八年级二次根式教师讲义带答案
八年级初二数学 二次根式(讲义及答案)含答案

八年级初二数学 二次根式(讲义及答案)含答案一、选择题1.下列计算正确的是( )A =B =C =D =2.下列计算结果正确的是( )A B .3=C =D=3.下列二次根式中,是最简二次根式的是( )ABC .D4.( )A .1B .﹣1C .D -5.下列运算正确的是( )A =B =C .3=D 2= 6.下列计算正确的是( )A =B 3=C =D .21=7.化简 )ABC D8.若a b > )A .-B .-C .D .9.下列运算正确的是( )A =B .(28-=C 12=D 1=10.x ≥3是下列哪个二次根式有意义的条件( )A B C D11.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对12.与根式- )A .B .x -C .D二、填空题13.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________14.若0a >化成最简二次根式为________. 15.能力拓展:1A =2A =;3:A =;4A =________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A()3-16.2==________. 17.设12211112S =++,22211123S =++,32211134S =++,设...S =S=________________ (用含有n 的代数式表示,其中n 为正整数).18.把_____________. 19.已知整数x ,y 满足y =,则y =__________.20.能合并成一项,则a =______.三、解答题21.计算及解方程组:(1-1-) (2)2+(3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩【答案】(1)2)7;(3)102x y =⎧⎨=⎩.【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可; (2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11-1+(11=1 (22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x = 把x=10代入①得:y=2 ∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.先阅读下列解答过程,然后再解答:,a b,使a b m=,使得+=,ab n22m+==a b==>)+=⨯=,==,由于437,4312m n7,12+=,=即:227===+。
初中数学二次根式(讲义及答案)含答案

一、选择题1.下列计算正确的为( ). A .2(5)5-=- B .257+=C .64322+=+D .3622=2.若 3x - 有意义,则 x 的取值范围是 ( ) A .3x >B .3x ≥C .3x ≤D .x 是非负数 3.下列计算正确的是( )A .235+=B .422-=C .8=42D .236⨯=4.已知:x =3+1,y =3﹣1,求x 2﹣y 2的值( ) A .1B .2C .3D .435.下列运算中,正确的是( ) A .325+=B .321-=C .326⨯=D .3322÷=6.下列各式中正确的是( ) A .36=±6B .2(2)2--=-C .8=4D .2(7)-=77.设a 为3535+--的小数部分,b 为633633+--的小数部分,则21b a-的值为( ) A .621+- B .621-+ C .621-- D .621++8.当4x =时,22232343124312x x x x x x -+--+++的值为( )A .1B .3C .2D .39.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定 10.下列各式计算正确的是( ) A 235+=B .236=()C 824=D 236=二、填空题11.已知112a b +=,求535a ab ba ab b++=-+_____. 12.已知实数,x y 满足(22200820082008x x y y --=,则2232332007x y x y -+--的值为______.13.732x y -=-,则2x ﹣18y 2=_____.14.若a ,b ,c 是实数,且10a b c ++=,则2b c +=________.15.当x x 2﹣4x +2017=________.16.甲容器中装有浓度为a ,乙容器中装有浓度为b ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.17.÷=________________ .18.已知:可用含x =_____.19.已知,n=1的值________.20.mn =________.三、解答题21.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:1S =同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积.(2)请证明:12S S【答案】(12) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:4S == (2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b cb c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅=1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.22.计算:(1﹣(2) (3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+--= 42(2)(2)(2)(2)x x x x x +-+-+-=2(2)(2)xx x -+-=12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.23.已知1,2y =. 【答案】1 【解析】 【分析】根据已知和二次根式的性质求出x 、y 的值,把原式根据二次根式的性质进行化简,把x 、y 的值代入化简后的式子计算即可. 【详解】 1-8x≥0,x≤188x-1≥0,x≥18,∴x=18,y=12,∴原式532-==1 222.【点睛】本题考查的是二次根式的化简求值,把已知条件求出x、y,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.24.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.25.计算(1+(2+-(3÷(4)(【答案】(1)234)7.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘除法则运算;(4)利用平方差公式计算;【详解】(1+=+22=;(2==;÷(3)2b=2b=;4(4)((22=-=7【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.26.观察下列各式:11111=+-=122111=+-=11236111=+-=113412请你根据上面三个等式提供的信息,猜想:(1=_____________(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析 【分析】(1)仿照已知等式确定出所求即可; (2)归纳总结得到一般性规律,写出即可; (3)原式变形后,仿照上式得出结果即可. 【详解】解:(1111114520=+-=; 故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++;(31156== 【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.在一个边长为(cm 的正方形的内部挖去一个长为()cm ,cm 的矩形,求剩余部分图形的面积.【答案】 【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm 2). 考点:二次根式的应用28.计算:(1)-(2)【答案】(1)21 【分析】(1)先把二次根式化为最简二次根式,然后合并即可; (2)先利用二次根式的乘除法则运算,再合并即可. 【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据二次根式的性质、二次根式的加法以及混合运算的法则逐项进行判断即可. 【详解】A 5=,故A 选项错误;B B 选项错误;C .++=222,故C 选项错误;D 2=,正确, 故选D . 【点睛】本题考查了二次根式的运算,熟练掌握各运算的运算法则是解题的关键.2.B解析:B 【分析】直接利用二次根式有意义的条件进而分析得出答案. 【详解】有意义的x 的取值范围是:x ≥3. 故选:B . 【点睛】本题考查二次根式有意义的条件,解题关键是正确掌握定义和二次根式有意义的条件.3.D解析:D 【分析】直接利用二次根式的混合运算法则分别判断得出答案. 【详解】解:AB 2=,故此选项不合题意;C ,故此选项不合题意;D =故选:D . 【点睛】本题考查二次根式的混合运算,正确掌握相关运算法则是解题关键.4.D解析:D 【分析】先根据x 、y 的值计算x y +、x y -的值,再将所求式子利用平方差公式进行化简,然后代入求值即可. 【详解】∵1,1x y ==,∴11112x y x y +==-=-=,则22()()2x y x y y x -=+-== 故选:D . 【点睛】本题考查了代数式的化简求值、二次根式的加减法与乘法,利用平方差公式对代数式进行化简是解题关键.5.C解析:C 【分析】根据二次根式的加、减、乘、除运算法则对各项进行计算即可得到结果. 【详解】不是同类二次根式,不能合并,故此选项错误;不是同类二次根式,不能合并,故此选项错误;=D=,故此选项错误;故选:C.【点睛】此题主要考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答此题的关键.6.D解析:D【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:A,故A错误;B12=,故B错误;C=C错误;D、2(=7,故D正确;故选:D.【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.7.B解析:B【分析】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后化简、运算、求值,即可解决问题.【详解】∴a,∴b,∴21b a -, 故选:B .【点睛】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.8.A解析:A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式2223232323x x x x112323x x 将4x =代入得, 原式11423423 22111313113113 13331131=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.9.B解析:B【解析】因=,所以a=0,b=1,c=1,即可得2a+999b+1001c=999+1001=2000,故选B.点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.10.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】A23B、错误,22312=();C8222232==D23236=⨯=故选:D.【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.二、填空题11.13【解析】【分析】由得a+b=2ab,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】由112a b+=得a+b=2ab,然后再变形535a ab ba ab b++-+,最后代入求解即可.【详解】解:∵112 a b+=∴a+b=2ab∴()5353510ab3===132aba b aba ab b aba ab b a b ab ab+++++-++--故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 12.1【分析】设a=,b=,得出x,y及a,b的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系. 13.【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】解:∵一定有意义,∴x≥11,∴﹣|7﹣x|+=3y﹣2,﹣x+7+x﹣9=3y﹣2,整理得:=3y,∴x﹣解析:22【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】一定有意义,∴x≥11,|7﹣x=3y﹣2,﹣x+7+x﹣9=3y﹣2,=3y,∴x﹣11=9y2,则2x﹣18y2=2x﹣2(x﹣11)=22.故答案为:22.【点睛】本题考查二次根式有意义的应用,以及二次根式的性质应用,属于提高题.14.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123===∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.15.2016【解析】把所求的式子化成(x ﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017=(x ﹣2)2+2013 =()2+2013=3+2013=2016.故答案是:2016.解析:2016【解析】把所求的式子化成(x ﹣2)2+2013然后代入式子计算,即可得到:x 2﹣4x+2017=(x ﹣2)2+2013 =2+2013=3+2013=2016.故答案是:2016.点睛:此题主要考查了配方法的应用,解题关键是把式子配成完全平方,然后整体代入即可求解,考查了学生对整体思想的认识和应用,学生对整体思想不熟时出错的主要原因.16.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可.【详解】解:根据题意,甲容器中纯果汁含量为akg,乙容器【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg溶液中纯果汁的含量,最后利=,求出m即可.【详解】,甲容器倒出mkg果汁中含有纯果汁makg,乙容器倒出mkg果汁中含有纯果汁mbkg,,=,整理得,-6b=5ma-5mb,∴(a-b)=5m(a-b),∴m【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.17.【解析】=,故答案为.解析:【解析】÷=()()2232===--,故答案为18.【解析】∵=,∴=== -==﹣x3+x ,故答案为:﹣x3+x. 解析:211166x x -+ 【解析】∵x =-==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x 3+116x , 故答案为:﹣16x 3+116x. 19.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====. 故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.20.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,解得,,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴7321. mn=⨯=故答案为21.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
八年级初二数学 二次根式(讲义及答案)含答案

一、选择题1.下列计算正确的是( ) A .235+= B .3223-= C .623÷= D .(4)(2)22-⨯-=2.计算32782-⨯的结果是( ) A .3B .3-C .23D .533.下列各式计算正确的是( ) A .235+=B .2222+=C .236⨯=D .1222= 4.下列计算正确的是( ) A .42=±B .()233-=- C .()255-= D .()233-=-5.当0x =时,二次根式42x -的值是( ) A .4B .2C .2D .06.下列二次根式中,最简二次根式是( ) A . 1.5 B .13C .10D .277.计算:()555+=( )A .55+B .555+C .525+D .1058.下列计算正确的是( ) A .2510⨯= B .623÷=C .12315+=D .241-=9.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定10.若75与最简二次根式1m +是同类二次根式,则m 的值为( ) A .7B .11C .2D .1二、填空题11.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 满足32016p q +=,则整数对()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 12.方程14(1)(1)(2)(8)(9)x x x x x x ++⋅⋅⋅+=+++++的解是______.13.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--++-=+----,则m+4的算术平方根为________.14.已知实数m 、n 、p 满足等式33352m n m n m n p m n p -+⋅--=+--+--,则p =__________.15.将一组数2,2,6,22,10,…,251按图中的方法排列:若2的位置记为(2,3),7的位置记为(3,2),则这组数中最大数的位置记为______. 16.计算: 200820092+323⋅-=_________.17.已知4a2(3)|2|a a +--=_____.18.4102541025-+++=_______. 19.如果0xy >2xy -. 20.下列各式:2521+n ③24b0.1y 是最简二次根式的是:_____(填序号)三、解答题21.计算及解方程组: (11324-2-1-26() (2)262-153-2+(3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩【答案】(1)2)7;(3)102x y =⎧⎨=⎩.【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可; (2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11-1+(11=1(22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x = 把x=10代入①得:y=2∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.若x ,y 为实数,且y12.求x y y x ++2-xy y x +-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x ≥0且4x ﹣1≥0,解得x =14,此时y =12.即可代入求解. 【详解】解:要使y 有意义,必须140410x x -≥⎧⎨-≤⎩,即1414x x ⎧≤⎪⎪⎨⎪≥⎪⎩∴ x =14.当x =14时,y =12.又∵x y y x ++2-x yy x +-2=-| ∵x =14,y =12,∴ x y <y x.∴+当x =14,y =12时,原式=.【点睛】(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3==,24====进行分母有理化.(3)利用所需知识判断:若a=,2b=ab,的关系是.(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(2227-==-(3)∵2a===,2b=-,∴a和b互为相反数;(4))1++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.24.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.. 【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.25.先观察下列等式,再回答问题:=1+1=2;12=2 12;=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.【答案】(1=144+=144;(2=211n n n n++=,证明见解析. 【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,=414+=414;(2=n 211n n n++=”,再利用222112n n n n++=+()()开方即可证出结论成立.【详解】(1=1+1=2=212+=212;=313+=313;里面的数字分别为1、2、3,= 144+= 144.(2=1+1=2,=212+=212=313+=313=414+=414= 211n n n n++=.证明:等式左边==n 211n n n++==右边.=n 211n n n++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律=n 211n n n++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.26.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==27.)÷)(a ≠b ).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-28.计算:(1)- (2)【答案】(1)21 【分析】(1)先把二次根式化为最简二次根式,然后合并即可; (2)先利用二次根式的乘除法则运算,再合并即可. 【详解】解:(1)原式== (2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的运算法则逐项计算即可判断.【详解】解:AB、C2÷=,故错误;D,故正确.故选D.【点睛】本题考查了二次根式的四则运算.2.A解析:A【分析】先计算二次根式乘法,再合并同类二次根式即可.【详解】原式=故选:A.【点睛】本题考查二次根式的运算,熟练掌握运算法则是解题关键.3.C解析:C【分析】计算出各个选项中的正确结果,即可得到哪个选项是正确【详解】A错误;∵2+B错误;=,故选项C正确;=,故选项D错误.2故选C.【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.4.C解析:C【分析】直接利用二次根式的性质分别求解,即可得出答案.【详解】解:A,故A选项错误;B,故B选项错误;C选项:2=5,故C选项正确;D选项:2=3,故D选项错误,故选:C.【点睛】此题主要考查了二次根式的性质,正确求解二次根式是解题的关键.5.B解析:B【分析】把x=0【详解】解:当x=0时,=2,故选:B.【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.6.C解析:C【分析】化简得到结果,即可做出判断.【详解】解:A,不是最简二次根式;2B 、13=33,不是最简二次根式;C 、10是最简二次根式;D 、27=33,不是最简二次根式;故选:C .【点睛】本题考查最简二次根式,熟练掌握二次根式的化简公式是解题关键.7.B解析:B【分析】根据乘法分配律可以解答本题.【详解】解:()555+ =555+,故选:B .【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.8.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:A.252510⨯=⨯=,计算正确; B. 62623÷=÷=,原式计算错误;C. 12323333+=+=,原式计算错误;D. 24220-=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.9.B解析:B【解析】因=,所以a =0,b =1,c =1,即可得2a +999b +1001c =999+1001=2000,故选B. 点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.10.C解析:C【分析】几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.【详解】解=m=7时==,故A错误;当m=11时==B错误;当m=1时=故D错误;当m=2时=故C正确;故选择C.【点睛】本题考查了同类二次根式的定义.二、填空题11.(1)2a-2b+1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a-2b+1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)==∴p=14x3(其中x为正整数),同理可得:q=14y2(其中y为正整数),则x+3y=12(x、y为正整数)∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。
八年级初二数学二次根式(讲义及答案)及答案

八年级初二数学二次根式(讲义及答案)及答案一、选择题1.下列计算正确的是( )A .93=±B .382-=C .2(7)5=D .222=2.下列计算正确的是( )A .=1212⨯ B .4-3=1 C .63=2÷ D .8=2±3.下列计算正确的是( )A .2+3=5B .8=42C .32﹣2=3D .23⋅=64.下列根式中,与3是同类二次根式的是( )A .12B .23C .18D .295.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D .6.如图,在矩形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( )A .(8﹣3cm 2B .(4﹣3cm 2C .(16﹣3cm 2D .(﹣3)cm 2 7.下列计算正确的是( )A 822=B 321-=C 325=D (4)(9)496-⨯-=--=8.如果关于x 的不等式组0,2223x m x x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为2x >3m -则符合条件的所有整数m 的个数是( ).A .5B .4C .3D .29.如图直线a ,b 都与直线m 垂直,垂足分别为M 、N ,MN =1,等腰直角△ABC 的斜边,AB 在直线m 上,AB =2,且点B 位于点M 处,将等腰直角△ABC 沿直线m 向右平移,直到点A 与点N 重合为止,记点B 平移平移的距离为x ,等腰直角△ABC 的边位于直线a ,b 之间部分的长度和为y ,则y 关于x 的函数图象大致为( )A .B .C .D .10.下列计算正确的是( )A 366=±B .422222=C .83266=D a b ab =(a≥0,b≥0) 11.下列计算正确的是( )A 1233=B 235=C .43331=D .32252+= 12.32的结果是( )A .±3B .﹣3C .3D .9二、填空题13.使函数21122y x x x=-+有意义的自变量x 的取值范围为_____________ 14.已知实数,x y 满足(22200820082008x x y y --=,则2232332007x y x y -+--的值为______.15.若m 20161-m 3﹣m 2﹣2017m +2015=_____. 16.已知72x =-,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______ 17.若0xy >,则二次根式2y x -________.18.若a 、b 都是有理数,且2222480a ab b a -+++=,则ab =__________. 19.化简(322)(322)+-的结果为_________.20.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.三、解答题21.像552)=1a a =a (a ≥0)、b b ﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因552 +12﹣1,353﹣5因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)33; (2)2332+--; (3)2018201720172016的大小,并说明理由.【答案】(123(2)32(3)< 【解析】分析:(13×3=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为23与23+3232然后分母有理化后计算即可;(3201820172017201620182017与20172016,20182017+20172016+,然后比较即可. 详解:(1) 原式23333⋅23; (2)原式=2332+=223+(3)根据题意,2018201720182017-=+2017201620172016=+, 2018201720172016>2018201720172016<++, 2018201720172016>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.22.已知x=2,求代数式(7+x 2+(2)x【答案】2【解析】试题分析:先求出x 2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x 2=(2)2=7﹣则原式=(7﹣+(2=49﹣23.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可.【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==24.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.25.已知x y ==求下列各式的值: (1)22x xy y -+;(2).y x x y+ 【答案】(1)72;(2)8. 【分析】计算出xy=12, (1)把x 2-xy+y 2变形为(x+y )2-3xy ,然后利用整体代入的方法计算;(2)把原式变形为2()2x y xy xy+-,然后利用整体代入的方法计算. 【详解】∵x =2,y =3 ∴xy=12, (1)22x xy y -+=(x+y )2-3xy,=2132-⨯ =72; (2)y x x y +=2212()22812x y xy xy-⨯+-==.【点睛】 本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.26.观察下列各式.====…… 根据上述规律回答下列问题.(1)接着完成第⑤个等式: _____;(2)请用含(1)n n ≥的式子写出你发现的规律;(3)证明(2)中的结论.【答案】(1=2(n =+3)见解析 【分析】(1)当n=5= (2(n =+ (3)直接根据二次根式的化简即可证明.【详解】解:(1=(2(n =+(3=(n ==+【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.27.在一个边长为(cm 的正方形的内部挖去一个长为()cm ,cm 的矩形,求剩余部分图形的面积.【答案】【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm 2).考点:二次根式的应用28.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=-(2)原式=3434++-=6+.【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.29.2020(1)-【答案】1【分析】先计算乘方,再化简二次根式求解即可.【详解】2020(1)-=1=1.【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.30.计算下列各题:(1-.(2)2【答案】(1)2)2--【分析】(1)根据二次根式的运算顺序和运算法则计算即可;(2)利用平方差、完全平方公式进行计算.【详解】解:(1)原式==;=--+(2)原式22(5=---5252=--【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得.【详解】A3=,此项错误;B2=-,此项错误;=≠C、27D2==,此项正确;故选:D.【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.2.A解析:A【解析】2÷故选A.3.D解析:D【解析】解:A A错误;B==,所以B错误;C.=C错误;D==D正确.故选D.4.A解析:A【分析】根据二次根式的性质把每一项都化为最简二次根式,再根据同类二次根式的定义判断即可.【详解】解:A=BC不是同类二次根式,不合题意;D3故选:A.【点睛】本题考查了同类二次根式的定义和二次根式的性质,属于基本题型,熟练掌握基本知识是解题关键.5.D解析:D【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 6.D解析:D【分析】根据正方形的面积求出边长AB=4cm,BC=()cm,利用四边形ABCD的面积减去两个阴影的面积即可列式求出答案.【详解】∵两张正方形纸片的面积分别为16cm2和12cm2,4cm=cm,∴AB=4cm,BC=(+4)cm,∴空白部分的面积=()×4﹣12﹣16,=﹣12﹣16,=(﹣)cm2,故选:D.【点睛】此题考查正方形的性质,二次根式的化简,二次根式的混合计算,正确理解图形中空白面积的计算方法是解题的关键.7.A解析:A【分析】本题涉及二次根式化简,在计算时,需要针对每个选项分别进行计算,然后根据实数的运算法则求得计算结果.【详解】====,故本项错误;D. 6故选:A.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的运算.8.C解析:C【分析】先求出两个不等式的解集,根据不等式组的解集为2x >可得出m ≤2的值是整数,得出|m|=3或2,于是m=-3,3,-2或2,由m ≤2,得m=-3,-2或2.【详解】 解:解不等式02x m ->得x >m , 解不等式223x x --<-得x >2, ∵不等式组解集为x >2,∴m ≤2,则|m|=3或2,∴m=-3,3,2或-2,由m ≤2得,m=-3,-2或2.即符合条件的所有整数m 的个数是3个.故选:C .【点睛】本题考查了解一元一次不等式组以及二次根式的性质,熟练运用一元一次不等式组的解法是解题的关键.9.D解析:D【解析】【分析】根据等腰直角△ABC 被直线a 和b 所截的图形分为三种情况讨论:①当0≤x ≤1时,y 是BM +BD ;②当1<x ≤2时,y 是CP +CQ +MN ;当2<x ≤3时,y =AN +AF ,分别用x 表示出这三种情况下y 的函数式,然后对照选项进行选择.【详解】①当0≤x ≤1时,如图1所示.此时BM =x ,则DM =x ,在Rt △BMD 中,利用勾股定理得BD x ,所以等腰直角△ABC 的边位于直线a ,b 之间部分的长度和为y =BM +BD )x ,是一次函数,当x =1时,B 点到达N 点,y +1;②当1<x≤2时,如图2所示,△CPQ是直角三角形,此时y=CP+CQ+MN=2+1.即当1<x≤2时,y的值不变是2+1.③当2<x≤3时,如图3所示,此时△AFN是等腰直角三角形,AN=3﹣x,则AF=2(3﹣x),y=AN+AF=(﹣1﹣2)x+3+32,是一次函数,当x=3时,y=0.综上所述只有D答案符合要求.故选:D.【点睛】本题主要考查动点问题的函数图象,解题的方法是动中找静,在不同的情况下找到y与x 的函数式.10.D解析:D366=,故A不正确;=,故B不正确;根据二次根式的除法,可直接得到42222根据同类二次根式的性质,可知C不正确;=(a≥0,b≥0)可知D正确.故选:D11.A解析:A【分析】A进行化简为B中,被开方数不同的两个二次根式之和不等于和的二次根式,据此可对B进行判断;C中,合并同类二次根式后即可作出判断;D中,无法进行合并运算,据此可对D进行判断.【详解】解:==A符合题意;B不符合题意;C.=C不符合题意;D.3与不能合并,故选项D不符合题意.故选:A.【点睛】此题主要考查了二次根式的加减运算,能够判断出二次根式是同类二次根式是解答此题的关键.12.C解析:C【分析】根据二次根式的性质即可求出答案.【详解】原式=3,故选C.【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.二、填空题13.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x 的取值范围为【点睛】 解析:11,022x x -≤≤≠ 【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤ ①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 14.1【分析】设a=,b=,得出x ,y 及a ,b 的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x ,y 及a ,b 的关系,再代入代数式求值.【详解】解:设x 2−a 2=y 2−b 2=2008, ∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……② ∴由①②得:x+a=y−b ,x−a=y+b∴x=y ,a+b=0,∴,∴x 2=y 2=2008,∴3x 2﹣2y 2+3x ﹣3y ﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x ,y 及a ,b 的关系. 15.4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m ﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】mm ), ∴m 3-m 2-2017m +2015=m 2(m ﹣1)﹣2017m +2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.16.【分析】先把x 分母有理化求出x= ,求出a 、b 的值,再代入求出结果即可.【详解】∵∴∴∴【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.解析:6【分析】先把x 分母有理化求出2 ,求出a 、b 的值,再代入求出结果即可.【详解】2x === ∵23<<∴425<<∴4,242a b ==-=∴42)6a b -=-=【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.17.-【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵,且有意义,∴,∴.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是 解析:【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵0xy > ∴00x y <,<,∴x ==.故答案为.【点睛】 此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即(0)(0)a a a a a ≥⎧==⎨-<⎩=(a ≥0,b >0). 18.【分析】 先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵∴∴∴∵∴解得:a=-4,b=-2∴=故答案为:.【点睛解析:【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵2222480a ab b a -+++=∴222448160a ab b a -+++=∴()()222448160a ab b a a -+++=+∴()()22240a b a +-+=∵()()2220,40a b a +-≥≥∴20,40a b a +-==解得:a=-4,b=-2=故答案为:【点睛】此题考查的是配方法、非负性的应用和化简二次根式,掌握完全平方公式、平方的非负性和二次根式的乘法公式是解决此题的关键.19.1【分析】根据平方差公式进行计算即可.【详解】原式=.故答案为:1.【点睛】本题考查二次根式的计算,熟练应用平方差公式是解题关键.解析:1【分析】根据平方差公式进行计算即可.【详解】原式=(223981-=-=.故答案为:1.【点睛】本题考查二次根式的计算,熟练应用平方差公式是解题关键. 20.﹣2a【分析】首先根据实数a 、b 在数轴上的位置确定a 、b 的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a <0<b ,|a|<|b|,∴=-a-b+b-a=-解析:﹣2a【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a<0<b,|a|<|b|,.故答案为-2a.【点睛】此题主要考查了二次根式的性质与化简,其中正确利用数轴的已知条件化简是解题的关键,同时也注意处理符号问题.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
人教版 八年级数学讲义 二次根式的计算 (含解析)

第12讲二次根式的计算知识定位讲解用时:3分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习二次根式的计算。
二次根式是中考考查的重点,也涉及到后面勾股定理的学习,本节课我们需要了解二次根式有意义,掌握二次根式的乘除和加减运算,熟练地进行二次根式的计算。
知识梳理讲解用时:20分钟二次根式1、一般地,式子√a(a≥0)叫做二次根式a称为是被开方数(1)表示a的算式平方根(2)a可以是数,也可以是式(3)形式上含有二次根号(4)a≥0 a≥0 (双重非负性)2、最简二次根式:必须同时满足下列条件:(1)被开方数中不含开方开的尽的因数或因式;(2)被开方数中不含分母;(3)分母中不含根式.3、同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式.课堂精讲精练【例题1】分式有意义时,x 的取值范围是 .二次根式的加减1.二次根式的化简:(1)被开方数是小数时,常把小数化成相应的分数,后进行求解.解:2332661522222.⨯====⨯ 化简时通常分子、分母同时乘以分数的分母,使分母上的数或式子称为完全平方数或完全平方式.(2)被开方数是分数的二次根式化简解:211155512555555552525⨯====⨯⨯⨯⨯⨯ (3)被开方数是非完全平方数的二次根式化简4816343=⨯=将被开方数进行因数分解,是化简的基础.2、同类二次根式:化简后被开方数相同的二次根式叫做同类二次根式. 例如:√3与2√3是同类二次根式3、二次根式的加减法二次根式加减运算的实质是合并同类二次根式,即系数相加减,二次根式不变【解析】要使代数式有意义时,必有x﹣2>0,可解得x的范围.解:根据题意得:x﹣2>0,解得:x>2.故答案是:x>2.讲解用时:2分钟解题思路:考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为0.教学建议:二次根式有意义必须满足被开方数为非负数.难度: 3 适应场景:当堂例题例题来源:博望区校级一模年份:2018【练习1.1】如果代数式有意义,那么x的取值范围是.【答案】x≥﹣2且x≠1【解析】根据被开方数大于等于0,分母不等于0列式计算即可得解.解:由题意得,x+2≥0且x﹣1≠0,解得x≥﹣2且x≠1.故答案为:x≥﹣2且x≠1.讲解用时:2分钟解题思路:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.教学建议:二次根式有意义必须满足被开方数为非负数,要注意分母不能为0.难度: 2 适应场景:当堂练习例题来源:东胜区一模年份:2018【例题2】实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是.【解析】直接利用数轴得出a<0,a﹣b<0,进而化简得出答案.解:由数轴可得:a<0,a﹣b<0,则原式=﹣a﹣(a﹣b)=b﹣2a.故答案为:b﹣2a.讲解用时:3分钟解题思路:此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.教学建议:利用二次根式的性质进行化简.难度: 3 适应场景:当堂例题例题来源:成华区模拟年份:2018【练习2.1】已知,则a的取值范围是.【答案】a≤【解析】根据=|a|≥0,即可得到关于a的不等式求得a的范围.解:根据题意得:3﹣2a≥0,解得:a≤.故答案是:a≤.讲解用时:3分钟解题思路:本题考查了二次根式的性质,正确理解=|a|≥0是关键.教学建议:利用二次根式的性质进行化简.难度: 3 适应场景:当堂练习例题来源:泰兴市期末年份:2017【例题3】计算:.【答案】﹣【解析】直接利用二次根式乘除运算法则直接求出即可.解:=3×(﹣)×2=﹣×5=﹣.讲解用时:3分钟解题思路:此题主要考查了二次根式的乘除运算,熟练应用运算法则是解题关键.教学建议:熟练掌握二次根式的乘除计算.难度: 3 适应场景:当堂例题例题来源:夏津县校级月考年份:2016【练习3.1】计算:(1);(2);(3).【答案】(1)﹣;(2);(3)1【解析】(1)根据二次根式的除法,可得答案;(2)根据二次根式的除法,二次根式的乘法,可得答案;(3)根据二次根式的除法,可得二次根式的乘法,根据二次根式的乘法,可得答案.解:(1)原式==﹣;(2)原式====;(3)原式===1.讲解用时:3分钟解题思路:本题考查了二次根式的乘除法,熟记法则并根据法则计算是解题关键,注意把带分数化成假分数再进行运算.教学建议:熟练掌握二次根式的乘除法计算.难度: 3 适应场景:当堂练习例题来源:广南县校级期中年份:2015【练习3.2】计算:(1)(2x+y﹣1)•(2x﹣y+1)(2)÷•(3)÷×(4)﹣.【答案】(1)4x2﹣y2+2y﹣1;(2);(3);(4)【解析】结合二次根式的乘除法及分式的混合运算的运算法则进行求解即可.解:(1)原式=[2x+(y﹣1)]•[2x﹣(y﹣1)]=(2x)2﹣(y﹣1)2=4x2﹣y2+2y﹣1.(2)原式==.===.(4)原式====.讲解用时:3分钟解题思路:本题考查了二次根式的乘除法及分式的混合运算等知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则.教学建议:熟练掌握二次根式的乘除法计算以及分式的混合运算.难度: 4 适应场景:当堂练习例题来源:滨州校级月考年份:2015【例题4】完成下列两道计算题:(1)﹣15+;(2)(﹣)+.【答案】(1);(2)4【解析】(1)先把每个二次根式化为最简二次根式,再合并同类二次根式;(2)先把每个二次根式化为最简二次根式,再合并同类二次根式;(1)解:原式=3﹣15×+×=3+=;=4讲解用时:3分钟解题思路:本题主要考查了二次根式的加减运算,二次根式化简是解决此题的关键.教学建议:熟练掌握二次根式的加减法计算.难度: 3 适应场景:当堂例题例题来源:金乡县期末年份:2017【练习4.1】计算(1)﹣(﹣)(2)+a﹣4+.【答案】(1);(2)(3a﹣3)【解析】(1)首先化简二次根式,进而合并同类二次根式进而得出答案;(2)首先化简二次根式,进而合并同类二次根式进而得出答案.解:(1)﹣(﹣)=2﹣(3﹣×4)=2﹣=;(2)+a﹣4+当b>0,原式=2a+a﹣2+=(3a﹣1).当b<0,原式=2a+a﹣2﹣=(3a﹣3).讲解用时:3分钟解题思路:此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.教学建议:熟练掌握二次根式的加减计算.难度: 3 适应场景:当堂练习例题来源:秀屿区校级期中年份:2017【练习4.2】计算:(1)2+﹣3;(2)(﹣)﹣(+)【答案】(1)2;(2)﹣.【解析】(1)首先化成最简二次根式,然后把同类二次根式进行合并即可;(2)首先化成最简二次根式,然后去括号把同类二次根式进行合并即可.解:(1)原式=2+3﹣3=2;(2)原式=2﹣﹣﹣,=﹣.讲解用时:3分钟解题思路:此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.教学建议:熟练掌握二次根式的加减计算.难度: 3 适应场景:当堂练习例题来源:黄陂区期中年份:2017【例题5】如图,已知矩形纸板面积为8a,两邻边之比为3:4,现欲在每个角处裁下一个面积为a的正方形后,制成一个无盖的纸箱.求制成的纸箱的侧面积.【答案】【解析】设矩形的长宽分别为4k,3k.根据已知条件先求出矩形的长宽,再根据侧面积公式计算即可.解:设矩形的长宽分别为4k,3k.由题意12k2=8a,∴k=,∴矩形的长为,宽为,∴纸箱的侧面积=2(+﹣2)•=.讲解用时:3分钟解题思路:本题考查矩形的性质,长方体的侧面积、二次根式的化简等知识,解题的关键是理解题意,求出长方体的长宽高是解题的关键,属于中考常考题型.教学建议:熟练掌握二次根式的计算解决一些实际问题.难度: 3 适应场景:当堂例题例题来源:枝江市期中年份:2016【练习5.1】如图,在等腰三角形ABC中,D是BC边上的一点,DE⊥AB,DE⊥AC,点E、F分别是垂足,若DE+DF=2,△ABC的面积为,求AB的长.【答案】【解析】直接利用S△ABC=S△ABD+S△ADC,得出AB(DE+DF)=,求出即可.解:连接AD,由题意可得:AB=AC,S△ABC =S△ABD+S△ADC=×DE×AB+×DF×AC=AB(DE+DF)=,故×2AB=,解得:AB=.讲解用时:3分钟解题思路:此题主要考查了等腰三角形的性质以及三角形面积求法,正确计算是解题关键.教学建议:掌握等腰三角形“三线合一”的性质以及二次根式解决几何问题.难度:4 适应场景:当堂练习例题来源:巨野县期中年份:2017【例题6】阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:=======﹣1以上这种化简的步骤叫做分母有理化.(1)化简(2)化简.(3)化简:+++…+.【答案】(1)(2)﹣;(3)(﹣1);【解析】(1)分子分母分别乘即可;(2)分子分母分别乘﹣即可;(3)分母有理化后,合并同类二次根式即可;解:(1)==(2)化简==﹣(3)化简:+++…+=(﹣1+﹣+﹣+…+﹣)=(﹣1)讲解用时:4分钟解题思路:本题考查二次根式的化简、分母有理化等知识,解题的关键是熟练掌握分母有理化的方法,属于中考常考题型.教学建议:熟练掌握二次根式的化简和分母有理化.难度: 3 适应场景:当堂例题例题来源:市中区期末年份:2016【练习6.1】已知:a=,b=,求的值.【答案】30【解析】根据分母有理化即可求出a与b的值.解:由题意可知:a=3+2,b=3﹣2∴a+b=6,ab=1原式=﹣4=﹣6=﹣6=36﹣6=30讲解用时:3分钟解题思路:本题考查分母有理化,解题的关键是熟练运用分母有理化,本题属于基础题型.教学建议:熟练运用分母有理化代入求代数式的值.难度: 3 适应场景:当堂例题例题来源:雁江区校级期中年份:2017【练习6.2】(1)已知x=﹣,y=+,求﹣的值;(2)若a﹣=,求a+的值.【答案】(1)4;(2)±5【解析】(1)先求出xy与y+x与y﹣x的值,再代入计算即可;(2)先根据完全平方公式求出a2+()2,进一步得到(a+)2,从而得到a+的值.解:(1)∵x=﹣,y=+,∴xy=1,y+x=2,y﹣x=2,∴﹣====4;(2)∵a﹣=,∴(a﹣)2=21,∴a2+()2=23,(a+)2=25,∴a+=±5.讲解用时:3分钟解题思路:本题考查的是分母有理化、二次根式的化简求值,熟知二次根式的乘法法则是解答此题的关键.教学建议:熟练掌握分母有理化、二次根式的化简求值.难度: 3 适应场景:当堂练习例题来源:武穴市校级期中年份:2017【例题7】已知x﹣y=,z﹣y=﹣,求x2+y2+z2﹣xy﹣yz﹣xz的值.【答案】6【解析】先求得(x+y)(z﹣y)的值,然后求得(x﹣y)﹣(z﹣y)可得到x ﹣z=2,然后两个平方,最后将(x+y)(z﹣y)的值与(x﹣z)2相加即可.解:由x﹣y=,z﹣y=﹣得:(x+y)(z﹣y)=xz﹣xy﹣yz+y2=﹣2①;(x﹣y)﹣(z﹣y)=x﹣z=2,则x2﹣2xz+z2=8②,①+②得:x2+y2+z2﹣xy﹣yz﹣xz=﹣2+8=6.讲解用时:3分钟解题思路:本题主要考查的是二次根式的化简求值,能够利用二次根式的性质进行变形是解题的关键.教学建议:熟练运用二次根式、完全平方公式去解决问题.难度: 3 适应场景:当堂例题例题来源:大庆模拟年份:2017 【练习7.1】已知x=﹣1,y=+1,求+的值.【答案】6【解析】根据二次根式的性质即可求出答案.解:原式===﹣2∵x=﹣1,y=+1,∴x+y=2,xy=2﹣1=1∴原式=8﹣2=6讲解用时:3分钟解题思路:本题考查二次根式的运算,解题的关键是熟练运用完全平方公式以及二次根式的运算法则,本题属于基础题型.教学建议:熟练掌握二次根式的计算.难度: 3 适应场景:当堂练习例题来源:前郭县校级期末年份:2017【练习7.2】已知a=+,b=﹣,求下列各式的值:(1);(2)a2b﹣ab2.【答案】(1);(2)﹣2【解析】(1)首先将a,b代入,然后分母有理化;(2)首先因式分解,将a,b代入利用平方差公式即可.解:(1)原式====;(2)原式=ab(a﹣b)=()()×=﹣2.讲解用时:3分钟解题思路:本题主要考查了分母有理化和平方差公式,熟练掌握公式是解答此题的关键.教学建议:熟练掌握二次根式的计算.难度: 3 适应场景:当堂练习例题来源:金平区校级期中年份:2017课后作业【作业1】如果代数式有意义,那么x的取值范围是.【答案】x≥﹣3且x≠1【解析】根据被开方数大于等于0,分母不等于0列式计算即可得解.解:由题意得,x+3≥0且x﹣1≠0,解得x≥﹣3且x≠1.故答案为:x≥﹣3且x≠1.难度: 3 适应场景:练习题例题来源:宁津县二模年份:2018【作业2】如果2<x<3,那么化简的最终结果是.【答案】1【解析】由2<x<3可知,2﹣x<0,3﹣x>0,根据二次根式的性质,把二次根式化成绝对值的形式,再去绝对值.解:=|2﹣x|+|3﹣x|=x﹣2+3﹣x=1.故答案为:1.难度: 3 适应场景:练习题例题来源:苏州期中年份:2018【作业3】(1)÷3×5;(2)﹙﹣﹚÷().【答案】(1);(2)﹣9x2y【解析】(1)利用二次根式的乘除运算法则将除法变为乘法,根号内的和根号内部相乘除,根号外的与根号外部相乘除,进而化简得出即可;(2)利用二次根式的乘除运算法则将除法变为乘法,根号内的和根号内部相乘除,根号外的与根号外部相乘除,进而化简得出即可.解:(1)÷3×5=×5=;(2)﹙﹣﹚÷()=﹣××3=﹣=﹣9x2y.难度: 3 适应场景:练习题例题来源:云梦县校级期末年份:2013【作业4】(1)(2)(3).【答案】(1)12﹣60;(2)﹣57;(3)【解析】(1)先将各二次根式化为最简,再运用乘法分配律进行运算,然后再进行二次根式的加减.(2)运用平方差公式进行计算即可.(3)直接进行开方运算即可得出答案.解:(1)原式=6×(3﹣5﹣2)=18﹣60﹣12,=6﹣60,=12﹣60;(2)原式=﹣,=18﹣75,=﹣57;(3)==.难度: 3 适应场景:练习题例题来源:赵县期末年份:2014【作业5】已知:a、b、c是△ABC的三边长,化简.【答案】3a+b﹣c【解析】根据三角形的三边关系定理得出a+b>c,b+c>a,b+a>c,根据二次根式的性质得出含有绝对值的式子,最后去绝对值符号后合并即可.解:∵a、b、c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.难度: 4 适应场景:练习题例题来源:新化县期末年份:2016。
初中数学二次根式(讲义及答案)附解析

一、选择题1.下列计算正确的是( )A 3=±B 2=C .2=D 2=2.下列运算错误的是( )A =B .=C .)216=D .)223= 3.下列运算正确的是( )A =B . 3C =﹣2D =4.下列二次根式中,最简二次根式是( )A B C D5.下列各式中,运算正确的是( )A =﹣2B +C 4D .=26.下列运算正确的是( )A =B =C .3=D 2=7.化简二次根式 )A B C D8.的下列说法中错误的是( )A 12的算术平方根B .34<<C 不能化简D 是无理数9.下列说法中正确的是( )A ±5B .两个无理数的和仍是无理数C .-3没有立方根.D .10.若a b > )A .-B .-C .D .二、填空题11.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________12.)30m -≤,若整数a 满足m a +=a =__________.13.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.14.若2x ﹣3x 2﹣x=_____.15.若a 、b 、c 均为实数,且a 、b 、c 均不为043252a c b=___________ 16.已知2,n=1222m n mn +-的值________.17.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=1332=_____.18.11122323-=11113-23438⎛⎫= ⎪⎝⎭11114-345415⎛⎫= ⎪⎝⎭据上述各等式反映的规律,请写出第5个等式:___________________________.19.已知x 51-,y 51+,则x 2+xy +y 2的值为______. 20.2121=-+3232=+4343=+20202324320202019+++++……=___________. 三、解答题21.(1111242-=112393-=1134164-=;……写出④ ;⑤ ; (2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律;(3)证明这个猜想.【答案】(12=55==;(2=3)证明见解析.【解析】【分析】 (1)根据题目中的例子直接写出结果;(2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题.【详解】解:(1)由例子可得,④=25,6,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n.n.故答案为5=25 n ;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.22.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x -【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案.【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x -∴ 3,4x y ==当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.23.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可.【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.24.计算(1+(2+-(3÷ (4)(【答案】(1)23)4;(4)7. 【分析】 (1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘除法则运算;(4)利用平方差公式计算;【详解】(1+22=+=;(2==;(3)2b ÷2b =4=;(4)( (22=- =7【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.25.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2).【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.【详解】(1)原式=1;(2)原式+2).【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.26.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2【分析】(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题.【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数,∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.27.先化简,再求值:221()a b a b a b b a -÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】 先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案.【详解】 解:原式1()()a b a b a a b a b b a b b --=⨯-⨯+-+ ()()a b a b a b b a b -=--++ ()b b b a =-+ 1a b=-+,当a =2b = 原式12==-. 【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.28.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式计算即可求出值.【详解】解:(1)原式=1(23⨯⨯=3-⨯=⨯⎭=6-;(2)原式=3﹣4+12﹣=12﹣.【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得.【详解】A 3=,此项错误;B 2=-,此项错误;C 、27=≠D 2==,此项正确;故选:D .【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键. 2.C解析:C【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得.【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确;故选:C.【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.3.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB、=,故此选项错误;C2,故此选项错误;D,正确;故选:D.【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.4.C解析:C【分析】化简得到结果,即可做出判断.【详解】解:AB,不是最简二次根式;C是最简二次根式;D故选:C.【点睛】本题考查最简二次根式,熟练掌握二次根式的化简公式是解题关键.5.C解析:C【分析】根据二次根式的性质对A进行判断;根据二次根式的加减法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【详解】A、原式=2,故该选项错误;B=,故该选项错误;C4,故该选项正确;D故选:C .【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式乘法、性质及加减法运算法则是解题关键.6.D解析:D【分析】利用二次根式的加减法对A 、C 进行判断;利用二次根式的性质对B 进行判断;利用二次根式的除法法则对D 进行判断.【详解】解:AA 选项错误;B=B 选项错误;C、=C 选项错误;D2=,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.B解析:B【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】 2202a a aa a +-∴+<∴<-a a ∴==•=-故选B 【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.8.C解析:C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A 12的算术平方根,故该项正确;B 、34<<,故该项正确;C =D =是无理数,故该项正确;故选:C .【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.9.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=,故C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.10.D解析:D【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可;【详解】∴-a 3b≥0∵a >b ,∴a >0,b <0a ab =-,故选:D .【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.二、填空题11.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 12.【分析】先根据确定m 的取值范围,再根据,推出,最后利用来确定a 的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.13.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a>0+3.a=a+3.【点睛】本题考查阅读理解的能力,正确理解题意是关键.14.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=故答案为【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x ﹣,∴(2x ﹣1)2=3∴4x 2﹣4x+1=3∴4(x 2﹣x )=2∴x 2﹣x=12故答案为12【点睛】 本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.15.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:00b b 当时当时>⎨⎪<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0= 当b <0=故答案为:00b b ⎧>⎪⎪⎨⎪<⎪⎩当时当时. 16.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====. 故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.17.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.18.【解析】上述各式反映的规律是(n ⩾1的整数),得到第5个等式为: (n ⩾1的整数).故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数),得到第5==n ⩾1的整数).=n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.19.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=251515151)222=5-1=4. 20.2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第1个等式为:,第2个等式为:,第3个等式为:,归纳类推得:第n 个等式为:(其中,解析:2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第11=,第2=,第3=归纳类推得:第n=-n 为正整数),则2020++,2020=+,=, 20202=-,2018,故答案为:2018.【点睛】本题考查了二次根式的加减法与乘法运算,依据已知等式,正确归纳出一般规律是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
八年级二次根式(教师讲义带答案)
八年级二次根式(教师讲义带答案)第五章二次根式【知识网络】知识点一:二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开方数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。
知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。
知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中,而中a 可以是正实数,0,负实数。
但与都是非负数,即,。
因而它的运算的结果是有差别的, ,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七:二次根式的运算1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意知道每一步运算的算理; (3)乘法公式的推广:123123123(0000)n n n a a a a a a a a a a a a =⋅⋅⋅⋅≥≥≥≥L L L L L L ,,,,2.二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质; 3.二次根式的混合运算(1)对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;(2)二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用. 要点诠释:怎样快速准确地进行二次根式的混合运算.1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.(1)加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握.在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简.例如+⨯进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算,43+=+=+(2)多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用.如:221=-=,利用了平方差公式.所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化.4.分母有理化把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1(2)+-a a+-互为有理化因式;一般地a a化因式;(3+-+-互为有理化因式.专题总结及应用一、知识性专题专题1 二次根式的最值问题【专题解读】涉及二次根式的最值问题,应根据题目的具体情况来决定应采用的方法,不能一概而论,但一般情况下利用二次根式的非负性来求解.例1 当x3+的值最小?最小值是多少?分析由二次根式的非负性可知0,因为3是常数,所以3的最小值为3.0,≥,33∴当9x+1=0,即1x=-3有最小值,最小值为3.9【解题策略】解决此类问题一定要熟练掌握二次根式的非0(a≥0).负性,即【专题解读】对于二次根式的化简问题,可根据定义,也可以利用=这一性质,但应用性质时,要根据具体情况对||a有关字母的取值范围进行讨论.例 2 下列计算正确的是()13=====分析根据具体选项,应先进行化简,再计算. A选项中,=-=B选若可化为=,C选项逆用平方差公式可求得2+(=4-5=-1,而D选项应将分子、,得22=.故选A.例3计算200620071)1)的结果是()1分析本题可逆用公式(ab)m=a m b m及平方差公式,将原式化为20061)]1) 1.=故选D.例4书知282x xyx++=+,求.分析本题主要利用二次根式的定义及非负性确定x的值,但要注意所得x的值应使分式有意义.解:由二次根式的定义及分式性质,得2240,4,2,20,xx xx⎧-⎪-∴=⎨⎪+⎩≥≥0≠22222872442,22277214222142277142214214.22y x y y x ++∴=--=+∴==+=【解题策略】 本题中所求字母x 的取值必须使原代数式有意义.例5 223541294-202522a a a a a -++-(≤≤).22353252-302-502223)(25)|23||25|(23)(25)48.a a a a a a a a a a a ∴∴∴=--=---=-+-=-Q 解:≤≤,≤≤,≥,≤,原式(【解题策略】 本题应根据条件直接进行化简,主要应用2(0)||-(0).a a a a a a ⎧==⎨⎩≥,<例6 已知实数,a ,b ,c 在数轴上的位置如图21-8所示,化简222||()().a a c c ab -+-解:由a ,b ,c 在数轴上的位置可知: 0,00,0,||||||||()().c a b a c c a a a c c a b a a c c a ba a c c ab a b ∴+-∴=-++--=-++---=-++-+-=-<<><<原式【解题策略】 利用间接给出的或隐含的条件进行化简时,要充分挖掘题目中的隐含条件,再进行化简.22127 |1|4 4.|1|(2)|1||2|.10,201,2,-112,2x x x x x x x x x x x x x x +--+=+-=+--+=-==-=-例化简解:原式令,得于是实数集被分为<,≤<≥三部分,图21-8-110,-20,-(1)(-2)-3.-1210,-20(1)(2)2 1.x x x x x x x x x x x +∴=++=+∴=++-=-①当<时,<<原式②当≤<时,≥<.原式210,20,x x x +-③当≥时,>≥1)(2) 3.3(1)21(12)3(2).x x x x x x ∴=+--=--⎧⎪∴=--⎨⎪⎩原式(<,原式≤<,≥规律·方法 对于无约束条件的化简问题需要分类讨论,用这种方法解题分为以下步骤:首先,求出绝对值为零时未知数的值,这些未知数的值在数轴上的对应点称为零点;其次,以这些零点为分点,把数轴划分为若干部分,即把实数集划分为若干个集合,在每个集合中分别进行化简,简称“零点分区间法”.例8已知3,12,.a b ab +=-=求分析 这是一道二次根式化简题,在化为最简二次根式的过程中,要注意a ,b 的符号,本题中没明确告诉,a ,b 的符号,但可从a +b =-3,ab =12中分析得到.解:∵a +b =-3,ab =12,∴a <0,b <0.··b a b a∴=+=-=-=---【解题策略】 本题最容易出现的错误就是不考虑a ,b 的符号,把所求的式子化简,直接代入.专题3 利用二次根式比较大小、进行计算或化简 例9( )A. 6到7之间B. 7到8之间C. 8到9之间D. 9到10之间 分析 本题应计算出所给算式的结果,原式4==+2 2.5849+,所以<. 故选C.例10 已知mnm nm n-+的值.解:∵9<13<16,343,即m =3,3,即,∴13.13m n m n -===+)二、规律方法专题专题4 配方法【专题解读】把被开方数配方,进而应用a |化简.例11|=====规律·方法一般地,对于a ±进行配方,即找出x ,y (x >y >0),使得xy =b ,x +y =a,则2a ±===.例12 若a ,b 为实数,且b=15,的值.分析 本题中根据b15可以求出a ,b ,.解:由二次根式的性质得3503350..5305a a a a -⎧∴-=∴=⎨-⎩≥,≥,150,0.b a b a b ∴=∴+-,><a b b a abab ==-+-⎛=- ⎝=当3215.55a b ====,时,原式【解题策略】 对于形如22b a b aa b a b++-+或形式的代数式都要变为2()a b ab+或2()a b ab-的形式,当它们作为被开方式进行化简时,要注意.a b a b ab +-和以及的符号专题5 换元法【专题解读】 通过换元将根式的化简和计算问题转化为方程问题.例13解:令x=22x =,∴x 2=(3-)(3+)0x x ∴==Q >, 专题6 代入法【专题解读】 通过代入求代数式的值. 例14已知222400,5760,.a b ab==222332400,5760 2.4 2400, 2.42400,1000,10, 2.41024, 26.a b ab b a a b a a a b ====∴=∴=∴=∴=⨯====Q 解:由,两式相除得,专题7 约分法【专题解读】 通过约去分子和分母的公因式将第二次根式化简.例15======例16).x y ≠====解:原式三、思想方法专题专题8 类比思想【专题解读】 类比是根据两对象都具有一些相同或类似的属性,并且其中一个对象还具有另外某一些属性,从而推出另一对象也具有与该对象相同或相似的性质.本章类比同类项的概念,得到同类二次根式的概念,即把二次根式化简成最简二次根式后,若被开方数相同,则这样的二次根式叫做同类二次根式.我们还可以类比合并同类项去合并同类二次根式.例17 计算.13+232182122 3.-++();()解:(1)原式=(1+2)3=33.(2)原式=32-2+23+23=22+43.【解题策略】 对于二次根式的加减法,应先将各式化为最简二次根式,再类比合并同类项的方法去合同类二次根式.专题9 转化思想【专题解读】 当问题比较复杂难于解决时,一般应采取转化思想,化繁为简,化难为易,本章在研究二次根式有意义的条件及一些化简求值问题时,常转化为不等式或分式等知识加以解决.例18 函数y =24x -中,自变量x 的取值范围是 .分析 本题比较容易,主要考查函数自变量的取值范围的求法,本题中24x -是二次根式,所以被开方数2x -4≥0,所以x≥2.故填x ≥2.例19 如图21-9所示的是一个简单的数值运算程序,若输入x 的值为3,则输出的数值为 .图21-9分析 本题比较容易,根据程序给定的运算顺序将问题化为二次根式求值问题,易知图中所表示的代数式为21x -,代入32-1=2.故填2.专题10 分类讨论思想【专题解读】 当遇到某些数学问题存在多种情况时,应进行分类讨论.2||a a =进行化简时,若字母的取值范围不确定,应进行分类讨论.例20 若化简2|1|816x x x ---+25x -,则x 的取值范围是 ( )A. x 为任意实数B. 1≤x ≤4C. x ≥1D. x ≤4分析 由题意可知|1||4|25x x x ---=-,由此可知|1|1x x -=-,且|4|4x x-=-,由绝对值的意义可知10x -≥,且40x -≥,所以14x x ≤≤,即的取值范围是14x ≤≤.故选B.【解题策略】 2a |a |形式的式子的化简都应分类讨论.例21 如图21-10所示的是一块长、宽、高分别为7cm ,5cm 和3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面爬到和顶点A 相对的顶点B 处吃食物,那么它要爬行的最短路径的长是多少?分析 这是一个求最短路径的问题,一个长方体有六个面,蚂蚁有三种不同的爬行方法,计算时要分类讨论各种方法,进而确定最佳方案.22(57)3153++=(cm).22(37)5125++=(cm). 22(35)7113++=(cm).113cm.规律·方法 沿表面从长方体的一个顶点爬到相对的顶点去,共有三个爬行路线,每个路线长分别是它爬行两个展开图的对角线的长.图21-10二次根式单元测试题(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( ) 2.3-2的倒数是3+2.( ) 3.2)1(-x =2)1(-x .…( )4.ab 、31b a 3、bax 2-是同类二次根式.…( ) 5.x8,31,29x +都不是最简二次根式.( )(二)填空题:(每小题2分,共20分)6.当x __________时,式子31-x 有意义. 7.化简-81527102÷31225a = .8.a -12-a 的有理化因式是____________.9.当1<x <4时,|x -4|+122+-x x =________________. 10.方程2(x -1)=x +1的解是____________.11.已知a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______.12.比较大小:-721_________-341.13.化简:(7-52)2000·(-7-52)2001=______________. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________. 15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0 17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y18.若0<x <1,则4)1(2+-xx -4)1(2-+xx 等于………………………( )(A )x 2 (B )-x 2(C )-2x (D )2x 19.化简aa 3-(a <0)得………………………………………………………………( )(A )a - (B )-a (C )-a - (D )a 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---(四)计算题:(每小题6分,共24分) 21.(235+-)(235--);22.1145--7114--732+;23.(a 2m n -mabmn+m n nm )÷a 2b 2mn ;24.(a +ba ab b +-)÷(bab a ++a ab b --abba +)(a ≠b ).(五)求值:(每小题7分,共14分)25.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值.26.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.六、 解答题:(每小题8分,共16分) 27.计算(25+1)(211++321++431++…+100991+).28. 若x ,y 为实数,且y =x41-+14-x +21.求xyy x ++2-xyy x +-2的值.(一)判断题:(每小题1分,共5分) 1、【提示】2)2(-=|-2|=2.【答案】×.2、【提示】231-=4323-+=-(3+2).【答案】×.3、【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√.5、29x +是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分) 6、【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7、【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9、【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数? x -4是负数,x -1是正数.【答案】3. 10、【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22. 11、【提示】22d c =|cd |=-cd . 【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -). 12、【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小.13、【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.] (7-52)·(-7-52)=?[1.]【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14、【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0. 15、【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5. 【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分) 16、【答案】D . 【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义. 17、【提示】∵ x <y <0,∴ x -y <0,x +y <0. ∴ 222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C . 【点评】本题考查二次根式的性质2a =|a |.18、【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x1)2.又∵ 0<x <1,∴ x +x 1>0,x -x1<0.【答案】D . 【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x 1<0. 19、【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20、【提示】∵ a <0,b <0, ∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --. 【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义. (四)计算题:(每小题6分,共24分) 21、【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215. 22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2m n -m ab mn +m n n m )·221b a nm=21b n mm n ⋅-mab1n m mn ⋅+22bma n nm n m ⋅=21b -ab 1+221b a =2221b a ab a +-.24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a b a ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-ba +.【点评】本题如果先分母有理化,那么计算较烦琐. (五)求值:(每小题7分,共14分) 25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xyx ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 26、【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ).【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221a x +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x-++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221a x +=)11(2222a x xa x +--+-)11(22xx a x --++221a x +=x1.六、解答题:(每小题8分,共16分) 27、【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)] =(25+1)(1100-) =9(25+1). 【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.28、【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21. 又∵ xy y x ++2-xy y x +-2=2)(xy y x+-2)(xy y x -=|xy yx+|-|xyyx -|∵ x =41,y =21,∴ yx <x y .∴ 原式=xy yx +-yx x y +=2yx 当x =41,y =21时, 原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。
数学二次根式(讲义及答案)含答案
数学二次根式(讲义及答案)含答案一、选择题1.5﹣x ,则x 的取值范围是( ) A .为任意实数B .0≤x≤5C .x≥5D .x≤52.下列式子为最简二次根式的是( )A B C D 3.下列各式成立的是( )A 3=B 3=C .22(3=- D .2-=4.下列各式计算正确的是( )A =B =C .23=D 2=-5.下列各式计算正确的是( )A =B 6=C .3+=D 2=-6.下列各式中正确的是( )A 6B 2=-C 4D .2(=77.若a,b =,则a b 的值为( )A .12 B .14C .321+D8.下列各式计算正确的是( )A +=B .26=(C 4=D =9.若|x 2﹣4x+4|x+y 的值为( ) A .3B .4C .6D .910.设0a >,0b >=的值是( ) A .2B .14C .12 D .315811.x ≥3是下列哪个二次根式有意义的条件( )A B C D12.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对二、填空题13.比较实数的大小:(1)5?-______3- ;(2)51-_______12 14.已知实数,x y 满足()()22200820082008x x y y ----=,则2232332007x y x y -+--的值为______.15.计算(π-3)02-211(223)-4--22--()的结果为_____. 16.把31a a-根号外的因式移入根号内,得________ 17.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.18.化简:3222=_____. 19.函数y =42xx --中,自变量x 的取值范围是____________. 20.28n n 为________.三、解答题21.计算:22322343341009999100+++++【答案】910【解析】 【分析】先对代数式的每一部分分母有理化,然后再进行运算【详解】10099++=2100992-++++=991224-+-++-=1100- =1110- =910【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。
人教版初二下册数学第16章《二次根式》讲义第1讲二次根式认识性质(有答案)
人教版初二下册数学第16章《二次根式》讲义第1讲二次根式认识性质(有答案)第一局部 知识梳理知识点一: 二次根式的概念形如〔〕的式子叫做二次根式。
必需留意:由于正数没有平方根,所以是为二次根式的前提条件知识点二:二次根式〔〕的非负性〔〕表示a 的算术平方根, 即0〔〕。
非负性:算术平方根,和相对值、偶次方。
非负性质的解题运用: 〔1〕、如假定,那么a=0,b=0; 〔2〕、假定,那么a=0,b=0; 〔3〕、假定,那么a=0,b=0。
知识点三:二次根式的性质第二局部 考点精讲精练考点1、二次根式概念 例1、以下各式:122211,2)5,3)2,4,5)(),1,7)2153x a a a --+---+其中是二次根式的是_________〔填序号〕. 例2、以下各式哪些是二次根式?哪些不是?为什么?〔121 〔219-〔321x +〔439 〔56a - 〔6221x x ---例3)()()230,2,12,20,3,1,2xx y y x xx x y +=--++中,二次根式有〔 〕A. 2个B. 3个C. 4个D. 5个例4、以下各式中,属于二次根式的有〔 〕例5、假定21x +的平方根是5±_____=.1、以下各式中,一定是二次根式的是〔 〕A B C D2中是二次根式的个数有______个 3、以下各式一定是二次根式的是〔 〕A B C D4、以下式子,哪些是二次根式, 1x、 x>0〕1x y +、〔x≥0,y ≥0〕 .51+x 、2+1x 、______个。
考点2、根式取值范围及运用 例1有意义,那么x 的取值范围是例2有意义的x 的取值范围例3、事先_____x ,式子有意义. 例4、在以下各式中,m 的取值范围不是全体实数的是〔 〕 A .1)2(2+-m B .1)2(2-m C .2)12(--m D .2)12(-m例5、假定y=5-x +x -5+2021,那么x+y=例6、实数a ,b ,c │a -=______.1、使代数式43--x x 有意义的x 的取值范围是〔 〕 A 、x>3 B 、x≥3 C 、 x>4 D 、x≥3且x≠42x 的取值范围是 3、假设代数式mnm 1+-有意义,那么,直角坐标系中点P 〔m ,n 〕的位置在〔 〕A 、第一象限B 、第二象限C 、第三象限D 、第四象限 4、式子x x x 222+-+-有意义,x 为________ 5、yx是二次根式,那么x 、y 应满足的条件是〔 〕 A .0≥x 且0≥y B .0>y xC .0≥x 且0>yD .0≥yx 62()x y =+,那么x -y 的值为〔 〕A .-1B .1C .2D .37、假定x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值8、当a 1取值最小,并求出这个最小值。
人教版 八年级数学 二次根式有意义讲义 (含解析)
【解析】根据 ≥0,即可求得a的值,以及所求式子的最小值.
解:∵ ≥0,
∴当a=﹣ 时, 有最小值,是0.
则 +1的最小值是1.
讲解用时:3分钟
解题思路:本题考查了二次根式的性质,任何非负数的算术平方根是非负数.
教学建议:熟记二次根式有意义,保证被开方数为非负数.
难度:3适应场景:当堂例题例题来源:白云区期中年份:2011
故选:C.
讲解用时:2分钟
解题思路:此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.
教学建议:熟练掌握二次根式里面的被开方数为非负数.
难度:2适应场景:当堂练习例题来源:怀柔区期末年份:2017
【例题2】
如果代数式 有意义,则实数x的取值范围是( )
A.x≥﹣3B.x≠0C.x≥﹣3且x≠0D.x≥3
解:∵ 为二次根式,
∴x的取值范围是:x﹣3≠0.
即x≠3.
讲解用时:2分钟
解题思路:此题主要考查了二次根式的定义,正确把握二次根式的性质是解题关键.
教学建议:灵活运用二次根式定义法进行解题.
难度:3适应场景:当堂练习例题来源:无年份:2018
【例题5】
当a取什么值时,代数式 取值最小?并求出这个最小值.
课堂精讲精练
【例题1】
在下列代数式中,不是二次根式的是( )
A. B. C. D.
【答案】D
【解析】直接利用二次根式的定义分析得出答案.
解:A、 ,是二次根式,故此选项错误;
B、 ,是二次根式,故此选项错误;
C、 ,是二次根式,故此选项错误;
D、 ,不是二次根式,故此选项正确;
故选:D.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章二次根式【知识网络】知识点一:二次根式的概念形如…()的式子叫做二次根式。
注:在二次根式中,被幵方数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是J为二次根式的前提条件,如J,& I,二「’等是二次根式,而J ,丿厂■等都不是二次根式。
知识点二:取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当a± 0时," 有意义,是二次根式,所以要使二次根式有意义,只要使被幵方数大于或等于零即可。
2. 二次根式无意义的条件:因负数没有算术平方根,所以当a< 0时, ■■ 没有意义。
知识点三:二次根式二(』匚)的非负性^:)表示a的算术平方根,也就是说,门(二/ )是一个非负数,即Z 10 (“ _「)。
注:因为二次根式二)表示a的算术平方根,而正数的算术平方根是正数, 0的算术平方根是0,所以非负数()的算术平方根是非负数,即「上0 (),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0 ;若八」,则a=0,b=0 ;若“、-,则a=0,b=0。
知识点四:二次根式(厂):的性质文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式)是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若心:,则如:—w.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:1化简爲「时,一定要弄明白被幵方数的底数a是正数还是负数,若是正数或0,则等于a本身,即&二;若a是负数,则等于a的相反数-a,2、中的a的取值范围可以是任意实数,即不论a取何值,='一定有意义;3、化简勺丁时,先将它化成’,再根据绝对值的意义来进行化简。
知识点六:、'与打的异同点1不同点:二八与表示的意义是不同的,表示一个正数a的算术平方根的平方,而“'表示一个实数a的平方的算术平方根;在中^ :|,而中a可以是正实数,0,负实数。
但-、宀与都是非负数,即',&兰°。
因而它的运算的结果是有差别的,(亦尸,而2、相同点:当被幵方数都是非负数,即时,―' 二扛;-「时,无意义,而八 '.知识点七:二次根式的运算1. 二次根式的乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2) 注意知道每一步运算的算理;(3) 乘法公式的推广:2. 二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3. 二次根式的混合运算(1) 对二次根式的混合运算首先要明确运算的顺序,即先乘方、幵方,再乘除,最后算加减,如有括号,应先算括号里面的;(2) 二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用•要点诠释:怎样快速准确地进行二次根式的混合运算1. 明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2. 在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3. 在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果•(1) 加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握•在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简•例如恵 46,没有必要先对进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算,。
务V2 ~6 V2—6 -4 243,通过约分达到化简目的;(2) 多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用女口:',3 2,3 乙 5 2.2 21,利用了平方差公式.所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化4. 分母有理化把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1)a与a互为有理化因式;(2)a与a x b互为有理化因式;一般地 a 与a c.、b互为有理化因式;(3)a ■,b与.a 互为有理化因式;一般地c、、a d ,b与c..a d、、b互为有理化因式.专题总结及应用一、知识性专题专题1二次根式的最值问题【专题解读】涉及二次根式的最值问题,应根据题目的具体情况来决定应采用的方法,不能一概而论,但一般情况下利用二次根式的非负性来求解例1当x取何值时,,9FH 3的值最小?最小值是多少?分析由二次根式的非负性可知,9x 0,即.9XT1的最小值为0,因为3是常数,所以.9^ 3的最小值为3.解:••• . 9x 1 > 0,•••、、9x 1 3> 3•••当9x+1=0,即x 1时,,9x 1 3 3有最小值,最小值为 3.9【解题策略】解决此类问题一定要熟练掌握二次根式的非负性,即.a > 0(a>0).专题2二次根式的化简及混合运算【专题解读】对于二次根式的化简问题,可根据定义,也可以利用-.a2 |a|这一性质,但应用性质时,要根据具体情况对有关字母的取值范围进行讨论.例 2 下列计算正确的是分析根据具体选项,应先进行化简,再计算• A选项中,.8 ,2 2,2 .2 、2B选若可化为33 23- , C选项逆用平方差公式可求得3 3(2 ,5 ( 2- <5 =4- 5= - 1,而D选项应将分子、分母都乘2,得2 3、、2-1. 2故选A.例3 计算(•、. 2 1)2006(.. 2 1)2007的结果是( )分析本题可逆用公式(ab) m=a n b m及平方差公式,将原式化为[(-2 1)(、2 1)]2006( .2 1) .2 1.故选D.___ ______ 2 例4 书知y '..x24 .4 x2—-——,求x. y y\ x2.14的值.2 x分析本题主要利用二次根式的定义及非负性确定x的值,但要注意所得x 的值应使分式有意义.x2 4>0,解:由二次根式的定义及分式性质,得 4 x2》0, x 2,2 x^O,【解题策略】本题中所求字母x的取值必须使原代数式有意义.例5 化简.4a212a 9-、4a2-20a 25(-< a< -).2 2【解题策略】本题应根据条件直接进行化简,主要应用性质..02 |a| a(a>0),1 1 -a(a v O).例6 已知实数,a,b,c在数轴上的位置如图21-8 所r n A示,化简| a | \ (a c)2, (c a)2- b2. 图21-8 解:由a, b, c在数轴上的位置可知:【解题策略】利用间接给出的或隐含的条件进行化简时,要充分挖掘题目中的隐含条件,再进行化简•规律•方法对于无约束条件的化简问题需要分类讨论,用这种方法解题分为以下步骤:首先,求出绝对值为零时未知数的值,这些未知数的值在数轴上的对应点称为零点;其次,以这些零点为分点,把数轴划分为若干部分,即把实数集划分为若干个集合,在每个集合中分别进行化简,简称“零点分区间法” •例8已知a b 3,ab 12,求a f的值.分析这是一道二次根式化简题,在化为最简二次根式的过程中,要注意a,b的符号,本题中没明确告诉,a,b的符号,但可从a+b=-3,ab=12中分析得到.解:••• a+b=-3,ab=12,「・a v 0,b v 0.【解题策略】本题最容易出现的错误就是不考虑a,b的符号,把所求的式子化简,直接代入.专题3利用二次根式比较大小、进行计算或化简例9估计32 X J + . 20的运算结果应在()A. 6到7之间B. 7到8之间C. 8到9之间D. 9到10之间分析本题应计算出所给算式的结果,原式.16 20 4 2 5,由于■ 4 v. 5V-. 6.25,即2V'、5v 2.5,所以8v 4 2. 5v9.故选C.例10已知m是.,13的整数部分,n是..13的小数部分,求巴」的值. m n 解:••• 9v 13V 16,/. .9 v ..13 v ,16,即3v ,13 v 4•••13的整数部分为3, 即m=3,•••、、13 的小数部分为..13-3,即n=._13 3,.m n 3 (、13-3) 6 ,13 6.13 13• • ---- -------- -- -- . ,m n 3 ( ,13 3) '一13 13二、规律方法专题专题4 配方法【专题解读】把被幵方数配方,进而应用ja2=ia化简.例11 化简 5 2;6,规律•方法一般地,对于a 2.,b型的根式,可采用观察法进行配方,即找出x,y(x> y > 0),使得xy=b,x+y=a,则 a 2 b (G . y)2,于是,a 2 , b ,( x 、. y)2x “,从而使.a 2.b得到化简•例12 若a, b 为实数,且b=、3 5a ,5a 3 15,试求、b a 2 . b a 2 V a b \a b 的值.分析本题中根据b= 3 5a ,5a 3 15可以求出a, b,对,b a 2V a ba 2的被幵方数进行配方、化简.a b3 5a>n 3解:由二次根式的性质得,3 5a 0. a -.5a 3>0, 5对于形如-+ - 2或--2形式的代数式都要变为a b a b或将的形式,当它们作为被幵方式进行化简时,要注意a b 和 a b 以及ab 的符号专题5换元法【专题解读】 通过换元将根式的化简和计算问题转化为方程问题 例13计算.3 5 ,35.解:令x=. 3. 5 ... 3 5,两边同时平方得:••• x 2= ( 3) ( 3 .5 ) +2 .3 、5 X 、.、3 5 =10 专题6代入法【专题解读】 通过代入求代数式的值. 例 14 已知 a 2b 2400,ab 2 5760,求a 2 b 2的值.专题7约分法【专题解读】 通过约去分子和分母的公因式将第二次根式化简三、思想方法专题专题8类比思想【专题解读】 类比是根据两对象都具有一些相同或类似的属性,并且其中一个对象还具有另外某一些属性,从而推出另一对象也具有与该对象相同或 相似的性质•本章类比同类项的概念,得到同类二次根式的概念,即把二次根式【解题策略】 (a b)2 ab例15 化简2 6 「10 v15.例16化简XJ 丄匸g y).x 2 . xy y当a 3,b 15时’原式化简成最简二次根式后,若被幵方数相同,则这样的二次根式叫做同类二次根式.我们还可以类比合并同类项去合并同类二次根式例17计算.解:(1)原式=(1+2).3=3、、3.(2)原式=3 2-、2 +2 3 +2 3 =2 .2+4、、3 .【解题策略】对于二次根式的加减法,应先将各式化为最简二次根式,再类比合并同类项的方法去合同类二次根式•专题9转化思想【专题解读】当问题比较复杂难于解决时,一般应采取转化思想,化繁为简,化难为易,本章在研究二次根式有意义的条件及一些化简求值问题时,常转化为不等式或分式等知识加以解决•例18函数y= 2x 4中,自变量x的取值范围是_—分析本题比较容易,主要考查函数自变量的取值范围的求法,本题中2x 4是二次根式,所以被幵方数2x-4 > 0,所以x>2.故填x>2.例19如图21-9所示的是一个简单的数值运算程序,若输入x的值为.3,则输出的数值为—. ____图21-9分析本题比较容易,根据程序给定的运算顺序将问题化为二次根式求值问题,易知图中所表示的代数式为x21,代入可知(.3 )2-1=2.故填2.专题10分类讨论思想【专题解读】当遇到某些数学问题存在多种情况时,应进行分类讨论•本意在运用公式.a2 |a|进行化简时,若字母的取值范围不确定,应进行分类讨论•例20 若化简|1 x| 8^ 16的结果为2x 5,贝U x的取值范围是()A. x为任意实数B. 1 < x< 4C. x > 1D. x< 4分析由题意可知|1 x| |x 4| 2x 5,由此可知|1 x| x 1,且|x 4| 4 x,由绝对值的意义可知x 1>0,且4 x>0,所以K x< 4,即x的取值范围是K x<4.故选B.【解题策略】对」a2和| a|形式的式子的化简都应分类讨论.例21如图21-10所示的是一块长、宽、高分别为7cm 5cm和3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面爬到和顶点A相对的顶点B处吃食物,那么它要爬行的最短路径的长是多少?分析这是一个求最短路径的问题,一个长方体有六个面,蚂蚁有三种不同的爬行方法,计算时要分类讨论各种方法,进而确定最佳方案•解:沿前、右两个面爬,路径长为、、7)232',153 (cm).沿前、上两个面爬,路径长为\(37)252.125 (cm).图沿左、上两个面爬,路径长为(35)272113 (cm).所以它要爬行的最短路径长为'、帀cm.21-10规律•方法沿表面从长方体的一个顶点爬到相对的顶点去,共有三个爬行路线,每个路线长分别是它爬行两个展幵图的对角线的长二次根式单元测试题(一)判断题:(每小题1分,共5分) 1. • (—2)2ab = — 2 ab .............................. ( )2. ,3 — 2 的倒数是,3 + 2.( )3. 心―1)2 = C.x 1)2.…( )4.J Ob 、1 ^a 3b 、2仪是同类二次根式.…( )3x F b5.8x , . J , ,9 x 2都不是最简二次根式.( )(二)填空(每小题2分,共20分)6. _____________ 当x 时,式子有意义. <x 37. 化简—^ .210 一 253 =.8 \ 27 \12a 3 -----------------------I - - --8. ___________________________________ a — *"a 1的有理化因式是 . 9. _________________________________________________ 当 1v x v 4 时,|x — 4| + J x 2 2x 1 = ______________________________________ 10. 方程迈(x — 1)= x +1的解是 _________________ .12. 比较大小:一13. 化简:(7 — 5血)200°・(—7— 5血)2001 = ________________________________________ . 14. 若(门 + ________________________________ = 0,则(x — 1)2+ (y + 3)2= . 15. ______________________________________________________________ x ,y 分别为8—了仃的整数部分和小数部分,则 2xy — y 2 =. (三)选择题:(每小题3分,共15分)16. 已知 x 3 3x 2 = — x x 3,则 ................. ( )(A ) x < 0 ( B ) x <— 3 (C ) x > — 3(D )— 3<x < 017. ....................................................................................................................... 若 x v y v 0,则 x 2 2xy y 2 + x 2 2xy y 2 =2 【提示】— 亞鼻一—(呢+ 2).【答案】X.v3 23 43 【提示】.(x 1)2 — | x —1| , 0 x 1 )2 — x — 1 (x > 1).两式相等,必须 x > 1 .但 等式左边x 可取任何数.【答案】X .11.已知a 、b 、c 为正数,d 为负数,化简ab c 2d 2 .abc 2d 21 4、3(D ) a...................................................................................................................... ()(A) 2x (B) 2y (C)—2x (D)—2y18. 若0v x v 1,贝,(x 1)2 4 —. (x 1)2 4 等于................... ( )V x V x(A) 2(B)— - ( Q—2x (D) 2xx x 1919化简(a v 0)得.................................................a( )(A) a9、 【提示】x 2-2x + 1=( ) 2, x — 1.当 1v x v 4 时,x — 4, x — 1 是正数还是负数?x — 4是负数,x — 1是正数.【答案】3.10、 【提示】把方程整理成ax = b 的形式后,a 、b 分别是多少? 2 1 , 2 1 .【答 案】x = 3+ 2,2 .11、 【提示】,c 2d 2 = | cd | = — cd . 【答案】JOB + cd .[点评】ab = ^ab)2 (ab > 0),二 ab — c 2d 2=ab cd )(、ab cd ).12、 【提示】2 ,7 = .28 , 4 ,3 = .. 48 .【答案】v.【点评】先比较 28 , ,48的大小,再比较 1 , 1的大小,最v'28 V48后比较一1与一1的大小.V28v'4813、 ____________________________________________________ 【提示】(—7— 5盪20. 当 a v 0, b v 0 时,一a + 2 _ ab — b 可变形为 ( )(A ) (、.a .. b)2 (四)计算题:(每小题6分,共24分)21. ( , 5 ,32 ) ( .. 5 .3 ,2 ); 22.(B )— (、. a.. b)2 (C ) (、. a b) 2 (D ) G a b)223.4、11■11 、73.7 '—竺 mn + ― m )- a 2b 2.mmm n(,a +b ab)-柘Vb (a 2. na.ab b(五)求值:(每小题7分,共14分) 25 已知X —屈迈 y —弱 v 2求 25.已知 X - 3 2,y - 3 2,求 24. n .,m 'b— a b ) (a z b ). .ab a ab26.当 x = 1- ,2 时,求3 2X xy 的值43 22 3、x y 2x y x yx十 2x Jx 22 2 2 2x a x x a =+ . 1 的值.2 2 2 2 2x x I x a x a六、解答题:(每小题8分,共16分)27.计算(2,5 + 1) (11 11Id+ 2 ,3 .3 28.若X , y 为实数,且 y = 1 4x + . 4x值.(一)判断题:(每小题 | — 2| = 2.【答案】X.1分,共5分) 1、【提示】 .(2)2 =).+1 .41 + 12X2 y 的 \ yxf ( —7 —5血)200°•(____________________________________ )[ —7—5".](7 —5、.2 ) •(—7— 5.2 ) =? [1 .]【答案】—7 —52 .【点评】注意在化简过程中运用幂的运算法则和平方差公式.14、【答案】40.【点评】-f x 1》0, .. y 3》0.当•、x 1 + , y 3 = 0 时,x+ 1 = 0, y — 3 = 0. 15、 ___________________________________ 【提示】T 3v 胡1 v 4,二v8—前1 v .[4 , 5].由于8—11介于4与5之间,则其整数部分x =?小数部分y=? [x= 4, y = 4 —11 ]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】I x v y v 0,A x —y v 0, x + y v0.x2 2xy y2= .. (x y)2= | x—y| = y —x..x2 2xy y2= .. (x y)2= | x+ y| = —x —y.【答案】C.【点评】本题考查二次根式的性质.a2= |a| .18、【提示】(x ——) + 4 = (x+ —) , (x + ■—) —4 = (x —).又0v x v 1,x x x xx + —> 0, x —- v 0.[答案】D.x x【点评】本题考查完全平方公式和二次根式的性质. (A)不正确是因为用性质时没有注意当0v x v 1时,x—1v0.x19、【提示】.a3= a a2= \ a • a2= | a| a = —a a .【答案】C.20、 【提示】I a v 0, b v 0,••• — a > 0,— b > 0.并且一a = ( .. a)2, - b = ( . b)2 , , ab = . ( a)( b).【答案】C.【点评】本题考查逆向运用公式(..a)2 = a (a >0)和完全平方公式.注 意(A )、( B )不正确是因为a v 0, b v 0时,、伍都没有意义.(四) 计算题:(每小题6分,共24分)21、 【提示】将,5 .3看成一个整体,先用平方差公式,再用完全平方公式. 【解】原式=(.5 ..3)2—(、、2)2 = 5— 2,15 + 3— 2= 6— 2 15 . 22、 【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=型型—47) — 23◎ = 4+ .11 — ■ 11 — .7 —3」716 1111 79 7=1 .23、【提示】先将除法转化为乘法,再用乘法分配律展幵,最后合并同类二次根 式. 【解】原式=(a 2 一 n —辿..m n + m )\ m mm Y n1 n m 1m [ n mm「 ---- —mn — + 亍 -----------b m nmab - n ma b , n n2_ 11 ,1_ a ab1— ~I~ -------- - --------- .2. 12. 2 2. 2 ■b ab a ba b24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. a . ab b ab 亠 a .a(、a 、b) b .b(、a . b) (a b)(a b) 禹 V b v'ab^/a Ub)(€a <b)a 2 a . ab b ab b 2 a 2 b 2+莎(石 Vb)^'a J b) ab(、a b)(、-a . b)\ ab(a b)【点评】本题如果先分母有理化,那么计算较烦琐. (五) 求值:(每小题7分,共14分)25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.-?3 ■,'2 __ 2 _y - 3 2- (、3,2)2 - 5— 2 6 .V 3 V 2x + y — 10, x — y — 4 6, xy — 5 — (2 . 6 )2 — 1. x 3 xy 2 = x(x y)(x y) =x y = 4 J6 x 4y 2x 3y 2 x 2y 3 x 2y(x y)2 xy(x y) 1 10【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“ x + y ”、“x — y ”、 “xy ”.从而使求值的过程更简捷.【解】原式一_ a b 亠【解】x 4.2 2 2 2x x a ( . x a x)=x 22x x 2 a 2 ( X 2 a 2)2 x x 2 a 2x 2=( x 2 a 2)2 x x 2 a 2 =x 2 a 2(.x 2 a 2 x)-—2 2 . 2 2、_2“ ~~2、 2 2 2 2x . x a (. x a x) x. x a ( x a x) x, x a (” x a x)=1 .当x = 1-、、2时,原式=1=- 1- ,2 .[点评】本题如果将前两个“分x 1 . 2式”分拆成两个“分式”之差,那么化简会更简便.即原式=,界:2『x )2xx 2 a 2 + x(. x 2 a 2 x)六、解答题:(每小题8分,共16分)27、[提示】先将每个部分分母有理化后,再计算. [解】原式=(2 ,5 + 1)(亠+亠^ +亠^十…十10099)2 13 24 3100 99=(2 , 5 + 1) [ ( 2 1) + (2 ) + (「..;4 -J 3 )+•••+(」100 疼 99 )] =(2、5 + 1) ( .100 1) =9 (2、5 + 1).[点评】本题第二个括号内有 99个不同分母,不可能通分•这里采用的疋先 母有理化,将分母化为整数, 种方法也叫做裂项相消法.28、[提示】要使y 有意义, 必须满足什么条件?[ 1 4x 4x 1 0]你能求出X , y 的值 x 吗?[ :] 2.【解】要使y 有意义,必须[1 4x 0x 0,即4x 14 .• 1又:芒2厂芒2厂(•「;)2-x y 2 C y■x )= 1 —( -------- 2 2/ 2 2)-(/ 2 2x a x a x !) + 1 = 1 x x 2 a 2 x分 从而使每一项转化成两数之差, 然后逐项相消.这x4.2S = 2 x 当 x =丄,y = 1 时, y y 42原式=2 11 =罷.【点评】解本题的关键是利用二次根式的意义求出 而求出y 的值.4、 【提示】丄.a 3b 、 J a 化成最简二次根式后再判断.【答案】".x =y=-x 的值,进3 xY b5、.9 x2是最简二次根式.【答案】X.(二)填空题:(每小题2分,共20分)6、【提示】.x何时有意义?x > 0 .分式何时有意义?分母不等于零.【答案】x >0 且x z 9.7、【答案】一2a-a.【点评】注意除法法则和积的算术平方根性质的运用.&【提示】(a—爲厂匚)(__________ )—a2—(J厂)2.aW O^l .【答案】a+ ■■■. a2 1 .。