理数估计一个无理数的大致范围. 4.了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数) 加、减、乘、除运算法则,会用它数的开方
样题1 (2019·重庆A)估计(2 3+6 2)× 13的值应在( C )
A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
[解析]先根据二次根式的乘法进行计算,再进行估算.
(2
3+6
2)×
1 3
=2+6
23=2+
36×

中考复习之 数的开方与二次根式

中考复习之 数的开方与二次根式
(1)[2012· 雅安] 9的平方根是( C ) A.3 B.-3 C.±3 D.6 (2)[2011· 日照] (-2)2的算术平方根是( A ) A.2 B. ±2 C.-2 D. 2
[解析] 9的平方根是± 3,(-2)2的算术平方根是2.
第5讲┃ 归类示例
(1)一个正数的平方根有两个,它们互为相反数;(2)平 方根等于本身的数是0,算术平方根等于本身的数是1和 0,立方根等于本身的数是1、-1和0;(3)一个数的立方根 与它同号;(4)对一个式子进行开方运算时,要先将式子化 简再进行开方运算.
2 1 1 2 计算: ×( 3-1) + + 3- -1. 2 2 2-1 4-2 3 解:原式= + 2+1+ 3- 2 2 =2- 3+ 2+1+ 3- 2=3.
第5讲┃ 归类示例
利用二次根式的性质,先把每个二次根式化简,然 后进行运算;在中考中二次根式常与零指数、负指数结 合在一起考查.
第5讲┃ 考点聚焦 考点5 把分母中的根号化去
常用形式 及方法
1· a 1 a (1) = = a a· a a a+b 1 (2) = a+b a+b
第5讲┃ 归类示例
归类示例
► 类型之一 求平方根、算术平方根与立方根
命题角度: 1. 平方根、算术平方根与立方根的概念; 2. 求一个数的平方根、算术平方根与立方根.
第5讲┃ 归类示例
[2012· 巴中] 先化简,再求值:
1 1 x x2+2x+1 1 - ,其中x= . x x+1· 2 2 2 x+1 -x-1

x x+1 x+1 1 解:原式= · = . 4x xx+1 4xx+1 1 ①当x+1>0时,原式= ; 4x 1 ②当x+1<0时,原式=- . 4x 1 ∵当x= 时,x+1>0, 2 1 ∴原式= . 2

2014中考复习备战策略_数学PPT_第5讲_二次根式

2014中考复习备战策略_数学PPT_第5讲_二次根式

【点拨】原式= 2 2+ 3- 2 2= 3.故选 B. 【答案】 B 方法总结 二次根式加减运算的实质是去括号, 合并被开方数 相同的二次根式;二次根式的乘除运算中,要注意乘法 运算律仍然适用 .
考点知识梳理
中考典例精析
基础巩固训练
考点训练
考点四
二次根式的混合运算
例 4 (2013· 宿迁)计算 2( 2- 3)+ 6的值是__. 【点拨】原式= 2× 2- 2× 3+ 6=2- 6 + 6=2. 【答案】 2
考点训练
5.(2013· 泰州)下列计算正确的是( C A.4 3-3 3=1 C.2 1 = 2 2 B.
)
2+ 3= 5
D.3+2 2=5 2
考点知识梳理
中考典例精析
基础巩固训练
考点训练
2x+ 1 6. (2013· 娄底)使式子 有意义的 x 的取值范 x-1 围是( A ) B. x≠1 1 D. x>- 且 x≠1 2 1 A. x≥- 且 x≠ 1 2 1 C. x≥- 2
考点知识梳理
中考典例精析
基础巩固训练
考点训练
方法总结 二次根式的混合运算要注意运算的顺序, 可应用整 式的运算律改变运算的顺序,从而使运算简便.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
考点知识梳理
中考典例精析
基础巩固训练
考点训练
1. 要使二次根式 2x-4有意义, 那么 x 的取值范 围是( C ) B.x<2 D.x≤2
考点知识梳理
中考典例精析
基础巩固训练
考点训练
考点五
二次根式的运算
1.二次根式的加减法 先将各二次根式化为最简二次根式 ,然后再合并 同类二次根式.

2022秋八年级数学上册 第5章 二次根式5.1 二次根式1二次根式及其性质授课课件湘教版

2022秋八年级数学上册 第5章 二次根式5.1 二次根式1二次根式及其性质授课课件湘教版
之也成立,即 a 无意义 a<0.
感悟新知
要点精析:
知2-讲
(1)如果一个式子含有多个二次根式,那么它有意义的条件
是:各个二次根式中根式又含有分式,那么它有意
义的条件是:二次根式中的被开方数(式)是非负散,分式
的分母不等于0.
(3)如果一个式子含有零指数幂或负整散指数幂,那么它有
谢谢观赏
You made my day!
之间存在如下关系:v2=gR,其中重力加速度常数 g=9.8 m/s2.若已知地球半径R,则第一宇宙速度 是多少?
感悟新知
知1-导
我们已经知道:每一个正实数a有且只有两个平方
根,一个记作 a ,称为a的算术平方根;另一个是 a- .
感悟新知
结论
知1-讲
我们把形如 a 的式子叫作二次根式,根号下的

13;②
-3;③-
3
x2+1;④ 8;⑤
132;⑥ x2-2.
A.2 B.3 C.4 D.5
感悟新知
知识点 2 二次根式的“双重”非负性(a≥0, a 0 )
(1)式子 a 只有在条件a≥0时才叫二次根式.即a≥0是 a 知2-导
为二次根式的前提条件.式子 就 2不是二次根式,但式 子 ( 2却) 2 又是二次根式.
数叫作被开方数.
感悟新知
1.定义:形如 a (a≥0)的式子叫作二次根式;
知1-讲
其中“ ”称为二次根号,a称为被开方数(式).
要点精析:(1)二次根式的定义是从代数式的结构形式上界
定的,必须含有二次根号“ ”;
“ ”的根指数为2,即 2 ,“2”一般省略不写.
(2)被开方数a可以是一个数,也可以是一个含有字母的式

2013届中考数学考前热点冲刺《第5讲 数的开方及二次根式》课件 新人教版

2013届中考数学考前热点冲刺《第5讲 数的开方及二次根式》课件 新人教版

第5讲┃ 归类示例
此类有意义的条件问题主要是根据:①二次根式 的被开方数大于或等于零;②分式的分母不为零等列不 等式组,转化为求不等式组的解集.
第5讲┃ 归类示例 ► 类型之三 根式的化简与计算
命题角度: 1. 二次根式的性质:两个重要公式,积的算术平方 根,商的算术平方根; 2. 二次根式的加减乘除运算.
[点析] 在进行二次根式化简求值时,常常用到整体思 想.把 x+y、x-y、xy 当作整体进行代入.
第5讲┃ 回归教材
中考变式
a2-4a+4 a+1 2 [2012· 苏州] 先化简,再求值: + 2 · ,其 a-1 a -1 a-2 中 a= 2+1.
a-22 a+1 a-2 2 2 a 解:原式= + · = + = . a-1 a+1a-1 a-2 a-1 a-1 a-1 2+1 2+ 2 当 a= 2+1 时,原式= = . 2 2
第5讲┃ 考点聚焦 考点3 二次根式的性质
两个重要 的性质 ( a)2=a(a________) ≥0 a =a
2

二 次 根 积的算术 式 平方根 的 性 商的算术 质 平方根

a -a
a≥0 a<0
ab= a· b(a______(a________, >0 a a b________) ≥0
立方 一个数x的________等于a,那么x叫做 立方 根 3 数a的立方根,记作 a
第5讲┃ 考点聚焦 考点2 二次根式的有关概念
二 次 根 式 最简 二次 根式
定义 防错 提醒
形如 a(________)的式子叫做二次根式 a≥0 a中的 a 可以是数或式, a 一定要大于 但 或等于 0

第5讲 二次根式(解析版)

第5讲 二次根式(解析版)

第5讲 二次根式一、考点知识梳理【考点1 二次根式的概念和性质】 1.平方根、算术平方根若x 2=a ,则x 叫a 的平方根.当a≥0时,a 是a 的算术平方根.正数b 的平方根记作± b.a 是一个非负数,只有非负数才有平方根. 2.立方根及性质若x 3=a ,则x 叫a 的立方根.求一个数的立方根的运算叫开立方;任一实数a 的立方根记作3a ;3a 3=a ,(3a)3=a ,3-a =-3a . 3.二次根式的概念(1)形如a(a≥0)的式子叫二次根式,而a 为二次根式的条件是a≥0; (2)满足下列两个条件的二次根式叫最简二次根式: ①被开方数的因数是整数,因式是整式; ②被开方数中不含有开得尽方的因数或因式. 4.二次根式的性质 (1)ab =a·b(a≥0,b≥0);a b =ab(a≥0,b >0); (2)(a)2=a(a≥0); (3)a 2=|a|=⎩⎪⎨⎪⎧ a (a≥0)-a (a <0).【考点2 二次根式的运算】 二次根式的运算(1)二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并; (2)二次根式的乘法:a·b =ab(a≥0,b≥0); (3)二次根式的除法:ba =ba(a≥0,b >0); (4)二次根式的估值:二次根式的估算,一般采用“夹逼法”确定其值所在范围.具体地说,先对二次根式平方,找出与平方后所得的数相邻的两个能开得尽方的整数,对其进行开方,即可确定这个二次根式在哪两个整数之间;(5)在二次根式的运算中,实数的运算性质和法则同样适用.二次根式的混合运算顺序是:先算乘除,后算加减,有括号时,先算括号内的(或先去括号). 二、考点分析【考点1 二次根式的概念和性质】 【解题技巧】1.判断二次根式有意义的条件: (1)二次根式的概念.形如(a ≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.2.二次根式的基本性质:①≥0; a ≥0(双重非负性).②a = (a ≥0)(任何一个非负数都可以写成一个数的平方的形式).③=a (a ≥0)(算术平方根的意义)【例1】(2019 甘肃中考)使得式子有意义的x 的取值范围是( )A .x ≥4B .x >4C .x ≤4D .x <4【答案】D .【分析】直接利用二次根式有意义的条件分析得出答案. 【解答】解:使得式子有意义,则:4﹣x >0,解得:x <4,即x 的取值范围是:x <4. 故选:D .【一领三通1-1】(2019•广西)若二次根式有意义,则x 的取值范围是 .【答案】x ≥﹣4;【分析】根据被开数x +4≥0即可求解; 【解答】解:x +4≥0, ∴x ≥﹣4; 故答案为x ≥﹣4;【一领三通1-2】(2019•广州)代数式有意义时,x 应满足的条件是 .【答案】x >8.【分析】直接利用分式、二次根式的定义求出x 的取值范围. 【解答】解:代数式有意义时,x ﹣8>0, 解得:x >8.()2a ()2a故答案为:x>8.【一领三通1-3】(2019 台湾中考)若=2,=3,则a+b之值为何?()A.13B.17C.24D.40【答案】B.【分析】根据二次根式的定义求出a、b的值,代入求解即可.【解答】解:∵==2,∴a=11,∵==3,∴b=6,∴a+b=11+6=17.故选:B.【一领三通1-4】(2016河北中考)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点【答案】B.【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.【解答】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.【一领三通1-5】(2019 山东济南中考模拟)如图,表示7的点在数轴上表示时,在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【答案】A.【分析】(1)根据平方根的定义和绝对值的性质分别填空即可;(2)主要考查数轴,根据数轴上的点利用平方法,估算7的大致范围,然后结合数轴上点的位置和大小即可得到7的位置.【解答】(1)7是一个正数,它的绝对值大于2;②它的绝对值小于3;③2.5的平方是6.25;故选A【考点2 二次根式的运算】【解题技巧】1.二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.2.化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.3.二次根式运算的结果可以是数或整式,也可以是最简二次根式,如果二次根式的运算结果不是最简二次根式,必须化为最简二次根式.【例2】(2019 江苏南京中考)计算﹣的结果是.【答案】0.【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.【解答】解:原式=2﹣2=0.故答案为0.【一领三通2-1】计算÷的结果是.【答案】3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:3【一领三通2-2】(2019 山西中考)下列二次根式是最简二次根式的是()A.B.C.D.【答案】D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:解:A、,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、是最简二次根式,故D符合题意.故选:D.【一领三通2-3】(2019 天津中考)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】D.【分析】由于25<33<36,于是<<,从而有5<<6.【解答】解:∵25<33<36,∴<<,∴5<<6.故选:D.【一领三通2-4】(2019•青岛)计算:﹣()0=2+1.【答案】2+1.【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【一领三通2-5】(2019•广州中考模拟)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是()A B 2 C D【答案】C【分析】利割补法求阴影部分的面积.【解答】阴影部分的面积5,新正方形的边长为 5.故选:C三、【达标测试】(一)选择题1.(2019 云南中考)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣1【答案】B.【分析】要根式有意义,只要令x+1≥0即可【解答】解:要使根式有意义则令x+1≥0,得x≥﹣1故选:B.2.(2019 重庆中考)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】C.【分析】先根据二次根式的乘法进行计算,再进行估算.【解答】解:(2+6)×,=2+6,=2+,=2+,∵4<5,∴6<2+<7,故选:C.3.(2019•兰州)计算:﹣=()A.B.2C.3D.4【答案】A.【分析】先化简二次根式,再合并同类二次根式即可得.【解答】解:﹣=2﹣=,故选:A.4.(2019 山东青岛中考模拟)若实数x满足|x﹣3|+=7,化简2|x+4|﹣的结果是()A.4x+2B.﹣4x﹣2C.﹣2D.2【答案】A.【分析】根据x的取值﹣4≤x≤3以及二次根式的性质,化简绝对值即可得到结果.【解答】解:∵|x﹣3|+=7,∴|x﹣3|+|x+4|=7,∴﹣4≤x≤3,∴2|x+4|﹣=2(x+4)﹣|2x﹣6|=2(x+4)﹣(6﹣2x)=4x+2,故选:A.5.(2019 河北衡水中考模拟)化简﹣a的结果是()A.﹣2a B.﹣2a C.0D.2a【答案】A.【分析】直接利用二次根式的性质化简进而得出答案.【解答】解:﹣a=﹣a﹣a2•=﹣a+a=0.故选:C.6.(2019 河北沧州中考模拟)若(a+)2与|b﹣1|互为相反数,则的值为()A.B.+1C.﹣1D.1﹣【答案】C.【分析】根据互为相反数的两个数等于0得出(a+)2+|b﹣1|=0,推出a+=0,b﹣1=0,求出a=﹣,b=1,代入求出即可.【解答】解:∵(a+)2与|b﹣1|互为相反数,∴(a+)2+|b﹣1|=0,∴a+=0,b﹣1=0,∴a=﹣,b=1,∴===﹣1,故选:C.7.(2019 山东青岛中考模拟)已知a为实数,则代数式的最小值为()A.0B.3C.D.9【答案】B.【分析】把被开方数用配方法整理,根据非负数的意义求二次根式的最小值.【解答】解:∵原式===∴当(a﹣3)2=0,即a=3时代数式的值最小,为即3故选:B.8.(2019 辽宁盘锦中考模拟)方程,当y=2时,m的取值范围是()A.350B.C.O D.m≤2【答案】C.【分析】根据两个非负数的和为0,必须都为0,得出4x﹣8=0,x﹣y﹣m=0,求出xy的值,代入即可求出m的值.【解答】解:∵方程,∴4x﹣8=0,x﹣y﹣m=0,x=2,m=y﹣2,∵y=2,∴m=0,故选:C.(二)填空题1.(2019 天津中考)计算(+1)(﹣1)的结果等于.【答案】2.【分析】利用平方差公式计算.【解答】解:原式=3﹣1 =2. 故答案为2.2.(2019 上海中考)如果一个正方形的面积是3,那么它的边长是 . 【答案】【分析】根据算术平方根的定义解答. 【解答】解:∵正方形的面积是3, ∴它的边长是.故答案为:3.(2019•长春)计算:3﹣= .【答案】2.【分析】直接合并同类二次根式即可求解. 【解答】解:原式=2.故答案为:2.4.(2019 山东枣庄中考模拟)函数y ,自变量x 的取值范围是 . 【答案】x≥-12且x≠1【分析】二次根式的被开方数为非负数,分式的分母不为0. 【解答】根据题意得⎩⎨⎧≠-≥+01012x x ∴x≥-12且x≠1.故答案是:x≥-12且x≠15. (2019 湖南长沙中考模拟)已知a 、b 为两个连续整数,且a <7<b ,则b a += . 【答案】5.【分析】利用估算求二次根式的范围. 【解答】因为2<7<3, 所以a=2,b=3, ∴a+b=2+3=5. 故答案是:56.(2019 上海中考模拟)方程31x 2=-的根是 . 【答案】x=5【分析】求根式中的被开方数中的未知数.乘法法则,乘法公式适合于二次根式. 【解答】两边平方,得2x -1=9. ∴2x=10 ∴x=5.经检验x=5是方程2x+1=3的根. 故答案是:x=57.(2019 上海中考模拟)化简:=-321 .【答案】2+ 3 【分析】化简1a+b形式通常乘以a -b,利用平方差公式(a+b)(a -b)=a -b. 【解答】原式=12-3=1×(2+3)(2-3)( 2+3) =2+322-(3)2 = 2+ 3.故答案是:2+ 38. (2019 河北沧州中考模拟)在进行二次根式化简时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:(1)请用不同的方法化简;(2)化简:. 【答案】(1)﹣(2).【分析】(1)分式的分子和分母都乘以﹣,即可求出答案;把2看出5﹣3,根据平方差公式分解因式,最后进进约分即可. (2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.【解答】解:(1).(2)原式==. (三)解答题1.(2019 河北石家庄中考模拟)如图,实数a 、b 在数轴上的位置,化简222()a b a b -【分析】a 2=|a|=⎩⎨⎧<-≥).0(),0(a a a a 【解答】∵-1<a<0,0<b<1∴a -b<0.∴原式=|a|-|b|-|a -b|=-a -b+a -b=-2b.2.(2019 河北唐山中考模拟)先化简,再求值:222344322+-++÷+++a a a a a a a ,其中22-=a . 【分析】结果的分母应不含根号.先化简,再代入求值,化简时把分子、分母进行因式分解.【解答】当a=2-2时,原式=a(a+3)(a+2)2·a+2a+3-2a+2=a -1a+2=2-2-22-2+2 =2-42=1-2 2. 3. (2019 辽宁沈阳中考模拟)计算:cos45°·(-21)-2-(22-3)0+|-32|+121 【分析】先把三角函数,负指数、零指数、绝对值及分子分母中的根号等进行化简.a -p =1a p (a≠0,p 为正整数), 1a -b 化简为1a -b =a+b (a -b)(a+b)=a+b a -b. 【解答】原式=22×4-1+32+12-1=22-1+42+2+1=7 2.4.(2019 山东淄博中考模拟)(1)已知a +3与2a ﹣15是一个正数的平方根,求a 的值;(2)已知x ,y 为实数,且y =﹣+4,求的值.【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案.【解答】解:(1)根据平方根的性质得,a +3+2a ﹣15=0,解得:a =4,a +3=2a ﹣15,解得:a =18, 答:a 的值为4或18;(2)满足二次根式与有意义,则,解得:x =9,∴y =4,∴=+=5. 5.(2019 湖南长沙中考模拟)阅读材料:小明在学习二次根式的化简后,遇到了这样一个需要化简的式子:.该如何化简呢?思考后,他发现3+2=1+2+()2=(1+)2.于是==1+.善于思考的小明继续深入探索;当a+b=(m+n)2时(其中a,b,m,n均为正整数),则a+b=m2+2mn+2n2.此时,a=m2+2n2,b=2mn,于是,=m+n.请你仿照小明的方法探索并解决下列何题:(1)设a,b,m,n均为正整数且=m+n,用含m,n的式子分别表示a,b时,结果a=,b=;(2)利用(1)中的结论,选择一组正整数填空:=+;(3)化简:.【分析】(1)利用已知直接去括号进而得出a,b的值;(2)取m=2,n=1,计算a和b的值,利用完全平方公式,变形得出答案;(3)直接利用完全平方公式,变形化简即可.【解答】解:(1)由题意得:a+b=(m+n)2,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn;故答案为:m2+3n2;2mn;(2)取m=2,n=1,则a=m2+3n2=7,b=2mn=4,7+4=(2+)2;故答案为:;(3)==+1.6.(2019 河北衡水中考模拟)已知a、b、c为△ABC的三边长,化简:+.【分析】直接利用三角形三边关系得出a+b﹣c>0,b﹣c﹣a<0,进而化简得出答案.【解答】解:∵a、b、c为△ABC的三边长,∴a+b﹣c>0,b﹣c﹣a<0,∴原式=a+b﹣c﹣(b﹣c﹣a)=2a.7.(2019 河北石家庄中考模拟)已知|2018﹣m|+=m,求m﹣20182的值.【分析】直接利用二次根式有意义的条件分别分析得出答案.【解答】解:∵m﹣2019≥0,∴m≥2019,∴2018﹣m≤0,∴原方程可化为:m﹣2018+=m,∴=2018,∴m﹣2019=20182,∴m﹣20182=2019.8.(2019 河北石家庄中考模拟)在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.【分析】(1)根据完全平方公式求出即可;(2)先根据完全平方公式展开,再求出m、n的值,再求出a即可.【解答】解:(1)4+2=3+2+1=()2+2×+12=(+1)2;6+4=4+4+2=22+2×2×+()2=(2+)2;(2)∵a+4=(m+n)2,∴a+4=m2+2mn+3n2,∴a=m2+3n2,2mn=4,∴mn=2,∵m,n都是正整数,∴m=2,n=1或m=1,n=2;当m=2,n=1时,a=22+3×12=7;当m=1,n=2时,a=12+3×22=13;即a的值是7或13.。

二次根式计算讲义

二次根式计算讲义

一、教学目标:知识目标:1、使学生能够利用积的算术平方根的性质进行二次根式的化简与计算;2、会进行简单的二次根式的乘除法、加减法运算;过程与方法:1、使学生进一步了解数学知识之间是相互联系的;2、使学生能联系几何课中学习的勾股定理解决实际问题;情感态度与价值观:培养学生努力探索事物之间内在联系的学习习惯。

二、教学重难点重点:会利用积的算术平方根的性质化简二次根式,会进行二次根式的乘除法、加减法计算。

难点:二次根式的乘法与积的算术平方根的关系及应用。

三、教学内容:知识回顾:1、什么叫二次根式?形如a(a≥0)的式子叫做二次根式的概念2、二次根式有哪些性质?(a)2=a(a≥0)新课知识:二次根式的乘除法:计算:(1)425⨯与425⨯(2)169⨯与169⨯(3)2)32(×2)53(与22)53()32(⨯观察以上式子及其运算结果,看看其中有什么规律?概括:二次根式相乘,实际上就是把被开方数相乘,而根号不变: a ·b =ab (a ≥0,b ≥0) 由以上公式逆向运用可得:ab =a ·b (a ≥0,b ≥0)文字语言叙述:积的算术平方根,等于积中各因式的算术平方根的积。

例1、计算:⑴ 2·32 ⑵21·8 ⑶a 2·a 8(a ≥0)例2、化简: ⑴ 2257 ⑵8116 ⑶12⑷3a (a ≥0) ⑸a (a ≥0,b ≥0)练习: 1、化简:(1)18 (2)27 (3)32(4)2312a b (5)273⨯ (6)5153⨯(7)763⋅ (8)23312⨯ (9)2405⨯(10) 3ab ab ⋅ (0a ≥ 0b ≥)2、计算:⑴xy ·y x 3·2xy⑵18·24·27 (3)63142⨯⨯3、已知()()2727x x x x --=-⋅-,求x 的取值范围。

4、已知等腰三角形的腰为26cm ,底边为42cm ,求这个等腰三角形的面积5、观察:a ·b =ab (a ≥0,b ≥0) 思考:a ×b ×c = ?6、如图,在△ABC 中,∠C=90°,AC=10㎝,BC=24㎝,求AB 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲二次根式
考点1二次根式的有关概念
1.(2019·武汉)式子x-1在实数范围内有意义,则x的取值范围是(C) A.x>0 B.x≥-1
C.x≥1 D.x≤1
2.(2019·河池)下列式子中,为最简二次根式的是(B)
A.1
2 B. 2
C. 4
D.12
3.(2019·广州)代数式
1
x-8
有意义时,x应满足的条件是x>8.
考点2二次根式的性质
4.(2019·广东)化简42的结果是(B)
A.-4 B.4 C.±4 D.2
5.(2018·绵阳)等式x-3
x+1

x-3
x+1
成立的x的取值范围在数轴上可表示为(B)
,A),B)
,C),D)
6.(2018·河北)计算:-12
-3
=2.
7.(2019·安顺)若实数a,b满足|a+1|+b-2=0,则a+b=1.考点3二次根式的运算
8.(2019·兰州)计算:12-3=(A)
A. 3 B.2 3
C.3 D.4 3
9.(2018·曲靖)下列二次根式中能与23合并的是(B)
A.8
B.1 3
C.18
D.9 10.(2019·常德)下列运算正确的是(D)
A.3+4=7
B.12=3 2
C.(-2)2=-2
D.14
6

21
3
11.(2019·扬州)计算(5-2)2 018(5+2)2 019 12.(2018·陕西)计算:(-3)×(-6)+|2-1|+(5-2π)0. 解:原式=3×6+2-1+1
=32+2-1+1
=4 2.
13.(2019·南充)计算:(1-π)0+|2-3|-12+(1
2
)-1.
解:原式=1+3-2-23+ 2 =1- 3.
14.(2019·大连)计算:(3-2)2+12+6
13
. 解:原式=3+4-43+23+6×
33 =3+4-43+23+2 3
=7.
考点4 无理数的估值
15.(2019·南京)下列整数中,与10-13最接近的是(C)
A .4
B .5
C .6
D .7
16.(2019·重庆)估计(23+62)×13
的值应在(C) A .4和5之间 B .5和6之间
C .6和7之间
D .7和8之间
17.(2019·辽阳)6-3的整数部分是4.
18.(2019·淄博)如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为(B)
A. 2 B .2
C .2 2
D .6
19.(2019·绵阳)已知x 是整数,当|x -30|取最小值时,x 的值是(A)
A .5
B .6
C .7
D .8
20.(2019·随州)“分母有理化”是我们常用的一种化简的方法,如:2+32-3=(2+3)(2+3)(2-3)(2+3)
=7+43,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于3+5-3-5,设x =
3+5-
3-5,易知3+5>3-5,故x >0,由x 2=(3+5-3-5)2=3+5+3-5-
2(3+5)(3-5)=2,解得x =2,即3+5-3-5= 2.根据以上方法,化简3-23+2+6-33-6+33后的结果为(D)
A .5+3 6
B .5+ 6
C .5- 6
D .5-3 6
21.(2019·内江)若|1 001-a|+a -1 002=a ,则a -1 0012=1__002.
22.(2019·枣庄)观察下列各式: 1+112+122=1+11×2
=1+(1-12), 1+122+132=1+12×3
=1+(12-13), 1+132+142=1+13×4
=1+(13-14), …
请利用你发现的规律,计算:
1+112+122+1+122+132+1+132+142+…+1+12 0182+12 0192
,其结果为2__0182 0182 019

23.【关注数学文化】(人教八下教材P16“阅读与思考”变式题)(2019·宜昌)古希腊几何学家海伦和我国宋代数
学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦——秦九韶公式:如果一个三角形的三边长分别是
a ,
b ,
c ,记p =a +b +c 2
,那么三角形的面积为S =p (p -a )(p -b )(p -c ).如图,在△ABC 中,∠A ,∠B ,∠C 所对的边分别记为a ,b ,c ,若a =5,b =6,c =7,则△ABC 的面积为(A)
A .6 6
B .6 3
C .18
D.192。

相关文档
最新文档