七年级数学二元一次方程组(教师讲义带答案)
二元一次方程组的解法(教师版)2021-2022学年七年级数学下册同步精品讲义(人教版)

第17课二元一次方程组的解法目标导航课程标准1. 理解消元的思想;2. 会用代入法解二元一次方程组.3. 掌握加减消元法解二元一次方程组的方法;4. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;5.会对一些特殊的方程组进行特殊的求解.知识精讲知识点01 消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.知识点02 代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.注意:(1)代入消元法的关键是先把系数较简单的方程变形为用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;(3)若方程组中所有方程里的未知数的系数都不是1或-1,选系数的绝对值较小的方程变形比较简便.代入消元法的一般步骤:(1)转化:从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)代入:把(1)中所得的方程代入另一个方程,消去一个未知数.(3)求解:解所得到的一元一次方程,求得一个未知数的值.(4)回代、写解:把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.(5)检验: 把方程组的解代回方程组检验,当满足每个方程时才是方程组的解。
知识点03 加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法. 注意: 用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.知识点04 选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.考法01 用代入法解二元一次方程组【典例1】用代入法解方程组:【分析】比较两个方程未知数的系数,发现①中x 的系数较小,所以先把方程①中x 用y 表示出来,代入②,这样会使计算比较简便.【答案与解析】解:由①得 ③ 将③代入② ,解得. 237338x y x y +=⎧⎨-=⎩①②732y x -=733382y y -⨯-=13y =能力拓展将代入③,得x =3 所以原方程组的解为. 【点睛】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.【即学即练】m 取什么数值时,方程组的解(1)是正数;(2)当m 取什么整数时,方程组的解是正整数?并求它的所有正整数解.【答案】(1)m 是大于-4 的数时,原方程组的解为正数;(2)m=-3,-2,0,.【典例2】对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:解:把②代入①得,x+2×1=3,解得x=1.把x=1代入②得,y=0.所以方程组的解为 请用同样的方法解方程组:.【分析】仿照已知整体代入法求出方程组的解即可.【答案与解析】解:由①得,2x ﹣y=2③,把③代入②得,1+2y=9,解得:y=4,把y=4代入③得,x=3,则方程组的解为【点睛】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.【即学即练】解方程组(1)(2)【答案】 13y =313x y =⎧⎪⎨=⎪⎩2320,2352y 9.7x y x y --=⎧⎪-+⎨+=⎪⎩45:4:3x y x y -=⎧⎨=⎩①②解: 将①代入②:, 得 y=4,将y=4代入①:2x -12=2得 x=7,∴原方程组的解是. (2) 解:由②,设x=4,y=3代入①:4-4·3=54-12=5-8=5∴,, ∴原方程组的解为. 考法02 方程组解的应用【典例3】如果方程组359x y x y +=⎧⎨-=⎩的解是方程3x+my=8的一个解,则m=( ) A .1B .2C .3D .4 【分析】求出方程组的解得到x 与y 的值,代入已知方程即可求出m 的值. 【答案】B .【解析】解:, 由①得y=3-x ③将③代入②得:6x=12,解得:x=2,将x=2代入②得:10﹣y=9,解得:y=1,将x=2,y=1代入3x+my=8中得:6+m=8,解得:m=2. 232235297x y x y y -=⎧⎪⎨-++=⎪⎩①②25297y ++=74x y =⎧⎨=⎩45:4:3x y x y -=⎧⎨=⎩①②k k k k k k k 58k =-542x k ==-1538y k ==-52158x y ⎧=-⎪⎪⎨⎪=-⎪⎩【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.【典例4】已知和方程组的解相同,求的值.【分析】两个方程组有相同的解,这个解是2x+5y =-6和3x-5y =16的解.由于这两个方程的系数都已知,故可联立在一起,求出x 、y 的值.再将x 、y 的值代入ax-by =-4,bx+ay =-8中建立关于a 、b 的方程组即可求出a 、b 的值.【答案与解析】解:依题意联立方程组①+③得5x =10,解得x =2.把x =2代入①得:2×2+5y =-6,解得y =-2,所以, 又联立方程组,则有, 解得. 所以(2a+b)2011=-1.【点睛】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.【即学即练】小明和小文解一个二元一次组322cx y ax by -=-⎧⎨+=⎩小明正确解得11x y =⎧⎨=-⎩小文因抄错了c ,解得26x y =⎧⎨=-⎩已知小文除抄错了c 外没有发生其他错误,求a+b+c 的值.【答案】解:把代入cx ﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5,把与分别代入ax+by=2,得,解得:, 2564x y ax by +=-⎧⎨-=-⎩①②35168x y bx ay -=⎧⎨+=-⎩③④2011(2)a b +2563516①x y x y +=-⎧⎨-=⎩③22x y =⎧⎨=-⎩48ax by bx ay -=-⎧⎨+=-⎩224228a b a b +=-⎧⎨-+=-⎩13a b =⎧⎨=-⎩则a+b+c=2+﹣5=3﹣5=﹣2.考法03 加减法解二元一次方程组【典例5】用加减消元法解方程组3465923x y x y ++== 【分析】先将原方程写成方程组的形式后,再求解.【答案与解析】 解:此式可化为:349(1)2659(2)3x y x y +⎧=⎪⎪⎨+⎪=⎪⎩ 由(1):3x+4y=18 (1)由(2):6x+5y=27 (2)(1)×2:6x+8y=36 (3)(3)-(2):3y=9y=3代入(1):3x+12=183x=6x=2∴23x y =⎧⎨=⎩【点睛】先将每个式子化至最简,即形如ax+by=c 的形式再消元.【即学即练】方程组201020092008200820072006x y x y -=⎧⎨-=⎩的解为: . 【答案】12x y =-⎧⎨=-⎩【典例6】若关于x 、y 的二元一次方程组1615ax my bx ny -=⎧⎨+=⎩的解为71x y =⎧⎨=-⎩,求关于x 、y 的方程组(2)()16(2)()15a x y m x yb x y n x y +--=⎧⎨++-=⎩的解. 【分析】如果用一般方法来解答此题,很难达到目标,观察发现,两方程的系数相同,只是未知数的呈现方式不同,如果我们把2x +y ,x -y 看作一个整体,则两个方程同解.【答案与解析】解:方程组的解仅仅与未知数的系数有关,与未知数选用什么字母无关,因此把(2x +y )与(x -y )分别看成一个整体当作未知数,可得27,1.x y x y +=⎧⎨-=-⎩ 解得:23x y =⎧⎨=⎩【点睛】本例采用了类比的方法,利用了消元的思想,消元的方法有:代入消元法与加减消元法.【即学即练】三个同学对问题“若方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是: .【答案】解:由方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,得1112223434a b c a b c +=⎧⎨+=⎩, 上式可写成111222352105352105a b c a b c ⨯+⨯=⎧⎨⨯+⨯=⎩,与111222325325a x b y c a x b y c +=⎧⎨+=⎩比较, 可得:510x y =⎧⎨=⎩. 考法04 用适当方法解二元一次方程组【典例7】解方程组36101610x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩ 【分析】解决本题有多种方法:加减法或代入法,或整体代入法,整体代入法最简单.【答案与解析】 解:设,610x y x y m n +-==,则 原方程组可化为31m n m n +=⎧⎨-=-⎩①② 解得12m n =⎧⎨=⎩即16210x y x y +⎧=⎪⎪⎨-⎪=⎪⎩ ,所以620x y x y +=⎧⎨-=⎩ 解得137x y =⎧⎨=-⎩所以原方程组的解为137x y =⎧⎨=-⎩. 【点睛】解一个方程组的方法一般有多种方法,我们要根据方程组的特点选择最简便的求解方法.【即学即练】【答案】解:去分母,整理化简得,9112061925x y x y +=⎧⎨+=⎩①②, ②×3-①×2得,3535y =,即1y =,将1y =代入①得,99x =,即1x =,所以原方程组的解为11x y =⎧⎨=⎩.【典例8】试求方程组27526x y x y ⎧-=--⎪⎨-=-⎪⎩的解. 【答案与解析】 解:27526x y x y ⎧-=--⎪⎨-=-⎪⎩①② ①-②,整理得513y y -=- ③ ∵50y -≥,∴13-y ≥0,即y ≤13,当513y ≤≤时,③可化为513y y -=-,解得9y =;当5y ≤时,③可化为513y y -=-,无解.将9y =代入②,得23x -=,解得15x =-或.综上可得,原方程组的解为:19x y =-⎧⎨=⎩或59x y =⎧⎨=⎩.【点睛】解含有绝对值的方程组,一般先转化为含绝对值的一元一次方程,再分类讨论求出解.【即学即练】若二元一次方程组37231x y x y -=⎧⎨+=⎩和y=kx+9有相同解,求(k+1)2的值.【答案】解:方程组,①×3+②得:11x=22,解得:x=2,将x=2代入①得:6﹣y=7,解得:y=﹣1,∴方程组的解为, 将代入y=kx+9得:k=﹣5, 则当k=﹣5时,(k+1)2=16.题组A 基础过关练1.用加减法解方程组235327x y x y -=⎧⎨-=⎩①②下列解法错误的是( ) A .①×3-②×2,消去xB .①×2-②×3,消去yC .①×(-3)+②×2,消去xD .①×2-②×(-3),消去y 【答案】D【解析】【详解】本题考查了加减法解二元一次方程组用加减法解二元一次方程组时,必须使同一未知数的系数相等或者互为相反数.如果系数相等,那么相减消元;如果系数互为相反数,那么相加消元.A 、32⨯-⨯①②,可消去x ,故不合题意;B 、23⨯-⨯①②,可消去y ,故不合题意;C 、(3)2⨯-+⨯①②,可消去x ,故不合题意;D 、2(3)⨯-⨯-①②,得,不能消去y ,符合题意. 故选D . 分层提分2.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【解析】【分析】根据各选项分别计算,即可解答.【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.【点睛】本题考查了加减消元法解二元一次方程组,只有当两个二元一次方程未知数的系数相同或相反时才可以用加减法消元,系数相同相减消元,系数相反相加消元.3.解方程组231367x yx y+=⎧⎨-=⎩①②,用加减法消去y,需要()A.①×2﹣②B.①×3﹣②×2C.①×2+②D.①×3+②×2【答案】C【解析】【分析】先把的系数化成绝对值相等的方程,再相加即可.【详解】解:①×2得:4x+6y=2③,③+②得:7x=9,即用减法消去y,需要①×2+②,故选C.【点睛】本题考查了解二元一次方程组的应用,主要考查学生的理解能力和计算能力.4.用加减法将方程组2311255x yx y-=⎧⎨+=-⎩中的未知数x消去后,得到的方程是().A.26y= B.816y=C.26y-=D.816y-=【答案】D【解析】【分析】方程组两方程相减消去x即可得到结果.【详解】解:2311? 255?x yx y-=⎧⎨+=-⎩①②②-①得:8y=-16,即-8y=16,故选D.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.利用加减消元法解方程组2510{536x yx y+=-=,①②,下列做法正确的是()A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×2【答案】D【解析】【详解】由已知可得,消元的方法有两种,分别为:(1)要消去y,可以将①×3+②×5;(2)要消去x,可以将①×(-5)+②×2.故选D6.用代入消元法解方程组3+4=225x yx y⎧⎨-=⎩①②使得代入后化简比较容易的变形是()A.由①得243yx-=B.由①得234xy-=C.由②得52yx+=D.由②得y=2x-5【答案】D【解析】【分析】根据代入消元法解二元一次方程组的步骤可知变形②更简单.【详解】解:观察方程①②可知,②中的系数为-1,比其它未知数的系数更为简单,所只要将②变形为y=2x-5③,再把③代入①即可求出方程组的解.故应选D.【点睛】本题考查了用代入消元法解二元一次方程组,理解代入消元法解方程组时化简系数较简单的方程是解题的关键.7.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4B.4C.﹣2D.2【答案】B【解析】【详解】试题解析:512{34a ba b+=-=①②,①+②:4a+4b=16则a+b=4,故选B.考点:解二元一次方程组.8.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2B2C.2D.4【解析】【详解】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,∴2+=8{2=1m n n m -,解得=3{=2m n . 2=232=4=2m n -⨯-.即2m n -的算术平方根为2.故选C .9.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩【答案】D【解析】【详解】 分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可. 详解:∵32120x y x y --+-=,∴321020x y x y --⎧⎨+-⎩== 将方程组变形为32=1=2x y x y -⎧⎨+⎩①②, ①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩. 故选D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.10.以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【分析】先求出方程组的解,然后即可判断点的位置.【详解】解:解方程组21x y x y +=⎧⎨-=⎩,得 1.50.5x y =⎧⎨=⎩, ∴点(1.5,0.5)在第一象限.故选:A .【点睛】本题考查了二元一次方程组的解法和坐标系中点的坐标特点,属于基本题型,熟练掌握上述基础知识是解题关键.11.若方程组31331x y a x y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为( ) A .﹣1B .1C .0D .无法确定 【答案】A【解析】【详解】试题解析:方程组两方程相加得:4(x+y )=2+2a ,即x+y=12(1+a ),由x+y=0,得到12(1+a )=0,解得:a=-1.故选A . 12.在解方程组2278ax by cx y +=⎧⎨+=⎩,时,甲同学正确解得32x y =⎧⎨=⎩,乙同学把c 看错了,而得到26x y =-⎧⎨=⎩,那么a ,b ,c 的值为( )A .2a =-,4b =,5c =B .4a =,5b =,2c =-C .5a =,4b =,2c =D .不能确定 【答案】B【解析】【分析】【详解】解:由甲同学的解正确,可知3c+2×7=8,解得2,c =-且3222a b +=①,由于乙看错c ,所以2622a b -+=②,解由①②构成的方程组可得:4,5a b =⎧⎨=⎩故选B .题组B 能力提升练13.已知23x y +=,用含x 的代数式表示y =________.【答案】y=3-2x【解析】【详解】23x y +=移项得:y=3-2x.故答案是:y=3-2x .14.已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩,则x y -的值为___. 【答案】1【解析】【分析】首先根据方程组的解的定义正确求出方程组的解,然后计算出x -y 或直接让两个方程相减求解.【详解】方法一:解方程组2524x y x y +=⎧⎨+=⎩, 解得:21x y =⎧⎨=⎩, ∴x -y=1;方法二:两个方程相减,得.x -y=1,【点睛】本题考查了解二元一次方程组,熟练掌握解二元一次方程组的基本方法是解题的关键,同时注意此题中的整体思想.15.如果方程组45x by ax =⎧⎨+=⎩的解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为______. 【答案】1【解析】【分析】根据题意,把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得到一个关于a ,b 的方程组,将方程组的两个方程左右两边分别相加,整理即可得出a+b 的值.【详解】解:根据题意把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得 345432b a b a +⎧⎨+⎩=①=②, ①+②,得:7(a+b )=7,则a+b=1,故答案为:1.【点睛】此题主要考查了二元一次方程组的解的定义以及加减消元法解方程组.一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.注意两个方程组有相同的解时,往往需要将两个方程组进行重组解题.16.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是_____. 【答案】24.【解析】【分析】把x y 3x 5y +-、分别看作一个整体,代入进行计算即可得解.解:∵x y 73x 5y 3+=⎧⎨-=-⎩, ∴()()()3x y 3x 5y 37324+--=⨯--=.故答案为:24.17.已知关于x 、y 的方程221255x y a x y a +=+⎧⎨+=-⎩的解满足3x y +=-,则a 的值为__________________. 【答案】5【解析】【分析】①+②可得x+y=2-a ,然后列出关于a 的方程求解即可.【详解】解:221255x y a x y a +=+⎧⎨+=-⎩①②, ①+②,得3x+3y=6-3a ,∴x+y=2-a ,∵3x y +=-,∴2-a=-3,∴a=5.故答案为:5.【点睛】本题考查了二元一次方程组的特殊解法,在求二元一次方程组中两个未知数的和或差的时候,有时可以采用把两个方程直接相加或相减的方法,而不必求出两个未知数的具体值.18.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为 . 【答案】2【解析】【详解】把x 2{y 1==代入方程组mx ny 7{nx my 1+=-=,得:2m n 7{2n m 1+=-=,解得13m 5{9n 5==, ∴139m 3n 3855+=+⨯=33m 3n 82+=, 故答案为2.19.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m -7n 的算术平方根是_________.【答案】4【解析】【详解】试题分析:根据同类项定义由单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m+n=2,解得:m=2,n=﹣2,因此可求得m ﹣7n=16,即m ﹣7n 的算术平方根==4,故答案为 4.考点:1、算术平方根;2、同类项;3、解二元一次方程组 20.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______. 【答案】3212a b ⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】方法一:利用关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩可得m 、n 的数值,代入关于a 、b 的方程组即可求解;方法二:根据方程组的特点可得方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是12a b a b +=⎧⎨-=⎩,再利用加减消元法即可求出a,b .【详解】详解:∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴将解12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩可得m=﹣1,n=2∴关于a、b的二元一次方程组()()()()3=526a b m a ba b n a b⎧+--⎪⎨++-=⎪⎩整理为:42546a ba+=⎧⎨=⎩解得:3212 ab⎧=⎪⎪⎨⎪=-⎪⎩方法二:∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩∴方程组3()()=52()()6a b m a ba b n a b+--⎧⎨++-=⎩的解是12a ba b+=⎧⎨-=⎩解12a ba b+=⎧⎨-=⎩得3212ab⎧=⎪⎪⎨⎪=-⎪⎩故答案为:3212ab⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.21.若方程组2313{3530.9a ba b-=+=的解是8.3{1.2,ab==则方程组的解为________【答案】6.32.2 xy==⎧⎨⎩【解析】【详解】试题分析:根据整体思想,可设a=x+2,b=y-1,可发现两个方程组相同,因此可知x+2=8.3,y-1=1.2,解得x=6.3,y=2.2,即方程组的解为:6.3{2.2xy==.题组C 培优拔尖练22.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩ 【答案】(1)55x y ⎧=⎨=⎩;(2)025x y ⎧=⎪⎨=⎪⎩【解析】【分析】本题需要把两个方程组化简后,根据方程的形式选用合适的方法求解.【详解】(1)257320x y x y -=⎧⎨-=⎩, 整理得63157320-=⎧⎨-=⎩x y x y , 两式相减得:5x =,把 5x =代入25x y -=中,得y 5=;所以原方程组的解为:55x y ⎧=⎨=⎩. (2)原方程组变式为51565104x y x y ⎧+=⎨-=-⎩, 两式相减得:25y =, 将25y =代入5156x y +=中,得251565x +⨯=, 解得:0x =. 所以原方程组的解为025x y ⎧=⎪⎨=⎪⎩. 【点睛】本题考查了我二元一次方程组的解法,通过变形选择合适的方法求解是快速解题的关键.23.(1)用代入法解方程组:3759x y x y -=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x y x y ⎧+=⎪⎨⎪+-=⎩【答案】(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.【解析】【分析】(1)由x-y=3得x=3+y,再代入求出x,再求出y;(2)先对原方程组变形,再运用加减消元法解答.【详解】解:(1)3759 x yx y-=⎧⎨+=-⎩①②由①得x=3+y③将③代入②得:y=1 22 -将y=122-代入③得:x=12-所以原方程组的解为:1x=21 y=22⎧⎪⎪⎨⎪-⎪⎩(2)原方程组可化为:3x212 235yx y+=⎧⎨-=-⎩①②①×2得:6x+4y=24③②×3得:6x-9y=-15④③-④得:13y=39,解得:y=3将y=3代入①中得:x=2所以原方程组的解为:x=2 y=3⎧⎨⎩【点睛】本题考查了二元一次方程组得两种解法,其关键在于扎实的计算能力和严谨的思维.24.甲、乙两名同学在解方程组5{213mx yx ny+=-=时,甲解题时看错了m,解得7{22xy==-;乙解题时看错了n,解得3{7xy==-.请你以上两种结果,求出原方程组的正确解.【答案】n = 3, m = 4,2 {3 xy==-【解析】【详解】试题分析:由题意可知722xy⎧=⎪⎨⎪=-⎩是方程213x ny-=的解,由此即可求得n的值;37xy=⎧⎨=-⎩是方程5mx y+=的解,由此看求得m的值;这样即可得到正确的原方程组,再解方程组,即可求得原方程组的正确解;试题解析:由题意可知722xy⎧=⎪⎨⎪=-⎩是方程213x ny-=的解,∴72(2)132n⨯--=,解得n=3;37xy =⎧⎨=-⎩是方程5mx y+=的解,∴375m-=,解得m=4;∴原方程组为:452313x yx y+=⎧⎨-=⎩,解此方程组得23xy=⎧⎨=-⎩,∴m=4,n=3,原方程组的解为:23 xy=⎧⎨=-⎩.点睛:在本题中“甲、乙两名同学在解方程组5213mx yx ny+=⎧⎨-=⎩时,甲解题时看错了m,解得722xy⎧=⎪⎨⎪=-⎩”这句话的含义是:“722xy⎧=⎪⎨⎪=-⎩”是关于x y、的二元一次方程“213x ny-=”的解.25.阅读探索解方程组(1)2(2)6 2(1)(2)6 a ba b-++=⎧⎨-++=⎩解:设a&#ξΦ02∆;1&#ξΦ03∆;x,b&#ξΦ02B;2&#ξΦ03∆;y,原方程组可变为26 26 x yx y+=⎧⎨+=⎩解方程组得22xy=⎧⎨=⎩,即1222ab-=⎧⎨+=⎩,所以3ab=⎧⎨=⎩.此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组:(1)2(2)4352(1)(2)535a b a b ⎧-++=⎪⎪⎨⎪-++=⎪⎩ (2)能力运用已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩,直接写出关于m 、n 的方程组1112225(3)3(2)5(3)3(2)a m b n c a m b n c ++-=⎧⎨++-=⎩的解为_______.【答案】(1)95a b =⎧⎨=-⎩;(2)23m n =-⎧⎨=⎩. 【解析】【分析】(1)设13a -=x ,25b +=y ,可得出关于x 、y 的方程组,即可求出x 、y 的值,进而可求出a 、b 的值;(2)设5(m+3)=x ,3(n -2)=y ,根据已知方程组的解确定出m 、n 的值即可.【详解】(1)设13a -=x ,25b +=y , 原方程组可变形为2425x y x y +=⎧⎨+=⎩, 解得:21x y =⎧⎨=⎩,即123215a b ⎧-=⎪⎪⎨⎪+=⎪⎩, 解得:95a b =⎧⎨=-⎩. (2)设5(m+3)=x ,3(n -2)=y ,原方程组可变形为:111222a x b y c a x b y c +=⎧⎨+=⎩, ∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩, ∴5(3)53(2)3m n +=⎧⎨-=⎩,解得:23mn=-⎧⎨=⎩.故答案为23 mn=-⎧⎨=⎩【点睛】本题考查解二元一次方程组,正确理解并熟练掌握换元法是解题关键.。
七年级数学上册-8.1二元一次方程组 解析版

8.1二元一次方程组【考点梳理】考点一:二元一次方程的概念理解考点二:二元一次方程的解考点三:二元一次方程组的概念考点四:判断是否是二元一次方程组的解考点五:二元一次方程组的解求参数知识点一:二元一次方程的概念含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程。
知识点二:二元一次方程的解使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程的解有无数个,可以理解为在一条直线上的点的坐标。
知识点三:二元一次方程组把含有两个未知数的两个一次方程合在一起,就组成一个二元一次方程组。
即两个二元一次方程组成的方程组称二元一次方程组。
(两个方程中的未知数相同)技巧归纳:二元一次方程组的特点:1.有两个未知数.(二元)2.含未知数的指数都为1.(一次)3.两个一次方程组成.(方程组)知识点四:二元一次方程组的解二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
二元一次方程组的解只有一个,可以理解为两条直线相交点的坐标。
题型一:二元一次方程的概念理解1.(23-24七年级下·浙江·期中)下列各式是二元一次方程的是()A .223x y -=B .23x y-=C .3x y +=D .23x y z+=【答案】C【分析】本题考查了二元一次方程的定义,注意二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.根据二元一次方程的定义,依次分析各个选项,选出是二元一次方程的选项即可.【详解】解:A .该方程含未知数项的最高次数为二次,不符合二元一次方程的定义,不是二元一次方程,即A 选项不合题意;B .是分式方程,不符合二元一次方程的定义,不是二元一次方程,即B 选项不合题意;C .符合二元一次方程的定义,是二元一次方程,即C 选项符合题意;D.是三元一次方程,不符合二元一次方程的定义,不是二元一次方程,即D 选项不合题意.故选:C .2.(23-24七年级下·重庆·期中)若关于x y 、的方程1325m n x y -+-=是二元一次方程,则m n +=()A .0B .1C .2D .3【答案】A【分析】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.利用二元一次方程的定义判断即可.【详解】解:∵关于x 、y 的方程程1325m n x y -+-=是二元一次方程,∴11,31m n -=+=,解得:22m n ==-,,∴()220m n +=+-=,故选:A .3.(23-24七年级下·湖南衡阳·阶段练习)下列方程中,是二元一次方程的有()①25x y -=,②41x -=,③23xy =,④27x y z ++=,⑤152x y +=,⑥782x y +=A .1个B .2个C .4个D .6个【答案】B【分析】本题考查了二元一次方程的定义,牢记“只含有二个未知数(元),且未知数的次数是1,这样的整式方程叫二元一次方程”是解题的关键.利用二元一次方程的定义,逐一分析各方程,即可得出结论.【详解】解:①25x y -=是二元一次方程,符合题意;②41x -=是一元一次方程,不符合题意;③23xy =含有两个未知数,最高次数是2,不是二元一次方程,不符合题意;④27x y z ++=含三个未知数,不是二元一次方程,不符合题意;⑤152x y+=不是二元一次方程,不符合题意;⑥782x y +=是二元一次方程,符合题意;综上,是一元一次方程的有①⑥,共2个,故选:B .题型二:二元一次方程的解4.(23-24七年级下·河南周口·阶段练习)已知21x y =⎧⎨=-⎩是二元一次方程29ax y -=的解,则a 的值为()A .2-B .2C .12D .12-【答案】B【分析】本题考查二元一次方程解的定义、解一元一次方程等知识,将21x y =⎧⎨=-⎩代入29ax y -=,解一元一次方程即可得到答案,熟练掌握二元一次方程的解是解决问题的关键.【详解】解: 21x y =⎧⎨=-⎩是二元一次方程29ax y -=的解,()419a ∴--=,解得2a =,故选:B .5.(23-24七年级下·河南周口·阶段练习)下列哪组x ,y 的值是二元一次方程25x y +=的解()A .22x y =-⎧⎨=-⎩B .02x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .31x y =⎧⎨=⎩【答案】D【分析】本题主要考查了二元一次方程的解,二元一次方程的解是使方程左右两边相等的未知数的值,据此把四个选项中的x ,y 的值代入原方程,看方程左右两边是否相等即可得到答案.【详解】解:A 、把22x y =-⎧⎨=-代入方程25x y +=中得,左边()2226=-+⨯-=-,方程左右两边不相等,则22x y =-⎧⎨=-不是方程25x y +=的解,不符合题意;B 、把02x y =⎧⎨=⎩代入方程25x y +=中得,左边0224=+⨯=,方程左右两边不相等,则02x y =⎧⎨=⎩不是方程25x y +=的解,不符合题意;C 、把22x y =⎧⎨=⎩代入方程25x y +=中得,左边2226=+⨯=,方程左右两边不相等,则22x y =⎧⎨=⎩不是方程25x y +=的解,不符合题意;D 、把31x y =⎧⎨=⎩代入方程25x y +=中得,左边3215=+⨯=,方程左右两边相等,则31x y =⎧⎨=⎩是方程25x y +=的解,符合题意;故选:D .6.(23-24八年级上·安徽宿州·期末)方程组2?3x y x y +=⎧⎨+=⎩的解为2?x y =⎧⎨=⎩,则被遮盖的两个数分别为()A .1,2B .1,3C .5,1D .2,4【答案】C【分析】本题主要考查二元一次方程组的解,根据题意,把2x =代入方程3x y +=中可求出y 的值,由此即可求解,掌握解二元一次方程组的方法是解题的关键.【详解】解:根据题意,把2x =代入方程3x y +=得,1y =,把21x y ==,代入方程2?x y +=得,2215⨯+=,∴被遮盖的两个数分别是51,,故选:C .题型三:二元一次方程组的概念7.(2024七年级下·全国·专题练习)下列方程组中,是二元一次方程组的是()A .34m n mn +=⎧⎨=⎩B .23324x yx ⎧-=-⎪⎨⎪=⎩C .2125s t t s=+⎧⎨=⎩D .7116x y x y -=⎧⎪⎨+=⎪⎩【答案】C【分析】本题考查了二元一次方程组的定义,熟练掌握二元一次方程组的定义是解答本题的关键.根据二元一次方程组的定义判断逐项分析即可,方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.【详解】解:A .34m n mn +=⎧⎨=⎩的最高项的次数是2,故不是二元一次方程组;B .23324x yx ⎧-=-⎪⎨⎪=⎩的最高项的次数是2,故不是二元一次方程组;C .2125s t t s=+⎧⎨=⎩是二元一次方程组;D .7116x y x y -=⎧⎪⎨+=⎪⎩的分母含未知数,故不是二元一次方程组;故选C .8.(23-24七年级下·浙江杭州·阶段练习)下列是二元一次方程组的是()A .141y xx y ⎧+=⎪⎨⎪-=⎩B .12x y =⎧⎨=⎩C .2132x y y z -=⎧⎨+=⎩D .521x y xy +=⎧⎨=⎩【答案】B【分析】本题考查了二元一次方程组的定义,熟练掌握定义是解题的关键.由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组,据此判断即可.【详解】A.141y x x y ⎧+=⎪⎨⎪-=⎩,不是二元一次方程组,不符合题意;B.12x y =⎧⎨=⎩,是二元一次方程组,符合题意;C.2132x y y z -=⎧⎨+=⎩,不是二元一次方程组,不符合题意;D.521x y xy +=⎧⎨=⎩,不是二元一次方程组,不符合题意;故选:B .9.(23-24八年级上·河南平顶山·阶段练习)下列方程组,属于二元一次方程组的是().A .52x y y +=⎧⎨=⎩B .28x y y z +=⎧⎨-=⎩C .41y xy ⎧=⎪⎨⎪=⎩D .2103x x y ⎧-=⎨+=⎩【分析】本题主要考查二元一次方程组的概念,组成二元一次方程组的两个方程应共含有两个未知数,且含未知数的项最高次数都是一次,方程的两边都是整式,那么这样的方程组叫做二元一次方程组.根据二元一次方程组的定义逐项分析即可解答.【详解】解:A .52x y y +=⎧⎨=⎩是二元一次方程组,符合题意;B .28x y y z +=⎧⎨-=⎩含有3个未知数,不是二元一次方程组,不符合题意;C .4yx=不是整式方程,不符合题意;D .2103x x y ⎧-=⎨+=⎩含有2次项,不是二元一次方程组,不符合题意.故选A .题型四:判断是否是二元一次方程组的解10.(23-24八年级上·河南驻马店·期末)下列方程组中,解为82x y =⎧⎨=⎩的方程组是()A .104x y x y +=⎧⎨-=⎩B .1024x y x y +=⎧⎨-=⎩C .2113218x y x y +=⎧⎨-=⎩D .253220x y x y -=⎧⎨-=⎩【答案】B【分析】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.根据方程组的解的定义,只要检验12x y =⎧⎨=⎩是否是选项中方程的解即可.【详解】解:A 、把82x y =⎧⎨=⎩代入方程4x y -=,左边64=≠,故不是方程组的解,故选项错误;B 、把82x y =⎧⎨=⎩满足1024x y x y +=⎧⎨-=⎩中的两个方程,故是方程组的解,故选项正确;C 、把82x y =⎧⎨=⎩代入方程211x y +=,左边1211=≠,故不是方程组的解,故选项错误;D 、把82x y =⎧⎨=代入方程25x y -=,左边45=≠,故不是方程组的解,故选项错误.11.(22-23七年级下·湖北随州·期中)若方程组231328a b a b -=⎧⎨+=⎩的解是21a b =⎧⎨=⎩,则方程组()()()()2132131228x y x y ⎧+--=⎪⎨++-=⎪⎩的解为()A .31x y =⎧⎨=-⎩B .13x y =⎧⎨=⎩C .11x y =-⎧⎨=-⎩D .21x y =⎧⎨=⎩【答案】B【分析】设1,2x m y n +=-=,则原方程组即为231328m n m n -=⎧⎨+=⎩,根据题意可得方程组231328m n m n -=⎧⎨+=⎩的解是21m n =⎧⎨=⎩,可得12,21x y +=-=,即可求解.【详解】解:设1,2x m y n +=-=,则方程组()()()()2132131228x y x y ⎧+--=⎪⎨++-=⎪⎩即为231328m n m n -=⎧⎨+=⎩,因为方程组231328a b a b -=⎧⎨+=⎩的解是21a b =⎧⎨=⎩,所以方程组231328m n m n -=⎧⎨+=⎩的解是21m n =⎧⎨=⎩,所以12,21x y +=-=,解得:13x y =⎧⎨=⎩;故选:B.【点睛】本题考查了二元一次方程组的解,正确理解二元一次方程组的解的含义是解题的关键.12.(22-23七年级下·河北廊坊·期中)若二元一次方程组4313x y -=⎧⎨⊗⎩的解为13x y =⎧⎨=-⎩,则⊗表示的方程可以是()A .4x y +=B .14y x-=C .3xy =-D .=3y -【答案】D【分析】将方程组的解代入每个选项分别计算即可判断.【详解】解:A 、将13x y =⎧⎨=-⎩代入4x y +=,左边≠右边,故不符合题意;B 、将13x y =⎧⎨=-⎩代入14y x -=,左边=右边,但不是整式方程,故不符合题意;C 、将13x y =⎧⎨=-⎩代入3xy =-,左边=右边,但不是二元一次方程,故不符合题意;D 、将13x y =⎧⎨=-⎩代入=3y -,故符合题意;故选:D .【点睛】此题考查了二元一次方程组的解,正确理解二元一次方程组的定义及正确代入计算是解题的关键.题型五:二元一次方程组的解求参数13.(23-24七年级下·河南周口)若关于x ,y 的二元一次方程组42x y +=⎧⎨=⎩ 的解为13x y =⎧⎨=⎩,则“W ”可以表示为()A .xB .23x y-C .y x-D .x y-【答案】C【分析】本题主要考查了二元一次方程组的解和二元一次方程组的定义,分别把13x y =⎧⎨=⎩代入四个选项中的式子中看计算的结果是否为2,以及根据二元一次方程组的定义进行求解即可.【详解】解:A 、∵12x =≠,∴“W ”不可以表示为x ,故此选项不符合题意;B 、232x y -=不是二元一次方程,故此选项不符合题意;C 、当13x y =⎧⎨=⎩时,312y x -=-=,则“W ”可以表示为y x -,故此选项符合题意;D 、当13x y =⎧⎨=⎩时,1322x y =-=-≠-,则“W ”不可以表示为x y -,故此选项不符合题意;故选:C .14.(23-24七年级下·湖南衡阳·阶段练习)已知关于x 、y 的二元一次方程组79ax by bx ay +=⎧⎨+=⎩的解为23x y =⎧⎨=⎩,那么关于m 、n 的二元一次方程组(1)(2)7(1)(2)9a m b n b m a n ++-=⎧⎨++-=⎩的解为()A .23m n =⎧⎨=⎩B .12m n =⎧⎨=⎩C .34m n =⎧⎨=⎩D .15m n =⎧⎨=⎩【答案】D【分析】本题主要考查了二元一次方程组的解,解题的关键是掌握整体代值的数学思想.首先利用整体代值的数学思想可以得到1m +与2n -的值,然后解关于m 、n 的方程组即可求解.【详解】解:∵二元一次方程组79ax by bx ay +=⎧⎨+=⎩的解为23x y =⎧⎨=⎩,∴关于m 、n 的二元一次方程组()()()()127129a m b n b m a n ⎧++-=⎪⎨++-=⎪⎩中1223m n +=⎧⎨-=⎩,解得:15m n =⎧⎨=⎩,故选D .15.(23-24八年级上·陕西西安·期末)若关于x ,y 的方程组32mx y n x ny m -=⎧⎨+=⎩的解为11x y =⎧⎨=⎩则2()m n -等于()A .1B .4C .9D .25【答案】B【分析】此题考查了二元一次方程组的解和解二元一次方程组,代数式求值.解决本题的关键是理解二元一次方程组的解.将x 、y 的值代入,可得关于m 、n 的二元一次方程组,解出m 、n 的值,代入代数式即可.【详解】解:把11x y =⎧⎨=⎩代入方程组32mx y nx ny m -=⎧⎨+=⎩得312m n n m-=⎧⎨+=⎩,解得:1252m n ⎧=-⎪⎪⎨⎪=-⎪⎩∴2215()()422m n -=-+=.故选:B .一、单选题16.(23-24七年级下·山东潍坊)下列方程组中,是二元一次方程组的是()A .23124x y x y ⎧+=⎨-=⎩B .24124x y xy +=⎧⎨=⎩C .2363x y y +=⎧⎨=⎩D .3113y x y =⎧⎪⎨-=⎪⎩【答案】C【分析】本题考查二元一次方程组的定义,根据二元一次方程组的基本形式及特点,①方程组中的两个方程都是整式方程;②方程共含有两个未知数;③每个方程都是一次方程.【详解】解:A .23124x y x y ⎧+=⎨-=⎩,第一个方程是二次方程,方程组不是二元一次方程组,故该选项不符合题意;B .24124x y xy +=⎧⎨=⎩,第二个方程是二次方程,方程组不是二元一次方程组,故该选项不符合题意;C .2363x y y +=⎧⎨=⎩符合二元一次方程组的定义,故该选项符合题意;D .3113y x y =⎧⎪⎨-=⎪⎩,第二个方程是分式方程,方程组不是二元一次方程组,故该选项不符合题意;故选:C .17.(23-24七年级下·浙江金华·阶段练习)二元一次方程21x y -=有无数多个解,下列四组值中不是该方程的解的是()A .11x y =-⎧⎨=-⎩B .11x y =⎧⎨=⎩C .10x y =⎧⎨=⎩D .012x y =⎧⎪⎨=-⎪⎩【答案】B【分析】此题主要考查了二元一次方程的解,关键是把结果代入原方程,看方程两边是否相等.【详解】解:A、把=1x -代入方程21x y -=可得1y =-,故该选项是方程的解;B、把1x =代入21x y -=可得0y =,故该选项不是方程的解;C、把1x =代入方程21x y -=可得0y =,故该选项是方程的解;D、把0x =代入21x y -=可得12y =-,故该选项是方程的解.故选:B .18.(23-24七年级下·湖北·周测)已知11x y =-⎧⎨=⎩是方程3mx y +=的解,m 的值是()A .2-B .2C .1-D .1【答案】A【分析】此题考查了二元一次方程解的定义和一元一次方程的解法,熟练掌握二元一次方程解的定义是解题的关键.根据方程解的定义代入方程进行求解即可.【详解】解:∵11x y =-⎧⎨=⎩是方程3mx y +=的解,∴13m -+=,解得2m =-,故选:A .19.(2024七年级下·全国·专题练习)若458kx y x -=+是关于x 、y 的二元一次方程,则k 的取值范围是()A .0k ≠B .5k ≠C .3k ≠D .1k ≠-【答案】B【分析】本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键.方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.先移项并合并关于x 同类项,然后令未知数的系数不等于零列式求解即可.【详解】解:∵458kx y x -=+,∴5480kx x y ---=,∴()5480k x y ---=,∵458kx y x -=+是关于x 、y 的二元一次方程,∴50k -≠,∴5k ≠.故选B .20.(23-24七年级下·河南周口·阶段练习)已知34x y =⎧⎨=⎩是二元一次方程31x my -=的一个解,则m 的值是()A .2-B .1-C .1D .2【答案】D【分析】本题考查了二元一次方程的解以及解一元一次方程,将34x y =⎧⎨=⎩代入二元一次方程,得到关于m 的一元一次方程,求解即可.【详解】解:34x y =⎧⎨=⎩是二元一次方程31x my -=的一个解,3341m ∴⨯-=,2m ∴=,故选:D .21.(23-24七年级下·湖南长沙·阶段练习)解方程组274ax y cx dy +=⎧⎨-=⎩时,一学生把a 看错后得到51x y =⎧⎨=⎩,而正确的解为31x y =⎧⎨=-⎩,(1)求a ,b ,c 的值;(2)求2a c d ++的立方根.【答案】(1)3a =,1c =,1d =(2)2【分析】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.(1)将51x y =⎧⎨=⎩代入第二个方程,将31x y =⎧⎨=-⎩代入第二个方程,组成方程组求出c 与d 的值,将正确解代入第一个方程求出a 即可;(2)由(1)知a ,b ,c 的值,代入2a c d ++即可求解.【详解】(1)解:将51x y =⎧⎨=⎩;31x y =⎧⎨=-⎩分别代入4cx dy -=得:5434c d c d -=⎧⎨+=⎩,解得:11c d =⎧⎨=⎩,将31x y =⎧⎨=-⎩代入27ax y +=中得:327a -=,解得:3a =,则3a =,1c =,1d =;(2)解:把3a =,1c =,1d =代入2a c d ++得223118a c d ++=⨯++=,8的立方根是2,2a c d ∴++的立方根为2.22.(23-24七年级下·湖南衡阳·阶段练习)两个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解”.提出了各自的想法,甲说:“这个题目好像条件不够,不能求解.”乙说:“它们的系数有一定规律,可以试试.”请你参考他们的讨论,求出这个题目的正确答案.【答案】510x y =⎧⎨=⎩【分析】本题考查了二元一次方程组的解,熟练掌握二元一次方程组的解的含义是解题的关键.先把所求方程组变形后,根据已知方程组的解求出解即可.【详解】解:将方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩化简得11122232553255a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,335245x y ⎧=⎪⎪∴⎨⎪=⎪⎩,解得510x y =⎧⎨=⎩.一、单选题23.(23-24七年级下·江苏南通·阶段练习)已知关于x ,y 的方程组()21223ax a y a x y ⎧+-=⎨+=⎩有下列几种说法:①一定有唯一解;②可能有无数多解;③当2a =时方程组无解;④若方程组的一个解中y 的值为0,则0a =.其中正确的说法有()A .0种B .1种C .2种D .3种【答案】C【分析】本题考查了解二元一次方程组.方程组整理得()122a y a -=-,针对四种说法逐一分析即可判断.【详解】解:()21223ax a y a x y ⎧+-=⎨+=⎩①②,由②得322y x -=,把322y x -=代入①得()32221a a y a y ⎛⎫+- ⎪⎝-=⎭,整理得()122a y a -=-,当2a =时,方程组无解;当2a ≠时,方程组有唯一解;如果0y =,则()1202a a -⨯=-,解得0a =,观察四种说法,①②错误,③④正确,故选:C .24.(23-24七年级下·河北沧州·阶段练习)方程组23x y x y +=⎧⎨-=⎩ 的解为1x y =⎧⎨=◊⎩,则“ ”“◊”代表的两个数分别为()A .4,2B .1,3C .0,2-D .2,3【答案】C 【分析】本题主要考查了二元一次方程组的解的定义,根据二元一次方程组的解是使方程组两个方程都成立的未知数的值,把1x =代入方程3x y -=中求出y 的值,进而求出2x y +的值即可得到答案.【详解】解:∵方程组23x y x y +=⎧⎨-=⎩ 的解为1x y =⎧⎨=◊⎩,∴13y -=,∴=2y -,∴2220x y +=-=,∴“ ”“◊”代表的两个数分别为0,2-,故选:C .25.(23-24七年级下·浙江金华·阶段练习)已知二元一次方程组1*x y +=⎧⎨⎩的解是1x y a =-⎧⎨=⎩,则*表示的方程可能是()A .3x y -=-B .4x y +=C .23x y -=-D .234x y +=-【答案】A 【分析】本题考查二元一次方程组的解,根据方程组的解使方程组中的每一个方程都成立,求出a 的值,再将方程组的解分别代入各个选项中,进行判断即可.【详解】解:∵二元一次方程组1*x y +=⎧⎨⎩的解是1x y a =-⎧⎨=⎩,∴11a -+=,∴2a =,∴12x y =-⎧⎨=⎩,∴123x y -=--=-,1x y +=,24x y -=-,234x y +=;故*表示的方程可能是3x y -=-;故选A .26.(2024七年级下·全国·专题练习)若()()217a x b y ++-=是关于x y 、的二元一次方程,则()A .2,1a b ≠-=B .2a ≠-且1b ≠C .2a ≠且1b ≠D .2a ≠-【答案】B 【分析】本题考查了二元一次方程的概念;根据方程中只含有2个未知数;含未知数的项的最高次数为一次的整式方程是二元一次方程可得20,10a b +≠-≠,据此求解即可.【详解】解:∵()()217a x b y ++-=是关于x y 、的二元一次方程,∴20,a +≠且10b -≠,∴2a ≠-且1b ≠,故选:B .27.(2024七年级下·全国·专题练习)如果12x y =⎧⎨=⎩是二元一次方程组12ax by bx ay +=⎧⎨+=⎩的解,那么a ,b 是()A .10a b =-=,B .10a b ==,C .01a b ==,D .01a b ==-,【答案】B【分析】此题考查了二元一次方程组的解的定义和解二元一次方程组的方法,把方程组的解代入方程组,解关于a b ,的方程组,即可求出 a b ,的值.【详解】解:根据题意可得2122a b b a +=⎧⎨+=⎩,即24222a b a b +=⎧⎨+=⎩,两个方程相减得到0b =,把0b =代入可得1a =,故选:B .二、填空题28.(23-24七年级下·江苏南通·阶段练习)若12323m m x y --+=是关于,x y 的二元一次方程,则m =.【答案】0【分析】本题主要考查了二元一次方程的定义,只含有两个未知数,且含未知数的项的次数为1的整式方程叫做二元一次方程,据此得到2011m m -≠-=,,解之即可得到答案.【详解】解:∵12323m m x y --+=是关于,x y 的二元一次方程,∴2011m m -≠-=,,解得0m =,故答案为:0.29.(23-24九年级下·江苏无锡·阶段练习)请写出一个二元一次方程,使得它的一个解为12x y =⎧⎨=⎩.【答案】3x y +=(答案不唯一)【分析】本题考查了二元一次方程的解以及解二元一次方程,根据二元一次方程的解使方程左右两边值相等进行列式,即可作答.【详解】解:依题意,3x y +=是二元一次方程,且满足它的一个解为12x y =⎧⎨=⎩故答案为:3x y +=(答案不唯一)30.(23-24七年级下·江西赣州·期中)若21x y =⎧⎨=-⎩是方程2ax by -=-的一个解,则1065a b +-的值是.【答案】16【分析】本题考查了二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.把21x y =⎧⎨=-⎩代入2ax by -=-求出22a b -=,然后用整体代入法求解即可.【详解】把21x y =⎧⎨=-⎩代入2ax by -=-,得22a b -=,∴22a b -=,∴1065a b+-()526a b =-+52616=⨯+=.故答案为:16.31.(2024·河南郑州·模拟预测)已知21x y =⎧⎨=⎩是方程123ax by bx ay +=⎧⎨+=⎩的解,则(())a b a b +-的值为.【答案】45【分析】本题主要考查二元一次方程的解,把x ,y 的值代入方程组,求出a b +和a b -的值代入计算即可.【详解】解:把21x y =⎧⎨=⎩代入方程组123ax by bx ay +=⎧⎨+=⎩①②中,-①②得,9a b -=,+①②得,5a b +=,则()()5945a b a b +-=⨯=,故答案为:45.32.(23-24七年级下·浙江嘉兴·阶段练习)三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是56x y =⎧⎨=⎩,求方程组111222534534a x b y c a x b y c +=⎧⎨+=⎩的解”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,这可以试试”;丙说:“能不能通过换元替代的方法来解决”,参照他们的讨论,你认为这个题目的解应该是.【答案】48x y =⎧⎨=⎩【分析】本题考查了二元一次方程的解,所求方程组变形后,根据已知方程组的解求出解即可.【详解】111222534534a x b y c a x b y c +=⎧⎨+=⎩,方程组中两个方程的两边都除以4,得11122253445344a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩,∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是56x y =⎧⎨=⎩,∴55 436 4xy⎧=⎪⎪⎨⎪=⎪⎩,∴48 xy=⎧⎨=⎩,故答案为48 xy=⎧⎨=⎩.三、解答题33.(23-24七年级下·山西长治·阶段练习)解方程组2718ax bycx y+=⎧⎨-=⎩时,小明本应该解出32xy=⎧⎨=-⎩,由于看错了系数c,从而得到解22xy=-⎧⎨=⎩,试求出a b c-+的值【答案】1 3【分析】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.将第一对x与y的值代入方程组第二个方程求出c的值,将两对x与y的值代入方程组中第一个方程,求出a,b 的值即可.【详解】解:把32xy=⎧⎨=-⎩代入718cx y-=,得31418c+=,解得43c=,把32xy=⎧⎨=-⎩代入2ax by+=,得322a b-=①,把22xy=-⎧⎨=⎩代入2ax by+=,得222a b-+=②,①,②联立方程组,得322 222 a ba b-=⎧⎨-+=⎩解得45 ab=⎧⎨=⎩,∴414533 a b c-+=-+=.34.(22-23七年级下·重庆开州·期中)对于任意一个三位数m,将个位数字和百位数字对调后得到新的三位数n,记22m nP -=,若P 为整数,则称m 为“有趣数”,此时的P 值称为m 的“有趣值”.例如:432对调后的三位数为234,则432234922P -==,∵9为整数,∴432为“有趣数”.(1)试判断826,326是否为“有趣数”.(2)若f 和s 都是“有趣数”,且满足10042f x =+,120s y =+(19x ≤≤,19y ≤≤,且x ,y 均为整数),把f 和s 的“有趣值”分别记1P 和2P ,满足12236P P -=,求出满足条件的三位数f 和s .【答案】(1)826是有趣数;326不是有趣数(2)642123f s =⎧⎨=⎩或242125f s =⎧⎨=⎩【分析】(1)根据“有趣数”的定义进行验证即可;(2)根据“有趣数”的定义表示出1P 和2P ,结合12236P P -=可得212x y +=,找到满足条件的x 和y 值,分别根据定义验证是否满足题意即可.【详解】(1)解:826628922P -==,∵9为整数,∴826为“有趣数”,32662313.522P -==-,∵13.5-不是整数,∴13.5-不是“有趣数”,(2)解:∵10042f x =+,120s y =+,f 和s 的“有趣值”分别记1P 和2P ,∴()()110042240929919822222P x x x x +-+--===,()29112010021999922222P y y y y -+---===,∵12236P P -=,∴()()929123622x y ---⨯=,整理可得212x y +=,∵19x ≤≤,19y ≤≤,且x ,y 均为整数,∴25x y =⎧⎨=⎩,44x y =⎧⎨=⎩,63x y =⎧⎨=⎩或82x y =⎧⎨=⎩,将25x y =⎧⎨=⎩代入,可得()192202P ⨯-==,()2915182P ⨯-==-,符合题意,∴242125f s =⎧⎨=⎩将44x y =⎧⎨=⎩代入,可得()194292P ⨯-==,()291413.52P ⨯-==-,13.5-不是整数,不符合题意;将63x y =⎧⎨=⎩代入,可得()1962182P ⨯-==,()291392P ⨯-==-,符合题意,∴642123f s =⎧⎨=⎩将82x y =⎧⎨=⎩代入,可得()1982272P ⨯-==,()2912 4.52P ⨯-==-,4.5-不是整数,不符合题意,∴满足条件的三位数f 和s 分别为642123f s =⎧⎨=⎩或242125f s =⎧⎨=⎩.【点睛】本题考查新定义的运算,掌握二元一次方程的解法,新定义的运算是解题的关键.35.(22-23七年级下·河北沧州·期中)按一定规律排列方程组和它的解的对应关系如下:111__________,,,12439__________x y x y x y x y x y x y ⎧⎧⎧+=+=+=⎧⎪⎪⎨⎨⎨⎨-=-=-=⎩⎪⎩⎪⎩⎩.……123______,,,012______x x x x y y y y ⎧⎧⎧====⎧⎪⎪⎨⎨⎨⎨==-=-=⎩⎪⎩⎪⎩⎩.……(1)依据方程组和它的解的变化规律,将第4个方程组和它的解直接填入横线处.(2)猜想第n 个方程组和它的解并验证.(3)若方程组116x y x my +=⎧⎨-=⎩的解是54x y =⎧⎨=-⎩,求m 的值,并判断该方程组是否符合(1)中的规律.【答案】(1)43x y =⎧⎨=-⎩(2)见解析(3)114m =,它不符合(1)中的规律21【分析】(1)根据已知的方程组,观察方程未知数系数,常数与解的关系,确定第4个方程组;(2)通过观察,知第n 个方程组为21x y x ny n +=⎧⎨-=⎩解为1x n y n =⎧⎨=-⎩,将解代入方程组验证;(3)将解代入方程求得参数值,故可知本方程组不符合规律.【详解】(1)解:1,4,4163x y x x y y ⎧+==⎧⎨⎨-==-⎩⎩(2)21,,1x y x n x ny n y n ⎧+==⎧⎨⎨-==-⎩⎩把1x n y n=⎧⎨=-⎩代入21,x y x ny n +=⎧⎨-=⎩得()()211,1n n n n n n +-=--=,所以成立.(3)将54x y =⎧⎨=-⎩代入16x my -=,解得114m =,即方程组为111164x y x y +=⎧⎪⎨-=⎪⎩,所以它不符合(1)中的规律.【点睛】本题考查规律探索,观察方程组,探索出方程未知数系数,常数与解的关系是解题的关键.。
七年级数学下册第八章二元一次方程组知识点总结(超全)(带答案)

七年级数学下册第八章二元一次方程组知识点总结(超全)单选题1、关于x,y 的二元一次方程组的解{3x −4y =5−k 2x −y =2k +3满足x −3y =10+k ,则k 的值是( ) A .2B .−2C .−3D .3答案:B分析:将①-②,得x −3y =2−3k ,再根据题意x −3y =10+k ,得10+k =2−3k ,求解即可. 解:{3x −4y =5−k①2x −y =2k +3②, ①-②,得x −3y =2−3k ,∵x −3y =10+k ,∴10+k =2−3k ,解得:k =−2,故选:B .小提示:本题考查二元一次方程组的含参问题,利用方程组进行化简,利用整体思想进行求解是解决问题的关键.2、方程组{x +y =−1x +z =0y +z =1的解是( )A .{x =−1y =1z =0B .{x =1y =0z =−1C .{x =0y =1z =−1D .{x =−1y =0z =1答案:D分析:观察方程组,①-②可消去x ,即可将三元一次方程组化为二元一次方程组求解.解:{x +y =−1①x +z =0②y +z =1③①﹣②,得:y ﹣z =﹣1,④③+④,得:y + z + y ﹣z =﹣1+1,解得y =0,⑤⑤代入①,得:x =﹣1,⑤代入③,得:z =1,因此方程组的解为:{x =−1y =0z =1;故选D .小提示:此题主要考查的是三元一次方程组的解法,常用的方法是加减法和代入法,要结合题意灵活选用合适的方法.3、已知x,y 满足方程组{x +6y =123x −2y =8,则x+y 的值为() A .5B .7C .9D .3答案:A分析:直接把两式相加即可得出结论.{x +6y =12①3x −2y =8②, ①+②得,4x+4y=20,解得x+y=5.故选A .小提示:本题考查的是解二元一次方程组,熟知利用加减法解二元一次方程组是解答此题的关键.4、如果方程x −y =3与下面方程中的一个组成的方程组的解为{x =4y =1,那么这个方程可以是( ) A .3x −4y =16B .14x +2y =5C .12x +3y =8D .2(x −y)=6y答案:D分析:将解代入每个方程,使若方程两边相等则该组解是该方程的解,即为所求的方程.解:将{x =4y =1 依次代入,得: A 、12-4≠16,故该项不符合题意;B 、1+2≠5,故该项不符合题意;C 、2+3≠8,故该项不符合题意;D 、6=6,故该项符合题意;故选:D .小提示:此题考查二元一次方程的解:使方程两边相等的未知数的值叫做方程的解,正确计算是解题的关键.5、若方程组{3x −y =4k −52x +6y =k的解中x +y =16,则k 等于( ) A .15B .18C .16D .17答案:D分析:先将两个方程相加即可得到x +y =k −1,再根据x +y =16即可得到关于k 的方程,解方程即可得解. 解:{3x −y =4k −5 ① 2x +6y =k ②①+②得,5x +5y =5k −5∴x +y =k −1∵x +y =16∴k −1=16∴k =17.故选:D小提示:本题考查了二元一次方程组的解满足一定条件求参数问题,加减消元法和代入消元法是求值的常用方法.6、用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有45张白铁皮,设用x 张制盒身,y 张制盒底,恰好配套.则下列方程组中符合题意的是( )A .{x +y =45y =2xB .{x +y =4525x =2×40yC .{x +y =4525x =40y 2D .{x +y =452x 25=y 40答案:C分析:设用x 张制作盒身,y 张制作盒底,根据题意列出二元一次方程组即可求解.解:设用x 张制作盒身,y 张制作盒底,根据题意得:{x +y =4525x =40y 2 .故选:C .小提示:本题考查了列二元一次方程组,理解题意是解题的关键.7、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x 间,房客y 人,则列出关于x 、y 的二元一次方程组正确的是( )A .{7x −7=y 9(x −1)=yB .{7x +7=y 9(x −1)=yC .{7x +7=y 9x −1=yD .{7x −7=y 9x −1=y 答案:B分析:设该店有客房x 间,房客y 人;根据题意一房七客多七客,一房九客一房空得出方程组即可. 解:设该店有客房x 间,房客y 人;根据题意得:{7x +7=y 9(x −1)=y, 故选:B .小提示:本题考查了二元一次方程组的应用;根据题意得出方程组是解决问题的关键.8、由x 3−y 2=1可以得到用x 表示y 的式子为( ) A .y =2x−23B .y =2x 3−2 C .y =2x 3−13D .y =2−2x 3答案:B分析:先移项,后系数化为1,即可得.解:x 3−y 2=1移项,得y 2=x 3−1, 系数化为1,得y =2x 3−2,故选B . 小提示:本题考查了方程的基本运算技能,解题的关键是熟练掌握方程的基本运算技能.9、若|x −y −1|+3(x +y)2=0,则x 、y 的值为( )A .x =0.5,y =0.5B .x =−0.5,y =−0.5C .x =−0.5,y =0.5D .x =0.5,y =−0.5答案:D分析:本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”,得到方程组,解出x 、y 的值即可.解:依题意得:{x −y −1=0...(1)x +y =0 (2), 由(1)得:x =y +1(3),将(3)代入(2)中得:y +1+y =2y +1=0,y =−0.5(4).将(4)代入(3)得:x =0.5.故选:D .小提示:本题考查解二元一次方程组和绝对值、偶次方的非负性,解题的关键是熟练运用二元一次方程组的解法.10、“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为( )A .{x +y =73x +y =17B .{x +y =93x +y =17C .{x +y =7x +3y =17D .{x +y =9x +3y =17答案:A分析:由题意知:胜一场得3分,平一场得1分,负一场得0分,某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分等量关系:胜场+平场+负场=9,得分总和为17.解:设该队胜了x 场,平了y 场,根据题意,可列方程组为:{x +y +2=93x +y =17, ∴{x +y =73x +y =17故选:A .小提示:根据实际问题中的条件列方程组时,解题的关键是要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.填空题11、已知x,y,z满足方程组{x−2y+z=07x+4y−5z=0,则x:y:z=____.答案:1:2:3分析:把z看做是常数,可得{x−2y=−z①7x+4y=5z②,再分别求解x,y的值,从而可得答案.解:{x−2y+z=07x+4y−5z=0整理得:{x−2y=−z①7x+4y=5z②①×2+②得:9x=3z,∴x=13z,把x=13z代入①得:y=23z,∴x:y:z=13:23:1=1:2:3.所以答案是:1:2:3.小提示:本题考查的是三元不定方程组,掌握把其中一个未知数看成是常数是解题的关键.12、某商场购进商品后,加价40%作为销售价.五一期间,商场搞优惠促销,决定由顾客抽签确定折扣.某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款448元.两种商品原销售价之和为560元.则两种商品进价分别为________元.答案:200,200分析:设甲、乙两种商品的进价分别为x元、y元,然后根据“某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款448元.两种商品原销售价之和为560元”列方程组求解即可.解:设甲、乙两种商品的进价分别为x元、y元.由题意可得:{(1+40%)x+(1+40%)y=5600.7(1+40%)x+0.9(1+40%)y=448 ,解得{x=200y=200.故答案为200、200.小提示:本题考查二元一次方程组的应用,明确题意、找准等量关系、列出相应的方程组成为解答本题的关键.13、若关于x ,y 的方程x +2y =1,2x −y =7,kx −y =4有公共解,则k 的值为 __.答案:1分析:先将x +2y =1和2x -y =7组成二元一次方程组,解得x 、y 的值后代入kx -y =4即可得到答案.解:由题意得:{x +2y =12x −y =7, 解得:{x =3y =−1, 把{x =3y =−1代入kx −y =4得: 3k +1=4,解得k =1,所以答案是:1.小提示:本题考查了方程的解,解二元一次方程组,理解方程的解的意义是本题的解题关键.14、若|a ﹣b +1|与√a +2b +4互为相反数,则(a −b )2021=_____.答案:-1分析:根据绝对值与二次根式的非负性,及|a ﹣b +1|与√a +2b +4互为相反数,可得{a −b +1=0a +2b +4=0,解方程组即可求得a 、b 的值,据此即可求解.∵|a ﹣b +1|≥0,√a +2b +4≥0,且|a ﹣b +1|与√a +2b +4互为相反数,∴{a −b +1=0a +2b +4=0解得{a =−2b =−1, ∴(a −b )2021=(−2+1)2021=−1,所以答案是:-1.小提示:本题考查了绝对值与二次根式的非负性,代数式求值问题,互为相反数的两个数之间的关系,根据题意列出方程组,求得a 、b 的值是解决本题的关键.15、一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).答案:ab设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得,{x 1+2x 2=a x 1−2x 2=b解得,{x 1=a +b 2x 2=a −b 4②的大正方形中未被小正方形覆盖部分的面积=(a+b 2)2-4×(a−b 4)2=ab . 所以答案是:ab .解答题16、仔细阅读下面解方程组得方法,然后解决有关问题.解方程组{19x +18y =17①17x +16y =15② 时,如果直接消元,那将时很繁琐的,若采用下面的解法,则会简单很多. 解:①-②,得2x +2y =2,即x +y =1③,③×16,得16x +16y =16④,②-④,得:x =−1,将x =−1代入③得:y =2,∴方程组的解为:{x =−1y =2. (1)问题解决,请你采用上述方法解方程组{2014x +2013y =20122012x +2011y =2010(2)延伸探究:请你采用上述方法填空:{(a +2)x +(a +1)y =a (b +2)x +(b +1)y =b(a ≠b) ,则x +y = . 答案:(1){x =−1y =2(2)1分析:(1)先把两式相减得出x+y的值,再把x+y的值与2011相乘,再用加减消元法求出x的值,再代入方程求出y的值即可;(2)先把两式相减得出(a﹣b)x+(a﹣b)y=a﹣b的值,由a-b≠0,得到x+y=1,再用加减消元法求出y的值,再代入方程求出x的值即可.(1)解:{2014x+2013y=2012①2012x+2011y=2010②,①−②,得:2x+2y=2,即x+y=1③,③×2011,得:2011x+2011y=2011④,.②−④,得:x=−1,.将x=−1代入③得:y=2,∴方程组的解为:{x=−1y=2;(2)解:{(a+2)x+(a+1)y=a①(b+2)x+(b+1)y=b②(a≠b),①-②,得:(a-b)x+(a-b)y=a-b,∵a≠b,∴a-b≠0,∴x+y=1③,③×(b+2),得:(b+2)x+(b+2)y=b+2④,④-②,得:y=2,把y=2代入③得:x+2=1,解得:x=﹣1,∴方程组的解为:{x=−1y=2,∴x+y=1.所以答案是:1小提示:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.17、A 、B 两地相距3千米,甲从A 地出发步行到B 地,乙从B 地出发步行到A 地,两人同时出发,20分钟后两人相遇,又经过10分钟,甲所余路程为乙所余路程的2倍.(1)求甲、乙每小时各行多少千米?(2)在他们出发后几分钟两人相距1.5千米(直接写出结果)?答案:(1)甲每小时行4千米,乙每小时行5千米(2)10分钟或30分钟分析:(1)这是行程问题中的相遇问题,三个基本量:路程、速度、时间.关系式为:路程=速度×时间.题中的两个等量关系是:20分钟×甲的速度+20分钟×乙的速度=3千米,3千米-30分钟×甲的速度=(3千米-30分钟×乙的速度)×2,依此列出方程求解即可,注意单位换算;(2)先求出两人一共行驶的路程,再除以速度和即可求解.(1)解:设甲每小时行x 千米.乙每小时行y 千米.依题意:{2060x +2060y =33−3060x =2(3−3060y)解方程组得{x =4y =5答:甲每小时行4千米,乙每小时行5千米.(2)相遇前:(3-1.5)÷(115+112) =1.5÷320=10(分钟),相遇后:(3+1.5)÷(115+112)=4.5÷320 =30(分钟).故在他们出发后10分钟或30分钟两人相距1.5千米.小提示:本题考查了二元一次方程组的应用,本题是行程问题中的相遇问题,解题关键是如何建立二元一次方程组的模型.18、在解方程组{ax +3y =−2①2x −by =7②时,由于粗心,甲看错了方程组中的a ,而得解为{x =1y =−1 ,乙看错了方程组中的b ,而得解为{x =5y =1,根据上面的信息解答: (1)甲把a 看成了什么数,乙把b 看成了什么数?(2)求出正确的a ,b 的值;(3)求出原方程组的正确解,并代入代数式(x −y )⋅(5x −19y )3求值.答案:(1)甲把a 看成了1,乙把b 看成了3(2)5(3)-64分析:(1)根据题意把{x =1y =−1 代入①求出a ,然后把{x =5y =1代入②求出b ,进而问题得解; (2)根据题意把{x =1y =−1 代入②求出b ,然后把{x =5y =1代入①求出a ,进而问题得解; (3)由(2)可求出方程组的解,然后代值求解即可.(1)解:把{x =1y =−1代入①,得a −3=−2,解得a =1; 把{x =5y =1代入②,得10−b =7,解得b =3. ∴甲把a 看成了1,乙把b 看成了3.(2)解:把{x =5y =1代入①,得5a +3=−2,解得:a =−1;把{x =1y =−1代入②,得2+b =7,解得:b =5. (3)解:由(2)可得原方程组为{−x +3y =−22x −5y =7, 解得原方程组的正确解为:{x =11y =3. ∴(x −y )⋅(5x −19y )3=8×(−2)3=8×(−8)=−64.小提示:本题主要考查二元一次方程的解法及代数式的值,熟练掌握二元一次方程组的解法是解题的关键.。
2022年初中数学同步 7年级下册 第20课 二元一次方程组全章复习与巩固(教师版含解析)

第20课二元一次方程组全章复习与巩固课程标准1.了解二元一次方程组及其解的有关概念;2.掌握消元法(代入或加减消元法)解二元一次方程组的方法;3.理解和掌握方程组与实际问题的联系以及方程组的解;4.掌握二元一次方程组在解决实际问题中的简单应用;5.通过对二元一次方程组的应用,培养应用数学的理念.知识点01 二元一次方程组的相关概念1.二元一次方程的定义定义:方程中含有两个未知数(一般用x和y),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 注意:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.注意:目标导航知识精讲二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧b a==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩.注意:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零).(2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组. (3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 注意:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解. (2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个.知识点02 二元一次方程组的解法1.解二元一次方程组的思想2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式;②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;转化消元一元一次方程二元一次方程组③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解.注意:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.注意:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.知识点03 实际问题与二元一次方程组注意:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去; (2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.知识点04 三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的求知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩ 273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组.注意:理解三元一次方程组的定义时,要注意以下几点: (1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组. 2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程; (4)解这个一元一次方程,求出最后一个未知数的值; (5)将求得的三个未知数的值用“{”合写在一起. 注意:(1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法.(2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解. 3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x ,y ,z )表示题目中的两个(或三个)未知数; (2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; (4)解这个方程组,求出未知数的值; (5)写出答案(包括单位名称). 注意:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去. (2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一. (3)一般来说,设几个未知数,就应列出几个方程并组成方程组.考法01 二元一次方程组的相关概念能力拓展【典例1】在下列方程中,只有一个解的是( ) A . 1330x y x y +=⎧⎨+=⎩ B . 1332x y x y +=⎧⎨+=-⎩ C . 1334x y x y +=⎧⎨-=⎩ D . 1333x y x y +=⎧⎨+=⎩【分析】逐一求每个选项中方程组的解,便得出正确答案 【答案】C .【解析】选项A 、B 、D 中,将方程1x y +=,两边同乘以3得333x y +=,从而可以判断A 、B 选项中的两个二元一次方程矛盾,所以无解;而D 中两个方程实际是一个二元一次方程,所以有无数组解,排除法得正确答案为C.【点睛】在111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 均不为零),(1)当121222a a c a b c =≠时,方程组无解;(2)当121222a a c a b c ==,方程组有无数组解; (3)当1222a a ab ≠,方程组有唯一解.【即学即练】若关于x 、y 的方程()12mm x y ++=是二元一次方程,则m = .【答案】1.【即学即练】已知方程组531x y ax y b -=⎧⎨+=-⎩有无数多个解,则a 、b 的值等于 .【答案】a =﹣3,b =﹣14.考法02 二元一次方程组的解法【典例2】解方程组2()5335()322x y y x y y ⎧-+=⎪⎪⎨⎪--=-⎪⎩①②【分析】本题结构比较复杂,一般应先化简,再消元.仔细观察题目,不难发现,方程组中的每一个方程都含有(x -y ),因此可以把(x -y )看作一个整体,消去(x -y )可得到一个关于y 的一元一次方程. 【答案与解析】解:由①×9得:6(x -y )+9y =45 ③ ②×4得:6(x -y )-10y =-12 ④ ③-④得:19y =57, 解得y =3.把y =3代入①,得x =6.所以原方程组的解是63x y =⎧⎨=⎩.【点睛】本题巧妙运用整体法求解方程组,显然比加减法或代入法要简单,在平时求方程组的解时,要善于发现方程组的特点,运用整体法求解会收到事半功倍的效果.【即学即练】(换元思想)解方程组16105610x y x yx y x y +-⎧+=⎪⎪⎨+-⎪-=⎪⎩【答案】 解:设6x y m +=,10x yn -=. 则原方程组可化为15m n m n +=⎧⎨-=⎩,解得32m n =⎧⎨=-⎩.所以36210x y x y +⎧=⎪⎪⎨-⎪=-⎪⎩ 即1820x y x y +=⎧⎨-=-⎩.∴ 119x y =-⎧⎨=⎩.【典例3】小明和小文解一个二元一次组322cx y ax by -=-⎧⎨+=⎩ 小明正确解得11x y =⎧⎨=-⎩ 小文因抄错了c ,解得26x y =⎧⎨=-⎩已知小文除抄错了c 外没有发生其他错误,求a+b+c 的值. 【分析】把11x y =⎧⎨=-⎩代入方程组第一个方程求出c 的值,将x 与y 的两对值代入第二个方程求出a 与b 的值,即可求出a+b+c 的值. 【答案与解析】 解:把代入cx ﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5, 把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.【即学即练】已知二元一次方程组⎪⎪⎩⎪⎪⎨⎧=+=+175194y x y x 的解为a x =,b y =,则=-b a .【答案】11.考法03 实际问题与二元一次方程组【典例4】用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽.60cm【分析】初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为x ,宽为y ,就可以列出一个关于x 、y 的二元一次方程组. 【答案与解析】解:设每块地砖的长为xc m 与宽为ycm ,根据题意得:6023x y x x y+=⎧⎨=+⎩,解得:4515x y =⎧⎨=⎩ 答:每块地砖长为45cm ,宽为15cm【点睛】有些题目的相等关系不是直接给我们的,这就需要我们仔细阅读题目,设法提炼出题目中隐含的相等关系.【即学即练】如图,长方形ABCD 中放置9个形状、大小都相同的小长方形(尺寸如图),求图中阴影部分的面积.【答案】解:设每个小长方形的长为x ,宽为y ,根据题意得:422(2)37x y x y y +=⎧⎨+-=⎩,解得103x y =⎧⎨=⎩ 所以阴影部分的面积为:22(73)922(79)910382y xy +-=+-⨯⨯=.答:图中阴影部分的面积为82.【典例5】已知:用2辆A 型车和1辆B 型车载满货物一次可运货10吨;用1辆A 型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A 型车和1辆车B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【答案】(1)1辆A 型车和1辆B 型车都载满货物一次可分别运货3吨,4吨; (2)共有两种租车方案:①租A 型车6辆,B 型车2辆; ②租A 型车2辆,B 型车5辆.(3)最省钱的租车方案为方案②,租车费用为660元. 【解析】 【分析】(1)设1辆A 型车和1辆B 型车都载满货物一次可分别运货x 吨,y 吨,根据题意列出方程组,解方程组即可得出答案;(2)根据题意和(1),得3426a b +=,然后根据a ,b 都是非负整数,从而可得到a ,b 的值; (3)分别计算出(2)中各个方案的费用,然后进行比较即可得出答案. 【详解】(1)设1辆A 型车和1辆B 型车都载满货物一次可分别运货x 吨,y 吨.根据题意,得210211x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩答:1辆A 型车和1辆B 型车都载满货物一次可分别运货3吨,4吨. (2)根据题意和(1),得3426a b +=. ∵a 、b 均为非负整数, ∵62a b =⎧⎨=⎩或25a b =⎧⎨=⎩ ∵共有两种租车方案:①租A 型车6辆,B 型车2辆; ②租A 型车2辆,B 型车5辆.(3)方案①的租金为:6×80+2×100=680(元). 方案②的租金为:2×80+5×100=660(元). ∵680>660,∵最省钱的租车方案为方案②,租车费用为660元. 【点睛】本题主要考查二元一次方程组的应用,读懂题意列出方程组是解题的关键.【即学即练】甲、乙两班学生到集市上购买苹果,价格如下:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次购买苹果70千克。
2024年中考数学复习专题讲义:二元一次方程组(含答案)

2024年中考数学复习专题讲义:二元一次方程组一、选择题1.下列方程是二元一次方程的是( )A .x +2yB .x −3y =2C .1x +y =0D .x 2+2y =12.游泳池中有一群小朋友,男孩戴蓝色泳帽,女孩戴红色泳帽.每位男孩看到蓝色泳帽比红色泳帽多7顶,而每位女孩看到的蓝色泳帽比红色泳帽多一倍.若设男孩有x 人,女孩有y 人,则可列方程组( ) A .{x =y +7x =2y B .{x −1=y +7x =2yC .{x −1=y +7x =2(y −1)D .{x +1=y +7x =2(y +1) 3.{x =5y =3是下面哪个二元一次方程的解( ) A .2x −y =7 B .y =−x +2 C .x =−y −2 D .2x −3y =−14.已知{x =1y =−1是方程x −my =3的解,那么m 的值( ) A .2 B .-2 C .4 D .-45.关于x 、y 的方程组{5x −2y =3m x +2my =n的解是{x =1y =1,则|m-n|的值是( ) A .4 B .3 C .2 D .16.某课外小组分组开展活动,若每组7人,则余下下3人;若每组8人,则少5人.若设课外小组的人数为x ,分成的组数为y ,则可列方程组为( )A .{7y =x +38y +5=xB .{y =x +38x =y +5C .{7y =x −38y =x +5D .{7y =x +38y =x +57.已知x ,y 满足方程组{x +m =4y −5=m则无论m 取何值,x ,y 恒有的关系式是( ) A .x+y=1 B .x+y=-1 C .x+y=9 D .x-y=-98.若关于x 、y 的方程组{x +2y =52x +ay =4的解都是正整数,则整数a 的值有( ) A .1个B .2个C .3个D .4个 二、填空题9.已知方程2x 2n−1−7y =10是关于x 、y 的二元一次方程,则n= .10.已知a 、b 满足方程组{2a −b =3a +2b =4,则3a+b 的值为 . 11.若关于x ,y 的方程ax +by =2的两个解为{x =1y =3和{x =−1y =−7,则a +b 的值是 . 12.关于x ,y 的二元一次方程(m −2)x +(m +1)y =2m −7,无论m 取何值,所得到的方程都有一个相同解,则这个相同解是 .13.陕西全民阅读工作深入推进,书香社会建设进展明显,读书学习蔚然成风.某校为加强爱读书、读好书、善读书的阅读氛围,准备用720元购买图书展示架,可供选择的有A 种展示架120元/个,B 种展示架180元/个,在资金用尽且可以只买其中一种展示架的情况下,一共有 种购买方案.三、解答题14.解下列方程组:(1)4311213x y x y -=⎧⎨+=⎩ ,(2)2313424()3(2)17x yx y x y⎧-=⎪⎨⎪--+=⎩15.甲、乙两人共同解方程组515,42,ax yx by+=⎧⎨-=-⎩①②由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩,;乙看错了方程②中的b,得到方程组的解为54.xy=⎧⎨=⎩,试计算a2022+1-10b⎛⎫⎪⎝⎭2023的值.16.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据健民体育活动中心消费者的需求量,活动中心决定用不超过2625元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?17.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该公司打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?参考答案1.B 2.C 3.A 4.A 5.C 6.C 7.C 8.B 9.1 10.7 11.412.{x=3y=−1 13.314.(1)解:4311213x yx y-=⎧⎨+=⎩①②,②⨯ 2-①得:515y=,∴3y=,把3y=代入②得:∴5x=,∴方程组的解为53xy=⎧⎨=⎩;(2)解:原方程可化为896 27170x yx y-=⎧⎨++=⎩,∴896 82868x yx y-=⎧⎨+=-⎩,两方程相减,可得3774y=-,∴2y=-,把 2y =- 代入 896x y -= 得, 32x =- , 因此,原方程组的解为 322x y ⎧=-⎪⎨⎪=-⎩ .15.解:把31x y =-⎧⎨=-⎩,代入②,得-12+b=-2.解得b=10. 把54x y =⎧⎨=⎩,代入①,得5a+20=15.解得a=-1. 则a 2022+1-10b ⎛⎫ ⎪⎝⎭2023=(-1)2022+1-1010⎛⎫ ⎪⎝⎭⨯2023=1+(-1)=0. 16.(1)设该网店甲种羽毛球每筒的售价为 x 元,乙种羽毛球每筒的售价为 y 元,依题意,得: {x −y =152x +3y =255解得: {x =60y =45答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.(2)设购进甲种羽毛球 m 筒,则购进乙种羽毛球 (50−m) 筒,依题意,得 60m +45(50−m)≤2625解得: m ≤25答:最多可以购进25筒甲种羽毛球.17.解:(1)设需甲种车型x 辆,乙种车型y 辆.根据题意,得581204005008200.x y x y +=⎧⎨+=⎩,解得810.x y =⎧⎨=⎩, 答:需甲种车型8辆,乙种车型10辆.(2)设用甲种车型a 辆,乙种车型b 辆,则丙种车型(14-a-b )辆.根据题意,得5a+8b+10(14-a-b )=120.整理,得5a+2b=20,即a=4-25b . 因为a ,b ,14-a-b 均为正整数,所以b 只能等于5,从而a=2,14-a-b=7.所以用甲种车型2辆,乙种车型5辆,丙种车型7辆.此时的运费是400×2+500×5+600×7=7500(元).答:用甲种车型2辆,乙种车型5辆,丙种车型7辆,此时的运费是7500元.。
部编数学七年级下册第8章二元一次方程组(解析版)含答案

第8章 二元一次方程组一、单选题1.下列方程组中是二元一次方程组的是( )A .141y x x v ì+=ïíï-=îB .43624x y y z +=ìí+=îC .41x y x y +=ìí-=îD .22513x y x y +=ìí+=î【答案】C【分析】二元一次方程组是由两个未知数且未知数最高次数为一次的两个方程组成;根据二元一次方程组的定义逐项判断即得答案.【详解】解:A 、方程组 141y x x v ì+=ïíï-=î中第一个方程不是整式方程,不是二元一次方程组,所以本选项不符合题意;B 、方程组 中有三个未知数,不是二元一次方程组,所以本选项不符合题意;C 、该方程组是二元一次方程组,所以本选项符合题意;D 、方程组 中第二个方程未知数x 、y 的次数是2,不是二元一次方程组,所以本选项不符合题意.故选:C .【点睛】本题考查了二元一次方程组的定义,属于基础概念题型,熟知二元一次方程组的概念是关键.2.如果方程3x y -=与下面方程中的一个组成的方程组的解为41x y =ìí=î,那么这个方程可以是( )A .3416x y -=B .1254x y +=C .1382x y +=D .2()6x y y-=【答案】D【分析】将解代入每个方程,使若方程两边相等则该组解是该方程的解,即为所求的方程.【详解】解:将41x y =ìí=î依次代入,得:A 、12-4≠16,故该项不符合题意;B 、1+2≠5,故该项不符合题意;C 、2+3≠8,故该项不符合题意;D 、6=6,故该项符合题意;故选:D .【点睛】此题考查二元一次方程的解:使方程两边相等的未知数的值叫做方程的解,正确计算是解题的关键.3.由132x y -=可以得到用x 表示y 的式子为( )A .223x y -=B .223x y =-C .2133x y =-D .223xy =-【答案】B【分析】先移项,后系数化为1,即可得.【详解】解:132x y -=移项,得123y x =-,系数化为1,得223x y =-,故选B .【点睛】本题考查了方程的基本运算技能,解题的关键是熟练掌握方程的基本运算技能.4.某船顺流航行的速度为a ,逆流航行的速度为b ,则水流速度为( )A .2a b+B .2a b-C .-a b D .以上都不对【答案】B【分析】顺流航行的速度等于船在静水中的速度加上水流的速度,逆流航行的速度等于船在静水中的速度减去水流的速度,利用两个公式列方程组,再解方程组即可得到答案.【详解】解:设水流的速度为,x 船在静水中航行的速度为,y 则,a y x b y x =+ìí=-î①②①-②得:2,x a b =-,2a b x -\= 所以水流的速度为:.2a b - 故选:.B 【点睛】本题考查的是二元一次方程组的应用,掌握顺流航行与逆流航行的速度公式是解题的关键.5.将13x y -=-代入21x y -=的可得( )A .1213x x --´=B .()2113x x --=C .2213x x ++=D .2213x x -+=【答案】D【分析】将13x y -=-代入21x y -=,再进行整理,即可得到答案.【详解】解:将13x y -=-代入21x y -=,得:1123-æ=ö--ç÷èøx x ,即122+3-=x x 故选D .【点睛】本题考查的是二元一次方程的解法,先将已知代入方程得出一个关于x 的方程,运用代入法是解二元一次方程常用的方法.6.代数式2x ax b ++,当1x =,2时,其值均为0,则当1x =-时,其值为( )A .0B .6C .6-D .2【答案】B【分析】把x 与y 的两对值代入代数式列出方程组,求出方程组的解即可得到a 与b 的值,再将1x =-代入即可求解.【详解】解:由题意,得10420a b a b ++=ìí++=î①② ,②-①得:30a += ,3a =- ,把3a =-代入①得:()130b +-+= ,2b = ,解得:32a b =-ìí=î ,把32a b =-ìí=î代入代数式2x ax b ++得:232x x -+,当1x =-时,2326x x -+=.故选B .【点睛】此题考查了解二元一次方程组,利用了消元的思想,求出a 与b 的值是解题关键.7.若324432a b a b x y ++--=是关于x ,y 的二元一次方程,则23a b +的值为( )A .0B .3-C .3D .6【答案】A【分析】根据二元一次方程的定义,得=1a b +,324=1+-a b ,即可得到关于a 、b 的方程组,从而解出a ,b .【详解】解:∵324432a b a b x y ++--=是一个关于x ,y 的二元一次方程,∴=1324=1a b a b +ìí+-î,解得:=3=2a b ìí-î,∴23=660+-=a b ,故选:A .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.8.己知方程组42ax by ax by -=ìí+=î的解为21x y =ìí=î,则2a ﹣3b 的值为( )A .4B .6C .﹣4D .﹣6【答案】B【分析】将x 和y 的值代入到方程组,原方程组变成关于a 、b 的方程组.再仔细观察未知数的系数,相同或者相反,可以运用加减消元解题.【详解】解:∵方程组42ax by ax by -=ìí+=î的解为21x y =ìí=î,∴2422a b a b -=ìí+=î①②.由①+②得a =32,②−①得b =−1.将a =32,b =−1代入2a −3b ,即2×32−3×(−1)=3+3=6.故选:B .【点睛】此题主要考查二元一次方程组的代入消元法,灵活运用代入消元或加减消元是解题的关键.9.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,则下面所列的方程组中符合题意的有( )A .24622x y y x +=ìí=-îB .24622x y x y +=ìí=+îC .21622x y y x +=ìí=+îD .24622x y y x +=ìí=+î【答案】B 【分析】根据“学生共有246人,其中男生人数y 比女生人数x 的2倍少2人”列方程组即可.【详解】解:由题意得24622x y x y +=ìí=+î,故选B .【点睛】本题考查了二元一次方程组的应用,仔细审题,找出题目的已知量和未知量,设两个未知数,并找出两个能代表题目数量关系的等量关系,然后列出方程组求解即可.10.关于x ,y 的二元一次方程组59x y k x y k +=ìí-=î的解也是二元一次方程2x +3y =﹣6的解,则k 的值是( )A .﹣34B .34C .43D .﹣43【答案】A【分析】先用含k 的代数式表示x 、y ,即解关于x ,y 的方程组,再代入2x +3y =﹣6中可得.【详解】解:解方程组 59x y k x y k +=ìí-=î,得:x =7k ,y =﹣2k ,把x ,y 代入二元一次方程2x +3y =﹣6,得:2×7k +3×(﹣2k )=﹣6,解得:k =﹣34,故选:A .【点睛】本题主要考查二元一次方程组的解法,解题的关键是用含k 的代数式表示x 、y .二、填空题11.用16元钱买了80分、120分的两种邮票共17枚,则买了80分的邮票________枚,120分的邮票________枚.【答案】 11 6【分析】设购买80分的邮票x 枚,购买120分的邮票y 枚,根据题意列方程组得:170.8 1.216x y x y +=ìí+=î,解方程组即可求解.【详解】解:设购买80分的邮票x 枚,购买120分的邮票y 枚,根据题意列方程组得:170.8 1.216x y x y +=ìí+=î①②,由①得:17y x =-,代入②可得:()0.8 1.21716x x +-=,整理可得:0.4 4.4x -=-,解得:11x =,所以17116y =-=.故答案为:11、6.【点睛】本题考查了二元一次方程组的实际应用,解题的关键是准确列出二元一次方程组.12.已知二元一次方程组941175y x x y ì+=ïïíï+=ïî的解为,x a y b ==,则a b -=_____.【答案】11【分析】把a 、b 代入方程组,解方程求解即可得到答案.【详解】解:∵二元一次方程组941175y x x y ì+=ïïíï+=ïî的解为x a y b =ìí=î∴941175b a a b ì+=-ïïíï+=ïî①②,②-①×4得到19195a -=-,解得5a =,把5a =代入①解得16b =∴51611a b -=-=.故答案为:11.【点睛】本题考查二元一次方程组的解和解二元一次方程组,解题的关键在于能够熟练掌握相关知识进行求解..13.若二元一次方程组23151x y ax by -=ìí+=î和51cx dy x y -=ìí+=î同解,则可通过解方程组_____求得这个解.【答案】23151x y x y -=ìí+=î【分析】联立两方程组中不含a 与b 的方程重新组成新的方程组即可.【详解】解:∵二元一次方程组23151x y ax by -=ìí+=î和51cx dy x y -=ìí+=î同解,∴可通过解方程组23151x y x y -=ìí+=î求得这个解,故答案为:23151x y x y -=ìí+=î.【点睛】本题主要考查了二元一次方程组同解的问题,解题的关键在于能够熟练掌握相关知识进行求解.14.已知点()36,415A x y -+,点()5,B y x 关于x 轴对称,则x y +的值是____.【答案】-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可.【详解】解:∵点()36,415A x y -+,点()5,B y x 关于x 轴对称,∴3654150x y y x -=ìí++=î;解得:33x y =-ìí=-î,∴=-6+x y ,故答案为-6.【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数.15.若357a b c ==,且3249a b c +-=,则a b c ++=_________.【答案】-15【分析】先设比例系数为k ,代入3a+2b-4c=9,转化为关于k 的一元一次方程解答.【详解】解:设357a b c k ===,则a=3k ,b=5k ,c=7k ,代入3a+2b-4c=9,得9k+10k-28k=9,解得:k=-1,∴a=-3,b=-5,c=-7,于是a+b+c=-3-5-7=-15.故答案为:-15.【点睛】本题主要考查比例的性质,解答此类题关键是灵活运用设“k”法求解代数式的值.16.正数a 的两个平方根是方程322x y +=的一组解,则a =_____.【答案】4【分析】先根据平方根的性质可得0x y +=,再代入方程322x y +=求出x 的值,由此即可得出答案.【详解】由题意得:0x y +=,322x y +=Q ,2()2x x y \++=,将0x y +=代入得:202x +´=,解得2x =,则2224a x ===,故答案为:4.【点睛】本题考查了平方根、二元一次方程的解等知识点,熟练掌握平方根的性质是解题关键.17.若1,2x y =ìí=-î是关于x ,y 的方程1ax by -=的一组解,且3a b +=-,则52a b -的值为______.【答案】-43【分析】要求5a-2b 的值,要先求出a 和b 的值.根据题意得到关于a 和b 的二元一次方程组,再求出a 和b 的值.【详解】解:将1,2x y =ìí=-î代入1ax by -=,得21a b +=,因为3a b +=-,所以得到关于a 和b 的二元一次方程组213a b a b +ìí+-î==两式相减,得4b =,将4b =代入3a b +=-,得7a =-,所以5243a b -=-.【点睛】运用代入法,得关于a 和b 的二元一次方程组,再解方程组求解是解决此类问题的关键.18.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6.(1)计算:F (241)=_________,F (635)=___________ ;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()F skF t=,当F(s)+F(t)=18时,则k的最大值是___.【答案】7 14 5 4【详解】分析: (1)根据F(n)的定义式,分别将n=241和n=635代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=()()F sF t中,找出最大值即可.详解: :(1)F(241)=(421+142+214)÷111=7;F(635)=(365+536+653)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴16xy=ìí=î或25xy=ìí=î或34xy=ìí=î或43xy=ìí=î或52xy=ìí=î或61xy=ìí=î.∵s是“相异数”,∴x≠2,x≠3.∴y≠1,y≠5.∴16xy=ìí=î或43xy=ìí=î或52xy=ìí=î,∴()()612F sF tì=ïí=ïî或()()99F sF tì=ïí=ïî或()()108F sF tì=ïí=ïî,∴k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,∴k的最大值为54.点睛: 本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F (241)、F(635)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x 、y 的二元一次方程.三、解答题19.解下列方程组:(1)4(1)3(1)22423x y y x y --=--ìïí+=ïî; (2)2()1346()4(2)16x y x y x y x y -+ì-=-ïíï+--=î.【答案】(1)1451x y =ìí=î;(2)22x y =ìí=î.【分析】(1)先将原方程的第一个方程去括号、移项、合并同类项,第二个方程去分母,化简成4532144x y x y -=ìí+=î,再利用代入消元法解题;(2)先将原方程的第一个方程去分母、去括号、移项、合并同类项,第二个方程去括号,化简,整理成4532144x y x y -=ìí+=î,再利用代入消元法解题.【详解】解:(1)4(1)3(1)22423x y y x y --=--ìïí+=ïî整理得,4532144x y x y -=ìí+=î①②由①得,45y x =-③把③代入②得,32(45)144x x +-=11154x \=14x \=把14x =代入③得414551y =´-=1451x y =ì\í=î(2)2()1346()4(2)16x y x y x y x y -+ì-=-ïíï+--=î整理得,5111258x y x y -=-ìí-+=î①②由②得,58x y =-③把③代入①得5(58)1112y y --=-1428y\=2y\=把2y=代入③得,5282x=´-=\22xy=ìí=î.【点睛】本题考查代入消元法解二元一次方程组,是重要考点,掌握相关知识是解题关键.20.在等式y=ax2+bx+c中,当x=﹣1时,y=3;当x=0时,y=1,当x=1时,y=1,求这个等式中a、b、c的值.【答案】a=1,b=﹣1,c=1.【分析】根据题意列出三元一次方程组,解方程组即可.【详解】由题意得,311a b cca b c-+=ìï=íï++=î,解得,a=1,b=﹣1,c=1.【点睛】本题考查的是三元一次方程组的解法,解三元一次方程组的一般步骤:①首先利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组.②然后解这个二元一次方程组,求出这两个未知数的值.③再把求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个关于第三个未知数的一元一次方程.④解这个一元一次方程,求出第三个未知数的值,得到方程组的解.21.甲地到乙地全程是3.3km,一段上坡、一段平路、一段下坡.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需51min,从乙地到甲地需53.4 min.从甲地到乙地时,上坡、平路、下坡的路程各是多少?【答案】甲地到乙地,上坡路1.2 km、平路0.6 km、下坡路1.5 km.【分析】设甲地到乙地,上坡、平路、下坡路各是x千米,y千米,z千米,根据全程3.3km,甲到乙要51分钟,乙到甲要53.4分钟.分别列出方程,组成方程组,再求解即可.【详解】解:设甲地到乙地,上坡、平路、下坡路各是xkm,ykm,zkm,根据题意得:3.3513456053.454360x y zx y zx y zìï++=ïï++=íïï++=ïî.解得1.20.61.5xyz=ìï=íï=î.答:甲地到乙地,上坡路1.2 km 、平路0.6 km 、下坡路1.5 km .【点睛】本题考查了三元一次方程组的应用,解答此题的关键是找出题目中的等量关系,列出方程组,用代入消元法或加减消元法求出方程组的解.22.几个人一起买物品,若每人出8元,则盈余3元;若每人出7元,则还差4元,人数和价格各是多少?【答案】共有7人,价格为53元.【分析】设有x 人,物品价格是y 元.根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【详解】解:设有x 人,物品价格是y 元,由题意可得:8374x y x y -ìí+î==,解得:753x y =ìí=î 答:共有7人,这个物品的价格是53元.【点睛】本题考查了二元一次方程组的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程组.23.材料:解方程组()1045x y x y y --=ìí--=î时,可由①得1x y -=③,然后再将③代入②得415y ´-=,求得1y =-,从而进一步求得01x y =ìí=-î这种方法被称为“整体代入法”请用这样的方法解方程组()()423324x y x y x y -=ìí--=î【答案】7656x y ì=ïïíï=ïî【分析】观察方程组的特点,把2x y -看作一个整体,得到322x y -=,将之代入②,进行消元,得到33422x æö+=ç÷èø,解得76x =,进一步解得56y =,从而得解.【详解】解:()()423324x y x y x y -=ìïí--=ïî①②由①得322x y -=③,把③代入②得33422x æö+´=ç÷èø,解得76x =,把76x =代入③,得73262y ´-=,解得56y =,故原方程组的解为7656x y ì=ïïíï=ïî.【点睛】本题考查了二元一次方程组的特殊解法:整体代入法.解方程(组)要根据方程组的特点灵活运用选择合适的解法.24.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表所示:第一次第二次甲种货车辆数(单位:辆)25乙种货车辆数(单位:辆)36最大运货物吨数(单位:吨)15.535现租用该公司3辆甲种货车及4辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,问货主应付运费多少元?【答案】660元.【分析】设甲种货车每辆运货x 吨,乙种货车每辆运货y 吨,先根据表格建立方程组,求出x 、y 的值,再根据这次租用的甲、乙两种货车的数量和每吨运费列出运算式子,由此即可得.【详解】设甲种货车每辆运货x 吨,乙种货车每辆运货y 吨,由题意得:2315.55635x y x y +=ìí+=î,解得42.5x y =ìí=î,则货主应付运费为()344 2.530660´+´´=(元),答:货主应付运费660元.【点睛】本题考查了二元一次方程组的实际应用,依据题意,正确建立方程组是解题关键.25.在五一期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?并说明理由.【答案】(1)小明他们一共去了8个成人,4个学生;(2)购团体票更省钱.【分析】(1)设去了x个成人,则去了(12−x)个学生,根据爸爸说的话,可确定相等关系为:成人的票价+学生的票价=350元,据此列方程求解;(2)计算团体票所需费用,和350元比较即可求解.【详解】(1)设成人人数为x人,则学生人数为(12-x)人.根据题意,得35x+352(12-x)=350.解得x=8.则12-x=12-8=4.答:小明他们一共去了8个成人,4个学生.(2)如果买团体票,按16人计算,共需费用为35×0.6×16=336(元).因为336<350,所以购团体票更省钱.答:购团体票更省钱.【点睛】考查利用方程模型解决实际问题,关键在于设求知数,列方程.此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.26.请根据图中提供的信息,回答下列问题.(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.【答案】(1)一个暖瓶30元,一个水杯8元;(2)到乙家商场购买更合算.【分析】(1)等量关系为:2×暖瓶单价+3×(38-暖瓶单价)=84;(2)甲商场付费:暖瓶和水杯总价之和×90%;乙商场付费:4×暖瓶单价+(15-4)×水杯单价.【详解】(1)设一个暖瓶x元,则一个水杯(38-x)元,根据题意得:2x+3(38-x)=84.解得:x=30.一个水杯=38-30=8.故一个暖瓶30元,一个水杯8元;(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216元.若到乙商场购买,则所需的钱数为:4×30+(15-4)×8=208元.因为208<216.所以到乙家商场购买更合算.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出所求量的合适的等量关系.需注意乙商场有4个水杯不用付费.。
人教七年级数学二元一次方程组和一元一次不等式组复习讲义

⼈教七年级数学⼆元⼀次⽅程组和⼀元⼀次不等式组复习讲义⼆元⼀次⽅程组相关知识归纳1.⼆元⼀次⽅程⼆元⼀次⽅程具备以下四个特征:(1)是⽅程;(2)有且只有两个未知数;(3)⽅程是整式⽅程,即各项都是整式;(4)各项的最⾼次数为1.2.⼆元⼀次⽅程的解.3.⼆元⼀次⽅程组.它有两个特点:⼀是⽅程组中每⼀个⽅程都是⼀次⽅程;⼆是整个⽅程组中含有两个且只含有两个未知数.4.⼆元⼀次⽅程组的解.1概念:将⽅程组中⼀个⽅程的某个未知数⽤含有另⼀个未知数的代数式表⽰出来,代⼊另⼀个⽅程中,消去⼀个未知数,得到⼀个⼀元⼀次⽅程,最后求得⽅程组的解. 这种解⽅程组的⽅法叫做代⼊消元法,简称代⼊法. (2)代⼊法解⼆元⼀次⽅程组的步骤①选取⼀个系数较简单的⼆元⼀次⽅程变形,⽤含有⼀个未知数的代数式表⽰另⼀个未知数;②将变形后的⽅程代⼊另⼀个⽅程中,消去⼀个未知数,得到⼀个⼀元⼀次⽅程(在代⼊时,要注意不能代⼊原⽅程,只能代⼊另⼀个没有变形的⽅程中,以达到消元的⽬的. );③解这个⼀元⼀次⽅程,求出未知数的值;④将求得的未知数的值代⼊①中变形后的⽅程中,求出另⼀个未知数的值;⑤⽤“{”联⽴两个未知数的值,就是⽅程组的解;⑥最后检验求得的结果是否正确(代⼊原⽅程组中进⾏检验,⽅程是否满⾜左边=右边).加减消元法2概念:当⽅程中两个⽅程的某⼀未知数的系数相等或互为相反数时,把这两个⽅程的两边相加或相减来消去这个未知数,从⽽将⼆元⼀次⽅程化为⼀元⼀次⽅程,最后求得⽅程组的解,这种解⽅程组的⽅法叫做加减消元法,简称加减法. (2)加减法解⼆元⼀次⽅程组的步骤①利⽤等式的基本性质,将原⽅程组中某个未知数的系数化成相等或相反数的形式;②再利⽤等式的基本性质将变形后的两个⽅程相加或相减,消去⼀个未知数,得到⼀个⼀元⼀次⽅程(⼀定要将⽅程的两边都乘以同⼀个数,切忌只乘以⼀边,然后若未知数系数相等则⽤减法,若未知数系数互为相反数,则⽤加法);③解这个⼀元⼀次⽅程,求出未知数的值;④将求得的未知数的值代⼊原⽅程组中的任何⼀个⽅程中,求出另⼀个未知数的值;⑤⽤“{”联⽴两个未知数的值,就是⽅程组的解;⑥最后检验求得的结果是否正确(代⼊原⽅程组中进⾏检验,⽅程是否满⾜左边=右边).【⼩结】解⼆元⼀次⽅程组可以⽤代⼊法,也可以⽤加减法.⼀般地说,当⽅程组中有⼀个⽅程的某⼀个未知数的系数的绝对值是1或有⼀个⽅程的常数项是0时,⽤代⼊法⽐较⽅便;当两个⽅程中某⼀未知数的系数的绝对值相等或成整数倍时,⽤加减法⽐较⽅便.(1)、三元⼀次⽅程的概念(2)、三元⼀次⽅程组的概念(3)、三元⼀次⽅程组的解法三元⼀次⽅程组解题的基本步骤:①利⽤代⼊法或加减法,把⽅程组中的⼀个⽅程与另两个⽅程分别组成两组,消去两组中的同⼀个未知数,得到关于另外两个未知数的⼆元⼀次⽅程组。
精品 七年级数学下册 二元一次方程组02

28.已知某电脑公司有 A 型、B 型、C 型三种型号的电脑,其价格分别为 A 型每台 6000 元, B 型每台 4000 元,C 型每台 2500 元.我市东坡中学计划将 100500 元钱全部用于从该公司购进 其中两种不同型号的电脑共 36 台,请你设计出几种不同的购买方案供该校选择,并说明理 由.
14.对于有理数,规定新运算:x※y=ax+by+xy,其中 a 、b 是常数,等式右边的是通常 的加法和乘法运算。 已知:2※1=7 , (-3)※3=3 ,求
1 ※b 的值。 3
15.如图,8 块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?
16.如图,在 3×3 的方格内,填写了一些代数式和数 (1)在图中各行、各列及对角线上三个数之和都相等,请你求出 x,y 的值。 (2)把满足(1)的其它 6 个数填入图(2)中的方格内。
1
.
,y=
,z=
七年级下数学讲义
(a 2b) x by 6 11.已知:a+b=1,2a+3b=1,求关于 x,y 的方程组 的解。 ax (2a b) y 6
4 3 10 12.解方程组: x y 9 7 5 x y
2 2 4x 3y 6z 13.已知: ,计算: x y 的值。 2 xy 2 x 4 y 14 z
3
七年级下数学讲义
22.少先队夏令营到学校,先下山再走平路,一少先队员骑自行车以每小时 12 公里的速度下 山,以每小时 9 公里的速度通过平路,到学校共用了 55 分钟,回来时,通过平路速度不变, 但以每小时 6 公里的速度上山,回到营地共花去了 1 小时 10 分钟,问夏令营到学校有多少 公里?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 二元一次方程组【知识要点】1.二元一次方程:含有两个未知数,且未知项的次数为1,这样的方程叫二元一次方程。
①二元一次方程左右两边的代数式必须是整式;(不是整式的化成整式) ②二元一次方程必须含有两个未知数;③二元一次方程中的“一次”是指含有未知数的项的次数,而不是某个未知数的次数。
2.二元一次方程的解:能使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的解任何一个二元一次方程都有无数解。
3.二元一次方程组:①由两个或两个以上的整式方程组成,常用“ ”把这些方程联合在一起; ②整个方程组中含有两个不同的未知数,且方程组中同一未知数代表同一数量;③方程组中每个方程经过整理后都是一次方程, 4.二元一次方程组的解:注意:方程组的解满足方程组中的每个方程,而每个方程的解不一定是方程组的解。
5.会检验一对数值是不是一个二元一次方程组的解6.二元一次方程组的解法:(1) 代入消元法 (2)加减消元法 三、理解解二元一次方程组的思想转化消元一元一次方程二元一次方程组四、解二元一次方程组的一般步骤(一)、代入法一般步骤:变形——代入——求解——回代——写解 (二)、加减法一般步骤:变形——加减——求解——代入——写解1.1 二元一次方程组的解法(1)用代入法解二元一次方程组例:解方程组 ⎩⎨⎧=+=+1523y x y x※解题方法:①编号:将方程组进行编号;②变形:从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成y=ax+b (或x=ay+b )的形式;③代入:将y=ax+b (或x=ay+b )代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;④求x (或y ):解这个一元一次方程,求出x (或y )的值;⑤求y (或x ):把x (或y )的值代入y=ax+b (或x=ay+b )中,求出y (或x )的值;⑥联立:用“{”联立两个未知数的值,就是方程组的解。
(2)用加减消元法解二元一次方程组 例:解方程组⎩⎨⎧=+=+1523y x y x※解题方法:①编号:将方程组进行编号;②系数相等:根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;③相加(或相减):根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程;④求值:解这个一元一次方程,求出一个未知数的值;⑤求另值:把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值;⑥联立:用“{”联立两个未知数的值,就是方程组的解。
分析我们已经掌握一元一次方程的解法,那么要解二元一次方程组,就应设法将其转化为一元一次方程,为此,就要考虑将一个方程中的某个未知数用含另一个未知数的代数式表示.方程(2)中x的系数是1,因此,可以先将方程(2)变形为用含y的代数式表示x,再代入方程(1)求解.这种方法叫“代入消元法”.解:由(2),得x=8-3y. (3)把(3)代入(1),得: 2(8-3y)+5y=-21,16-6y+5y=-21,-y=-37,所以y=37.点评如果方程组中没有系数是1的未知数,那么就选择系数最简单的未知数来变形.分析此方程组里没有一个未知数的系数是1,但方程(1)中x的系数是2,比较简单,可选择它来变形.解:由(1),得 2x=8+7y,(3)把(3)代入(2),得分析本题不仅没有系数是1的未知数,而且也没有一个未知数的系数较简单.经过观察发现,若将两个方程相加,得出一个x,y的系数都是100、常数项是200的方程,而此方程与方程组中的(1)和(2)都同解.这样,就使问题变得比较简单了.解:(1)+(2),得100x+100y=200,所以x+y=2 (3)解这个方程组.由(3),得x=2-y (4)把(4)代入(1),得53(2-y)+47y=112,106-53y+47y=112,-6y=6,所以y=-1.分析经观察发现,(1)和(2)中x的系数都是6,若将两方程相减,便可消去x,只剩关于y的方程,问题便很容易解决、这种方法叫“加减消元法”.解:(1)-(2),得12y=-36,所以y=-3.把y=-3代入(2),得:6x-5×(-3)=17,6x=2,所以:点评若方程组中两个方程同一未知数的系数相等,则用减法消元;若同一未知数的系数互为相反数,则用加法消元;若同一未知数的系数有倍数关系,或完全不相等,则可设法将系数的绝对值转化为原系数绝对值的最小公倍数,然后再用加减法消元.在进行加减特别是进行减法运算时,一定要正确处理好符号.分析方程组中,相同未知数的系数没有一样的,也没有互为相反数的.但不难将未知数y的系数绝对值转化为12(4与6的最小公倍数),然后将两个方程相加便消去了y.解:(1)×3,得9x+12y=48 (3)(2)×2,得10x-12y=66 (4)(3)+(4),得19x=114,所以x=6.把x=6代入(1),得3×6+4y=16,4y=-2,点评将x的系数都转化为15(3和5的最小公倍数),比较起来,变y的系数要简便些.一是因为变y的系数乘的数较小,二是因为变y的系数后是做加法,而变x的系数后要做减法.例6 已知x m-n+1y与-2x n-1y3m-2n-5是同类项,求m和n的值.分析根据同类项的概念,可列出含字母m和n的方程组,从而求出m和n.解:因为x m-n+1y与-2x n-1y3m-2n-5是同类项,所以解这个方程组.整理,得(4)-(3),得2m=8,所以m=4.把m=4代入(3),得2n=6,所以n=3.所分析因为x+y=2,所以x=2-y,把它代入方程组,便得出含y,m的新方程组,从而求出m.也可用减法将方程组中的m消去,从而得出含x,y的一个二元一次方程,根据x+y=2这一条件,求出x和y,再去求m.解:将方程组中的两个方程相减,得x+2y=2,即(x+y)+y=2.因为x+y=2,所以2+y=2,所以y=0,于是得x=2.把x=2,y=0代入2x+3y=m,得m=4.把m=4代入m2-2m+1,得m2-2m+1=42-2×4+1=9.例8 已知x+2y=2x+y+1=7x-y,求2x-y的值.分析已知条件是三个都含有x,y的连等代数式,这种连等式可看作是二元一次方程组,这样的方程组可列出三个,我们只要解出其中的一个便可求出x和y,从而使问题得到解决.解:已知条件可转化为整理这个方程组,得解这个方程组.由(3),得x=y-1 (5)把(5)代入(4),得5(y-1)-2y-1=0,5y-2y=5+1,所以y=2.把y=2代入(3),得x-2+1=0,所以x=1.2x-y=0.例9 解方程组分析先从方程组中选出一个方程,如方程(1),用含有一个未知数的代数式表示另一个未知数,把它代入另一个方程中,得到一个一元一次方程,解这个方程求出一个未知数的值,再代入求另一个未知数的值.解由(1),得,(3)把(3)代入(2)中,得,解得把代入(3)中,得,∴∴是原方程组的解.例10 解方程组分析方程组的两个方程中,同一个未知数的系数既不相等,也不互为相反数时,可以用适当的数去乘方程的两边,使某一个未知数的系数相等,或互为相反数,再把所得的两个方程相加减就可以消去一个未知数.解(1)×3,得(3)(2)×2,得(4)(3)+(4),得,∴ .把代入(1)中,得,∴是原方程组的解.例11 若方程组的解x、y,满足,求正数m的取值范围.解由可解得又∵,∴ ,∴∴满足条件的m的范围是.例12 解方程组分析:由于方程(1)和(2)中同一字母(未知数)表示同一个数,因此将(1)中的值代入(2)中就可消去,从而转化为关于的一元一次方程.解:将(1)代入(2),得,解得,.把代入(1)得,∴方程组的解为例13解方程组解:由(1)得(3)把(3)代入(2),得,解得.把代入(3),得,解得.∴方程组的解为说明:将作为一个整体代入消元,这种方法称为整体代入法,本题把看作一个整体代入消元比把(1)变形为再代入(2)简单得多.1.2 二元一次方程组的应用学习目标:1.能够借助二元一次方程组解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用2.进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性3.体会列方程组比列一元一次方程容易4.进一步培养化实际问题为数学问题的能力和分析问题,解决问题的能力5.掌握列方程组解应用题的一般步骤;重点:1.经历和体验用二元一次方程组解决实际问题的过程。
2.进一步体会方程(组)是刻画现实世界的有效数学模型。
难点:正确找出问题中的两个等量关系知识要点梳理知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等. 知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。
这类问题比较直观,画线段,用图便于理解与分析。
其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题也比较直观,因而也画线段图帮助理解与分析。
这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。
注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。
2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。
②利息:银行付给顾客的酬金叫做利息。