2019学年杨浦区第二学期八年级数学期末

合集下载

杨浦八年级数学试卷及答案

杨浦八年级数学试卷及答案

1. 下列数中,是偶数的是()A. 0.5B. -3.2C. 4D. 5.52. 下列各数中,属于无理数的是()A. √4B. √9C. √25D. √163. 下列运算正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²4. 若 |x - 3| = 5,则 x 的值为()A. 8 或 -2B. 5 或 -2C. 8 或 2D. 5 或 25. 在直角坐标系中,点 P(-2, 3) 关于 x 轴的对称点坐标为()A. (-2, -3)B. (2, -3)C. (-2, 3)D. (2, 3)6. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 等腰三角形D. 以上都是7. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x²D. y = √x8. 若一个三角形的两边长分别为 3cm 和 4cm,则第三边的长度()A. 大于 7cmB. 小于 7cmC. 大于 1cmD. 小于 1cm9. 下列等式中,正确的是()A. (a + b)² = a² + 2ab - b²B. (a - b)² = a² - 2ab + b²C. (a + b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²10. 下列数中,是正数的是()A. -3/4B. 0C. -5D. 211. 若 a = 2,b = -3,则a² - b² = _______。

2019-2020学年上海市杨浦区八年级(下)期末数学试卷 (教师版)

2019-2020学年上海市杨浦区八年级(下)期末数学试卷  (教师版)

2019-2020学年上海市杨浦区八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)1.(3分)一次函数y=2x﹣3的图象在y轴的截距是()A.2B.﹣2C.3D.﹣32.(3分)一次函数y=x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列方程组是二元二次方程组的是()A.B.C.D.4.(3分)如果一个多边形的内角和与外角和相等,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形5.(3分)下列事件为必然事件的()A.方程x2+1=0在实数范围内有解B.抛掷一枚硬币,落地后正面朝上C.对角线相等的平行四边形是矩形D.对角线互相垂直的四边形是菱形6.(3分)如果点C、D在线段AB上,|AC|=|BD|,那么下列结论中正确的是()A.与是相等向量B.与是相等向量C.与是相反向量D.与是平行向量二、填空题(本大题共12题,每题2分,满分24分)7.(2分)已知一次函数y=(k﹣1)x+2的图象与直线y=3x平行,那么k=.8.(2分)已知一次函数y=(1﹣2m)x+m,函数值y随自变量x的值增大而减小,那么m 的取值范围是.9.(2分)方程x3﹣27=0的根是.10.(2分)方程=x的根是.11.(2分)二元二次方程x2﹣xy﹣6y2=0可以化为两个一次方程,它们是.12.(2分)已知方程,如果设,那么原方程可化为关于y的整式方程是.13.(2分)一个不透明的口袋中,装有白球4个,黑球3个,这些球除颜色外都相同,从中任意摸出一个球,则摸到黑球的可能性是.14.(2分)在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工人.15.(2分)在平行四边形ABCD中,如果∠B=3∠A,那么∠A=度.16.(2分)如果菱形边长为13,一条对角线长为10,那么它的面积为.17.(2分)已知在梯形ABCD中,AD∥BC,AB=AD=DC=4,AC⊥AB,那么梯形ABCD 的周长=.18.(2分)已知在直线l上有A、B两点,AB=1,以AB为边作正方形ABCD,联结BD,将BD绕着点B旋转,使点D落在直线l上的点E处,那么AE=.三、解答题(本大题共6题,满分40分)19.(6分)解方程:﹣=120.(6分)解方程组:21.(6分)如图,已知梯形ABCD,AD∥BC,AB=DC,点E在边BC上,DE∥AB,请回答下列问题:(1)写出所有与互为相反的向量是;(2)在图中求作与的和向量:+=;(3)在图中求作与的差向量:﹣=;(4)++=.22.(6分)如图,已知在△ABC中,AB=AC,点O是△ABC内任意一点,点D、E、F、G分别是AB、AC、OB、OC的中点,∠A=2∠BDF.求证:四边形DEGF是矩形.23.(8分)某校组织学生步行到科技展览馆参观,学校与展览馆相距6千米,返回时由于步行速度比去时每小时少1千米,结果时间比去时多用了半小时,求学生返回时步行的速度.24.(8分)某市为鼓励市民节约用水和加强对节水的管理,制订了以下每年每户用水的收费标准:①用水量不超过220立方米时,每立方米收费1.92元,并加收每立方米1.53元的污水处理费;②用水量超过220立方米时,在①的基础上,超过220立方米的部分,每立方米收费3.30元,并加收每立方米1.53元污水处理费;设某户一年的用水量为x立方米,应交水费y元.(1)分别对①、②两种情况,写出y与x的函数解析式,并指出函数的定义域;(2)当某户2019年全年缴纳的水费共计1000.5元时,求这户2019年全年用水量.四、解答题(本大题共2题满分18分)25.(8分)如图,在平面直角坐标系中,直线y=2x与反比例函数y=在第一象限内的图象交于点A(m,2),将直线y=2x向下平移后与反比例函数y=在第一象限内的图象交于点P,且△POA的面积为2.(1)求k的值.(2)求平移后的直线的函数解析式.26.(10分)已知在平行四边形ABCD中,AB≠BC,将△ABC沿直线AC翻折,点B落在点E处,AD与CE相交于点O,联结DE.(1)如图1,求证:AC∥DE;(2)如图2,如果∠B=90°,AB=,BC=,求△OAC的面积;(3)如果∠B=30°,AB=2,当△AED是直角三角形时,求BC的长.2019-2020学年上海市杨浦区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)1.(3分)一次函数y=2x﹣3的图象在y轴的截距是()A.2B.﹣2C.3D.﹣3【分析】代入x=0,求出y值,此题得解.【解答】解:当x=0时,y=2x﹣3=﹣3,∴一次函数y=2x﹣3的图象在y轴的截距是﹣3.故选:D.2.(3分)一次函数y=x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据直线y=kx+b(k≠0)的k、b的符号判定该直线所经过的象限.【解答】解:∵一次函数y=x﹣1的1>0,∴该直线经过第一、三象限.又﹣1<0,∴该直线与y轴交于负半轴,∴一次函数y=x﹣1的图象一、三、四象限,即该函数不经过第二象限.故选:B.3.(3分)下列方程组是二元二次方程组的是()A.B.C.D.【分析】根据二元二次方程组的定义,逐个判断得结论.【解答】解:选项A符合二元二次方程组的概念;选项B含分式方程,选项D含无理方程,故B、C都不是二元二次方程组;选项C是二元一次方程组.故选:A.4.(3分)如果一个多边形的内角和与外角和相等,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形【分析】利用多边形的内角和与外角和公式列出方程,然后解方程即可.【解答】解:设多边形的边数为n,根据题意(n﹣2)•180°=360°,解得n=4.故选:A.5.(3分)下列事件为必然事件的()A.方程x2+1=0在实数范围内有解B.抛掷一枚硬币,落地后正面朝上C.对角线相等的平行四边形是矩形D.对角线互相垂直的四边形是菱形【分析】根据一元二次方程的解法、矩形和菱形的判定定理判断.【解答】解:A、方程x2+1=0在实数范围内有解,是不可能事件;B、抛掷一枚硬币,落地后正面朝上,是随机事件;C、对角线相等的平行四边形是矩形,是必然事件;D、对角线互相垂直的四边形是菱形,是随机事件;故选:C.6.(3分)如果点C、D在线段AB上,|AC|=|BD|,那么下列结论中正确的是()A.与是相等向量B.与是相等向量C.与是相反向量D.与是平行向量【分析】由点C、D在线段AB上,|AC|=|BD|,可得|AD|=|BC|,然后根据相等向量、相反向量与平行向量的定义,即可求得答案.注意排除法的应用.【解答】解:∵点C、D在线段AB上,|AC|=|BD|,∴|AD|=|BC|.A、与方向相反,∴≠,故本选项错误;B、∵与方向相反,∴≠,故本选项错误;C、∵相反向量是方向相反,模相等的两向量,而|AD|=|BC|>|BD|,∴与不是相反向量,故本选项错误;D、∵与共线,∴与是平行向量,故本选项正确.故选:D.二、填空题(本大题共12题,每题2分,满分24分)7.(2分)已知一次函数y=(k﹣1)x+2的图象与直线y=3x平行,那么k=4.【分析】根据两直线平行,则函数解析式的一次项系数相同,即可确定k的值.【解答】解:∵一次函数y=(k﹣1)x+2的图象与直线y=3x平行,∴k﹣1=3,∴k=4,故答案为:4.8.(2分)已知一次函数y=(1﹣2m)x+m,函数值y随自变量x的值增大而减小,那么m 的取值范围是m.【分析】根据一次函数y=(1﹣2m)x+m的增减性列出不等式1﹣2m<0,通过解该不等式即可求得m的取值范围.【解答】解:由题意得,1﹣2m<0,解得,m>;故答案为m.9.(2分)方程x3﹣27=0的根是x=3.【分析】先移项,再开立方即可.【解答】解:x3﹣27=0,x3=27,x==3,故答案为:x=3.10.(2分)方程=x的根是x=2.【分析】先把方程两边平方,使原方程化为整式方程x+2=x2,解此一元二次方程得到x1=2,x2=﹣1,把它们分别代入原方程得到x2=﹣1是原方程的增根,由此得到原方程的根为x=2.【解答】解:方程两边平方得,x+2=x2,解方程x2﹣x﹣2=0得x1=2,x2=﹣1,经检验x2=﹣1是原方程的增根,所以原方程的根为x=2.故答案为:x=2.11.(2分)二元二次方程x2﹣xy﹣6y2=0可以化为两个一次方程,它们是x﹣3y=0和x+2y =0.【分析】先因式分解二元二次方程,根据两个式子的积为0得结论.【解答】解:因为x2﹣xy﹣6y2=(x﹣3y)(x+2y),所以x2﹣xy﹣6y2=0可化为x﹣3y=0或x+2y=0.故答案为:x﹣3y=0和x+2y=0.12.(2分)已知方程,如果设,那么原方程可化为关于y的整式方程是3y2+3y﹣2=0.【分析】由设出的y,将方程左边前两项代换后,得到关于y的方程,去分母整理即可得到结果.【解答】解:设y=,方程﹣+3=0变形为3y﹣+3=0,整理得:3y2+3y﹣2=0.故答案为:3y2+3y﹣2=013.(2分)一个不透明的口袋中,装有白球4个,黑球3个,这些球除颜色外都相同,从中任意摸出一个球,则摸到黑球的可能性是..【分析】先求出所有球的个数与黑球的个数,再根据概率公式解答即可.【解答】解:∵共4+3=7个球在袋中,其中3个黑球,∴摸到黑球的概率为.故答案为:.14.(2分)在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工50人.【分析】设这个公司有员工x人,则每人需发送(x﹣1)条祝贺元旦的短信,根据全公司共发出2450条短信,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设这个公司有员工x人,则每人需发送(x﹣1)条祝贺元旦的短信,依题意,得:x(x﹣1)=2450,解得:x1=50,x2=﹣49(不合题意,舍去).故答案为:50.15.(2分)在平行四边形ABCD中,如果∠B=3∠A,那么∠A=45度.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角相等,即可得∠A=∠C,∠B=∠D,又由∠A+∠B=180°,即可求得答案.【解答】解:四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∵∠B=3∠A,A+∠B=180°,∴∠A=45°.故答案为:45.16.(2分)如果菱形边长为13,一条对角线长为10,那么它的面积为120.【分析】根据菱形的对角线互相垂直平分,得已知对角线的一半是5.根据勾股定理,得要求的对角线的一半是12,则另一条对角线的长是24,进而求出菱形的面积.【解答】解:在菱形ABCD中,AB=13,AC=10,∵对角线互相垂直平分,∴∠AOB=90°,AO=5,在Rt△AOB中,BO==12,∴BD=2BO=24.∴则此菱形面积是=120,故答案为:120.17.(2分)已知在梯形ABCD中,AD∥BC,AB=AD=DC=4,AC⊥AB,那么梯形ABCD 的周长=20.【分析】(1)根据等腰三角形的性质得到∠DAC=∠DCA,根据平行线的性质得到∠DAC =∠ACB,得到∠DCA=∠ACB,根据直角三角形的性质列式求出∠BCA=30°,根据直角三角形的性质求出BC,根据梯形的周长公式计算,得到答案.【解答】解:∵AD=DC,∴∠DAC=∠DCA,∵AD∥BC,∴∠DAC=∠ACB,∴∠DCA=∠ACB,∵AD∥BC,AB=DC,∴∠B=∠BCD=2∠ACB,∵AC⊥AB,∴∠B+∠BCA=90°,即3∠BCA=90°,∴∠BCA=30°,∴BC=2AB=8,∵AB=AD=DC=4,BC=8,∴梯形的周长=4+4+4+8=20,故答案为:20.18.(2分)已知在直线l上有A、B两点,AB=1,以AB为边作正方形ABCD,联结BD,将BD绕着点B旋转,使点D落在直线l上的点E处,那么AE=+1或.【分析】分两情况,当点E在AB的延长线上,当点E在BA的延长线上,由勾股定理求出BD的长,则可得出答案.【解答】解:如图1,当点E在AB的延长线上,∵正方形ABCD中,AB=AD=1,∠DAB=90°,∴BD==,∵将BD绕着点B旋转,使点D落在直线l上的点E处,∴BD=BE=,∴AE=AB+BE=1+;如图2,当点E在BA的延长线上,同理可得BD=BE=,∴AE=BE﹣AB=﹣1.∴AE的长为+1或﹣1.故答案为:+1或﹣1.三、解答题(本大题共6题,满分40分)19.(6分)解方程:﹣=1【分析】将方程化为=+1,然后两边平方即可求出答案.【解答】解:=+1x+2=x+2+11=220.(6分)解方程组:【分析】解①,用含y的代数式表示x,然后代入②求出y,再求出方程组的解.【解答】解:,由①,得x(x+y)=0,所以x=0或x=﹣y.把x=0代入②,得2y2=6,解得y=.把x=﹣y代入②,得y2+3y2+2y2=6,整理,得y2=1,所以y=±1.所以x=﹣1或1.故原方程组的解为:,,,21.(6分)如图,已知梯形ABCD,AD∥BC,AB=DC,点E在边BC上,DE∥AB,请回答下列问题:(1)写出所有与互为相反的向量是或;(2)在图中求作与的和向量:+=;(3)在图中求作与的差向量:﹣=;(4)++=.【分析】(1)根据相反向量的定义判断即可.(2)利用三角形法则计算即可.(3)利用三角形法则计算即可.(4)利用三角形法则计算即可.【解答】解:(1)∵AD∥BC,AB∥DE,∴四边形ABED是平行四边形,∴AB=DE,∴与互为相反的向量是或.故答案为或.(2)由题意,+=+=,故答案为.(3)由题意,﹣=+=,故答案为.(4)由题意++=,故答案为.22.(6分)如图,已知在△ABC中,AB=AC,点O是△ABC内任意一点,点D、E、F、G分别是AB、AC、OB、OC的中点,∠A=2∠BDF.求证:四边形DEGF是矩形.【分析】易证DE是△ABC的中位线,FG是△OBC的中位线,推出∠ADE=∠ABC,∠AED=∠ACB,DE∥FG,DE=FG,则四边形DEGF是平行四边形,由AB=AC,得∠ABC=∠ACB,则∠ADE=∠AED,证∠ADE+∠A=90°,∠ADE+∠BDF=90°,推出∠EDF=90°,即可得出结论.【解答】证明:∵点D、E、F、G分别是AB、AC、OB、OC的中点,∴DE是△ABC的中位线,FG是△OBC的中位线,∴DE∥BC,DE=BC,FG∥BC,FG=BC,∴∠ADE=∠ABC,∠AED=∠ACB,DE∥FG,DE=FG,∴四边形DEGF是平行四边形,∵AB=AC,∴∠ABC=∠ACB,∴∠ADE=∠AED,∵∠ADE+∠AED+∠A=180°,即2∠ADE+∠A=180°,∴∠ADE+∠A=90°,∵∠A=2∠BDF,∴∠BDF=∠A,∴∠ADE+∠BDF=90°,∴∠EDF=180°﹣∠ADE﹣∠BDF=180°﹣90°=90°,∴四边形DEGF是矩形.23.(8分)某校组织学生步行到科技展览馆参观,学校与展览馆相距6千米,返回时由于步行速度比去时每小时少1千米,结果时间比去时多用了半小时,求学生返回时步行的速度.【分析】设学生返回时步行的速度为x千米/小时,则去时步行的速度为(x+1)千米/小时,根据时间=路程÷速度结合返回时比去时多用了半小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设学生返回时步行的速度为x千米/小时,则去时步行的速度为(x+1)千米/小时,依题意,得:﹣=,整理,得:x2+x﹣12=0,解得:x1=3,x2=﹣4,经检验,x1=3,x2=﹣4是原方程的解,x1=3符合题意,x2=﹣4不符合题意,舍去.答:学生返回时步行的速度为3千米/小时.24.(8分)某市为鼓励市民节约用水和加强对节水的管理,制订了以下每年每户用水的收费标准:①用水量不超过220立方米时,每立方米收费1.92元,并加收每立方米1.53元的污水处理费;②用水量超过220立方米时,在①的基础上,超过220立方米的部分,每立方米收费3.30元,并加收每立方米1.53元污水处理费;设某户一年的用水量为x立方米,应交水费y元.(1)分别对①、②两种情况,写出y与x的函数解析式,并指出函数的定义域;(2)当某户2019年全年缴纳的水费共计1000.5元时,求这户2019年全年用水量.【分析】(1)由题意列出y关于x的函数解析式,根据限制条件写出函数定义域.(2)由交费可知说明该户用水量已超过220立方米,把数值代入函数关系式.【解答】解:(1)情况①:y=(1.92+1.53)x,即y=3.45x(0<x≤220),情况②:y=220×(1.92+1.53)+(x﹣220)(3.30+1.53),即所求的函数解析式为y=4.83x﹣303.6(x>220);(2)当该户一个月应交水费为1000.5元时,说明该户用水量已超过220立方米,则4.83x﹣303.6=1000.5,解得x=270.答:该户一个月的用水量为270立方米.四、解答题(本大题共2题满分18分)25.(8分)如图,在平面直角坐标系中,直线y=2x与反比例函数y=在第一象限内的图象交于点A(m,2),将直线y=2x向下平移后与反比例函数y=在第一象限内的图象交于点P,且△POA的面积为2.(1)求k的值.(2)求平移后的直线的函数解析式.【分析】(1)由点A的纵坐标求得m,即点A的坐标,把点A的坐标代入反比例函数中即可;(2)方法一、先求出PM,再求出BN然后用锐角三角函数求出OB,即可.方法二、先设出点P的坐标,利用△POA的面积为2.建立方程求出点P的坐标,即可得出结论.方法3,先判断出S△AOP=S梯形AMNP,再同方法二,即可得出结论.【解答】解:(1)∵点A(m,2)在直线y=2x,∴2=2m,∴m=1,∴点A(1,2),∵点A(1,2)在反比例函数y=上,∴k=2,(2)方法一、如图,设平移后的直线与y轴相交于B,过点P作PM⊥OA,BN⊥OA,AC⊥y轴由(1)知,A(1,2),∴OA=,sin∠BON=sin∠AOC==,∵S△POA=OA×PM=×PM=2,∴PM=,∵PM⊥OA,BN⊥OA,∴PM∥BN,∵PB∥OA,∴四边形BPMN是平行四边形,∴BN=PM=,∵sin∠BON===,∴OB=4,∵PB∥AO,∴B(0,﹣4),∴平移后的直线PB的函数解析式y=2x﹣4,方法二、如图1,过点P作PC⊥y轴交OA于C,设点P的坐标为(n,)(n>1),∴C(,),∴PC=n﹣,∵△POA的面积为2.A(1,2)∴S△POA=S△PCO+S△PCA=(n﹣)×+(n﹣)(2﹣)=(n﹣)×2=n﹣=2,∴n=1﹣(舍)或n=1+,∴P(1+,2﹣2)∴PB∥AO,∴设直线PB的解析式为y=2x+b,∵点P在直线PB上,∴2﹣2=2(1+)+b,∴b=﹣4,∴平移后的直线PB的函数解析式y=2x﹣4,方法3,过点A作AM⊥x轴于M,过点P作PN⊥x轴于N,∵点A,P是反比例函数y=图象上,∴S△AOM=S△PON,∴S△AOP=S梯形AMNP=2,∵A(1,2),∴AM=2,OM=1,设点P(m,),(m>1)∴ON=m,PN=,∴MN=m﹣1,∴S梯形AMNP=(PN+AM)×MN=(+2)×(m﹣1)=2,∴m=1﹣(舍)或m=1+,∴P(1+,2﹣2)∴PB∥AO,∴设直线PB的解析式为y=2x+b,∵点P在直线PB上,∴2﹣2=2(1+)+b,∴b=﹣4,∴平移后的直线PB的函数解析式y=2x﹣4,26.(10分)已知在平行四边形ABCD中,AB≠BC,将△ABC沿直线AC翻折,点B落在点E处,AD与CE相交于点O,联结DE.(1)如图1,求证:AC∥DE;(2)如图2,如果∠B=90°,AB=,BC=,求△OAC的面积;(3)如果∠B=30°,AB=2,当△AED是直角三角形时,求BC的长.【分析】(1)由折叠的性质得∠ACB=∠ACE,BC=EC,由平行四边形的性质得AD=BC,AD∥BC.则EC=AD,∠ACB=∠CAD,得∠ACE=∠CAD,证出OA=OC,则OD=OE,由等腰三角形的性质得∠ODE=∠OED,证出∠CAD=∠ACE=∠OED=∠ODE,即可得出结论;(2)证四边形ABCD是矩形,则∠CDO=90°,CD=AB=,AD=BC=,设OA =OC=x,则OD=﹣x,在Rt△OCD中,由勾股定理得出方程,求出OA=,由三角形面积公式即可得出答案;(3)分两种情况:∠EAD=90°或∠AED=90°,需要画出图形分类讨论,根据含30°角的直角三角形的性质,即可得到BC的长.【解答】(1)证明:由折叠的性质得:△ABC≌△△AEC,∴∠ACB=∠ACE,BC=EC,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∴EC=AD,∠ACB=∠CAD,∴∠ACE=∠CAD,∴OA=OC,∴OD=OE,∴∠ODE=∠OED,∵∠AOC=∠DOE,∴∠CAD=∠ACE=∠OED=∠ODE,∴AC∥DE;(2)解:∵平行四边形ABCD中,∠B=90°,∴四边形ABCD是矩形,∴∠CDO=90°,CD=AB=,AD=BC=,由(1)得:OA=OC,设OA=OC=x,则OD=﹣x,在Rt△OCD中,由勾股定理得:()2+(﹣x)2=x2,解得:x=,∴OA=,∴△OAC的面积=OA×CD=××=;(3)解:分两种情况:①如图3,当∠EAD=90°时,延长EA交BC于G,∵AD=BC,BC=EC,∴AD=EC,∵AD∥BC,∠EAD=90°,∴∠EGC=90°,∵∠B=30°,AB=2,∴∠AEC=30°,∴GC=EC=BC,∴G是BC的中点,在Rt△ABG中,BG=AB=3,∴BC=2BG=6;②如图4,当∠AED=90°时∵AD=BC,BC=EC,∴AD=EC,由折叠的性质得:AE=AB,∴AE=CD,在△ACE和△CAD中,,∴△ACE≌△CAD(SSS),∴∠ECA=∠DAC,∴OA=OC,∴OE=OD,∴∠OED=∠ODE,∴∠AED=∠CDE,∵∠AED=90°,∴∠CDE=90°,∴AE∥CD,又∵AB∥CD,∴B,A,E在同一直线上,∴∠BAC=∠EAC=90°,∵Rt△ABC 中,∠B=30°,AB=2,∴AC=AB=2,BC=2AC=4;的长为4或6.综上所述,当△AED是直角三角形时,BC。

上海市杨浦区2020-2021学年八年级下学期期末数学试题(教师版)

上海市杨浦区2020-2021学年八年级下学期期末数学试题(教师版)
4.以下描述 和 的关系不正确的是()
A. 方向相反B. 模相等C. 平行D. 相等
【答案】D
【解析】
【分析】利用单位向量的定义和性质直接判断即可.
【详解】解:A、 和 的关系是方向相反,正确;
B、 和 的关系是模相等,正确;
C、 和 的关系是平行,正确;
D、 和 的关系不相等,错误;
故选:D.
【点睛】此题考查平面向量问题,解题时要认真审题,注意单位向量、零向量、共线向量的定义和的性质的合理运用.
所以原方程的根为x=1,
故答案为:x=1.
【点睛】本题考查解分式方程,掌握解分式方程的方法步骤是正确解答的前提,注意解分式方程容易产生增根需要检验.
11.方程 的解为_____.
【答案】3
【解析】
【分析】根据无理方程的解法,首先,两边平方解出x的值,然后验根,解答即可.
【详解】解:两边平方得:2x+3=x2
18.平行四边形ABCD中,两条邻边长分别为3和5,∠BAD与∠ABC的平分线交于点E,点F是CD的中点,连接EF,则EF=________.
【答案】3.5或0.5
【解析】
【分析】分两种情况讨论:①当AB=3,BC=5时,延长AE交BC于M,由平行线的性质和角平分线的定义可推出∠BAM=∠AMB,得到AB=BM=3,求出CM=2,再证明∠AEB=90°,根据等腰三角形三线合一得到E为AM的中点,所以EF为梯形ADCM的中位线,根据中位线的性质可求EF;②当AB=5,BC=3时,延长AE交BC的延长线于M,连接DM,延长EF与DM交于G,同理可证AE=EM,CM=2,再利用三角形中位线的性质可求出EF.
【解析】
【分析】解二元二次方程组,用代入消元转化成一元二次方程,解出方程即可.

杨浦区2019年第二学期八年级数学期终及答案

杨浦区2019年第二学期八年级数学期终及答案

杨浦区2019学年度第二学期期末质量抽查初二数学试卷(测试时间90分钟,满分100分) 2019.6题号 一二三四总分得分一、选择题(本大题共6题,每题3分,满分18分)1.一次函数21y x =-+的图像经过 ( ) (A )一、二、三象限; (B )二、三、四象限;(C) 一、三、四象限; (D )一、二、四象限.2.下列关于x 的方程一定有实数根的是 ( ) (A )10ax +=; (B )210ax +=; (C )0x a +=; (D )20x a +=. 3.下列事件中,属于随机事件的是 ( ) (A )凸多边形的内角和为500°; (B )凸多边形的外角和为360°;(C )四边形绕它的对角线交点旋转180°能与它本身重合;(D )任何一个三角形的中位线都平行于这个三角形的第三边.4.如果点C 、D 在线段AB 上,AC=BD ,那么下列结论中正确的是 ( ) (A )AC 与BD 是相等向量; (B )AD 与BC 是相等向量;(C )AD 与BD 是相反向量; (D )AD 与BD 是平行向量 5.四边形ABCD 中,对角线AC 、BD 交于点O 。

给出下列四组条件:①AB //CD ,AD //BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB //CD ,AD =BC 。

其中一定能判定这个四边形是平行四边形的条件共有 ( ) (A )1组; (B )2组; (C )3组; (D )4组. 6.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路线长为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是 ( )(第6题图) (A ) (B ) (C ) (D )二、填空题(本大题共12题,每题2分,满分24分)7.若一次函数(2)1y k x =-+中,y 随x 的增大而减小,则k 的取值范围是 . 8.已知直线()32+-=x k y 与直线23-=x y 平行,那么k = . 9.方程320x +=在实数范围内的解是 .10.用换元法解方程31122=-+-x x x x 时,如果设y x x =-12,那么得到关于y 的整式方程为 .11.如图,已知一次函数y =kx +b 的图像经过点A (5,0)与B (0,-4),那么关于x 的不等式kx +b <0的解集是 . 12.设关于x的一次函数11y a x b =+与22y a x b =+,则称函数1122()()y m a x b n a x b =+++(其中+1m n =)为此两个函数的生成函数。

2018-2019学年沪教版上海市杨浦区八年级第二学期(下)期中数学试卷 含解析

2018-2019学年沪教版上海市杨浦区八年级第二学期(下)期中数学试卷 含解析

2018-2019学年八年级第二学期期中数学试卷一、填空题(本大题15题)1.一次函数27y x =--与x 轴的交点是 .2.要使直线32y x =-不经过第四象限,则该直线至少向上平移 个单位. 3.直线y kx b =+与51y x =-+平行,且过(2,1),则k = ,b = .4.已知,一次函数y kx b =+的图象经过点(2,1)A (如图所示),当1y 时,x 的取值范围是 .5.已知点1(x ,1)y ,2(x ,2)y 是直线4y kx =-上的两点,且当12x x <时,12y y <,则该直线经过 象限.6.关于x 的方程2(3)9a x a -=-的解是一切实数,那么实数a = 7.已知方程212221x x x x --=-若设21x y x-=,则原方程可化为关于y 的整式方程 . 8.方程320xx --=的解是 .9.将方程组:22225601x xy y x y ⎧-+=⎨-=⎩转化成两个二元二次方程组分别是 和 . 10.若关于x 的方程111ax x +=-有增根,则a = . 11.已知关于x 的方程2210x mx +-=是二项方程,那么m = .12.如图,在平行四边形ABCD 中,对角线AC BD ⊥,10AC =,24BD =,则AD = .13.平行四边形ABCD 中,:2:7A B ∠∠=,则C ∠= ︒.14.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 度. 15.如果一个平行四边形的一个内角的平分线分它的一边为1:2两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”,当协调边为6时,它的周长为 .二、选择题(共4小题)16.下列方程组中,属于二元二次方程组的是( ) A .2322y x xy x =⎧⎨+-=⎩B .221201y x xy x y ⎧+-=⎪⎨⎪+=⎩C .531x y x y +=⎧⎨-=-⎩D.23135y x y ⎧=-⎪+=17.有实数根的方程是( ) A32+=B.=C0-= D0=18.若一个多边形的边数增加1,它的内角和( ) A .不变B .增加1︒C .增加180︒D .增加360︒19.一次函数y kx k =-,若y 随着x 的增大而减小,则该函数的图象经过( ) A .一、二、三B .一、二、四C .二、三、四D .一、三、四三、简答题(本大题共5题) 20.解方程:28324x x x -=+-. 211=- 22.解方程组:2223441x y x xy y +=⎧⎨-+=⎩23.声音在空气中传播的速度(/)y m s 是气温(C)x ︒的函数,下表列出了一组不同温度时的声速.(1)求y 与x 之间的函数关系式;(2)气温22C x ︒=时,某人看到烟花燃放5s 后才听到声响,那么此人与燃放烟花的所在地约相距多远?24.在平行四边形ABCD 中,45A ∠=︒,BD AD ⊥,2BD =. (1)求平行四边形ABCD 的周长和面积;(2)求A 、C 两点间的距离.四、解答题(本大题共2题)25.如图,在平面直角坐标系xOy 中,O 为坐标原点,已知直线1l 经过点(6,0)A -,它与y 轴交于点B ,点B 在y 轴正半轴上,且2OA OB =. (1)求直线1l 的函数解析式;(2)若直线2l 也经过点(6,0)A -,且与y 轴交于点C ,如果ABC ∆的面积为6,求C 点的坐标.26.甲、乙两城间的铁路路程为1600千米,经过技术改造,列车实施了提速,提速后比提速前速度增加了20千米/时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有条件下安全行驶速度不得超过140千米/时,请你用学过的知识说明在这条铁路的现有条件下列车是否还可以再次提速.五、(本大题共12分,第(1)小题3分,第(2)小题5分,第(3)小题4分) 27.如图,直线33y =+图象与y 轴、x 轴分别交于A 、B 两点 (1)求点A 、B 坐标和BAO ∠度数;(2)点C 、D 分别是线段OA 、AB 上一动点(不与端点重合),且CD DA =,设线段OC 的长度为x ,OCD S y ∆=,请求出y 关于x 的函数关系式以及定义域;(3)点C 、D 分别是射线OA 、射线BA 上一动点,且CD DA =,当ODB ∆为等腰三角形时,求C 的坐标.(第(3)小题直接写出分类情况和答案,不用过程)参考答案与试题解析一、填空题(本大题15题,每题2分,满分30分)1.一次函数27y x=--与x轴的交点是7(,0)2-.【分析】根据坐标轴上点的坐标特征分别把0y=代入一次函数解析式中计算即可.【解答】解:把0y=代入27y x=--得270x--=,解得72x=-,所以一次函数与x轴的交点坐标为7(2-,0),故答案为7(2-,0).2.要使直线32y x=-不经过第四象限,则该直线至少向上平移 2 个单位.【分析】设平移m个单位后直线不经过第四象限,得到直线的解析式32y x m=-+,则22m-+,解得即可.【解答】解:设一次函数32y x=-的图象向上平移m个单位后不经过第四象限,则平移后的图象对应的函数关系式为32y x m=-+.不经过第四象限,20m∴-+,解得2m,所以至少向上平移2个单位,故答案为2.3.直线y kx b=+与51y x=-+平行,且过(2,1),则k=5-,b=.【分析】易得5k=-,把(2,1)代入第一个直线解析式即可求得b的值.【解答】解:直线y kx b=+与51y x=-+平行,5k∴=-,直线y kx b=+过(2,1),101b∴-+=,解得:11b=.故填5-、11.4.已知,一次函数y kx b=+的图象经过点(2,1)A(如图所示),当1y时,x的取值范围是2x.【分析】直接根据一次函数的图象即可得出结论. 【解答】解:一次函数y kx b =+的图象经过点(2,1)A , ∴当1y 时,2x .故答案为:2x .5.已知点1(x ,1)y ,2(x ,2)y 是直线4y kx =-上的两点,且当12x x <时,12y y <,则该直线经过 一、三、四 象限.【分析】根据一次函数的增减性判断出k 的符号,然后由k 的符号来确定该直线所经过的象限.【解答】解:点1(x ,1)y 、2(x ,2)y 是直线4y kx =-上的两点,且当12x x <时,12y y <, y ∴随x 的增大而增大,0k ∴>.∴该直线经过第一、三象限.又直线4y kx =-中的40-<, ∴该直线与y 轴交于负半轴,∴该函数图象经过第一、三、四象限.故答案是:一、三、四.6.关于x 的方程2(3)9a x a -=-的解是一切实数,那么实数a = 3 【分析】由方程的解为一切实数,确定出a 的值即可. 【解答】解:方程整理得:(3)(3)(3)a x a a -=+-, 由方程的解是一切实数,得到30a -=, 解得:3a =, 故答案为:3 7.已知方程212221x x x x --=-若设21x y x-=,则原方程可化为关于y 的整式方程 2220y y --= .【分析】根据题意,设21x y x -=,将y 替换原式的21x x-即可 【解答】解: 设21x y x-=,则原式有22y y -=,整理得2220y y --=故答案为:2220y y --=820x -=的解是 2x = .【分析】两边平方得出x 的值,再根据二次根式有意义的条件可得答案. 【解答】解:由题意知3020x x -⎧⎨-⎩,解得:2x ,两边平方可得(3)(2)0x x --=, 解得:3x =或2x =, 则2x =, 故答案为:2x =.9.将方程组:22225601x xy y x y ⎧-+=⎨-=⎩转化成两个二元二次方程组分别是 22201x y x y -=⎧⎨-=⎩ 和 . 【分析】方程组中,方程22560x xy y -+=的左边可因式分解,根据:两个因式的积为0,则其中至少有一个因式为0,将原方程组转化为两个二元二次方程组. 【解答】解:由方程22560x xy y -+=得(2)(3)0x y x y --=, 即20x y -=或30x y -=,所以,原方程组可化为22201x y x y -=⎧⎨-=⎩,22301x y x y -=⎧⎨-=⎩, 故答案为:22201x y x y -=⎧⎨-=⎩,22301x y x y -=⎧⎨-=⎩. 10.若关于x 的方程111ax x +=-有增根,则a = 1- . 【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母10x -=,得到1x =,然后代入整式方程算出未知字母的值. 【解答】解;方程两边都乘(1)x -,得11ax x +=-,原方程有增根,∴最简公分母10x -=,即1x =,把1x =代入整式方程,得1a =-.11.已知关于x 的方程2210x mx +-=是二项方程,那么m = 0 . 【分析】根据方程的项数,可得答案. 【解答】解:由题意,得 0m =.故答案为:0.12.如图,在平行四边形ABCD 中,对角线AC BD ⊥,10AC =,24BD =,则AD = 13 .【分析】利用平行四边形的性质和勾股定理易求AO 的长. 【解答】解:ABCD 的对角线AC 与BD 相交于点O ,1122BO DO BD ∴===,152AO CO AC ===, AB AC ⊥,2251213AD ∴=+=,故答案为:13.13.平行四边形ABCD 中,:2:7A B ∠∠=,则C ∠= 40 ︒.【分析】由四边形ABCD 为平行四边形.可知180A B ∠+∠=︒,A C ∠=∠,由:2:7A B ∠∠=,所以可求得A ∠的值,即可求得C ∠的值. 【解答】解:四边形ABCD 为平行四边形 180A B ∴∠+∠=︒,A C ∠=∠ :2:7A B ∠∠= 40A ∴∠=︒40C ∴∠=︒,故答案为:40.14.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 540 度.【分析】根据从多边形的一个顶点可以作对角线的条数公式(3)n -求出边数,然后根据多边形的内角和公式(2)180n -︒列式进行计算即可得解. 【解答】解:多边形从一个顶点出发可引出9条对角线, 32n ∴-=,解得5n =,∴内角和(52)180540=-︒=︒.故答案为:540.15.如果一个平行四边形的一个内角的平分线分它的一边为1:2两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”,当协调边为6时,它的周长为 16或20 .【分析】由平行四边形的性质和角平分线的定义得出AB AE =;分两种情况:①当2AE =,4DE =时;②当4AE =,2DE =时;即可求出平行四边形ABCD 的周长.【解答】解:如图所示:①当2AE =,4DE =时, 四边形ABCD 是平行四边形, 6BC AD ∴==,AB CD =,//AD BC , AEB CBE ∴∠=∠,BE 平分ABC ∠, ABE CBE ∴∠=∠,ABE AEB ∴∠=∠, 2AB AE ∴==,∴平行四边形ABCD 的周长2()16AB AD =+=;②当4AE =,2DE =时, 同理得:4AB AE ==,∴平行四边形ABCD 的周长2()20AB AD =+=;故答案为:16或20.二、选择题(共4小题,每小题3分,满分12分) 16.下列方程组中,属于二元二次方程组的是( ) A .2322y x xy x =⎧⎨+-=⎩B .221201y x xy x y ⎧+-=⎪⎨⎪+=⎩C .531x y x y +=⎧⎨-=-⎩D .23135y x x y ⎧=-⎪⎨+=⎪⎩【分析】根据整式方程与分式方程及无理方程逐一判断即可得. 【解答】解:A .此方程组是二元二次方程组,符合题意; B .此方程组的第一个方程是分式方程,不符合题意; C .此方程组是二元一次方程组,不符合题意;D .此方程组第二个方程是无理方程,不符合题意;故选:A .17.有实数根的方程是( ) A 132x ++= B .22x x -=- C 230x x --=D 10x x +=【分析】解每个无理方程即可得. 【解答】解:A .此方程无解; B .此方程的解为2x =,符合题意; C .此方程无解;D .此方程无解.故选:B .18.若一个多边形的边数增加1,它的内角和( ) A .不变B .增加1︒C .增加180︒D .增加360︒【分析】设原来的多边形是n ,则新的多边形的边数是1n +.根据多边形的内角和定理即可求得.【解答】解:n 边形的内角和是(2)180n -︒,边数增加1,则新的多边形的内角和是(12)180n +-︒.则(12)180(2)180180n n +-︒--︒=︒.故选:C .19.一次函数y kx k =-,若y 随着x 的增大而减小,则该函数的图象经过( ) A .一、二、三B .一、二、四C .二、三、四D .一、三、四【分析】根据已知条件“y 随x 的增大而减小”判断k 的取值,再根据k ,b 的符号即可判断直线所经过的象限.【解答】解:一次函数y kx k =-,y 随着x 的增大而减小, 0k ∴<,即0k ->,∴该函数图象经过第一、二、四象限.故选:B .三、简答题(本大题共5题,每题6分,满分30分) 20.解方程:28324x x x -=+-. 【分析】观察可得最简公分母是(2)(2)x x +-,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同时乘以(2)(2)x x +-, 得(2)3(2)(2)8x x x x --+-=, 整理,得220x x +-=, 12x ∴=-,21x =.经检验12x =-是增根,21x =是原方程的解, ∴原方程的解为21x =.211=-【分析】先两边平方,整理后再两边平方,据此可得关于x 的一元二次方程,解之求得x 的值,再检验即可得.【解答】解:2511x x -=-+,7x =-,218450x x -+=,(3)(15)0x x --=, 13x =,215x =,经检验:13x =,215x =都是原方程的增根,都舍去, ∴原方程无解.22.解方程组:2223441x y x xy y +=⎧⎨-+=⎩【分析】把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方程组,求解即可.【解答】解:2223441x y x xy y +=⎧⎨-+=⎩①② 由②得2(2)1x y -=,所以21x y -=③,21x y -=-④ 由①③、①④联立,得方程组: 2321x y x y +=⎧⎨-=⎩,2321x y x y +=⎧⎨-=-⎩ 解方程组2321x y x y +=⎧⎨-=⎩得,11x y =⎧⎨=⎩解方程组2321x y x y +=⎧⎨-=-⎩得,1575x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以原方程组的解为:1111x y =⎧⎨=⎩,221575x y ⎧=⎪⎪⎨⎪=⎪⎩23.声音在空气中传播的速度(/)y m s 是气温(C)x ︒的函数,下表列出了一组不同温度时的声速.(1)求y 与x 之间的函数关系式;(2)气温22C x ︒=时,某人看到烟花燃放5s 后才听到声响,那么此人与燃放烟花的所在地约相距多远?【分析】(1)由表中的数据可知,温度每升高5C ︒,声速就提高3米/秒,所以y 是x 的一次函数,利用待定系数法即可求出该函数解析式;(2)令22x =,求出此时的声速y ,然后利用路程=速度⨯时间即可求出该距离. 【解答】解:(1)根据表中数据画图象可知y 与x 成一次函数关系, 故设y kx b =+,取两点(0,331),(5,334)代入关系式得 3313345b k b =⎧⎨=+⎩,解得35331k b ⎧=⎪⎨⎪=⎩ ∴函数关系式为33315y x =+.(2)把22x =代入33315y x =+.得312233134455y =⨯+=,且1344517215m ⨯=.光速非常快,传播时间可以忽略, 故此人与燃放烟花的所在地相距约1721m .24.在平行四边形ABCD 中,45A ∠=︒,BD AD ⊥,2BD =. (1)求平行四边形ABCD 的周长和面积; (2)求A 、C 两点间的距离.【分析】(1)由等腰直角三角形的性质得出2AD BD ==,由勾股定理求出2222AB AD BD =+=,由平行四边形的性质得出22DC AB ==2BC AD ==,即可得出平行四边形的周长和面积;(2)连接AC ,与BD 相交于点O ,由平行四边形的性质得出112OD BD ==,2AC AO =,由勾股定理求出OA ,得出5AC = 【解答】(1)解:90BD AD ADB ⊥∴∠=︒又45452A ABD AD BD ∠=︒∴∠=︒∴==,2222AB AD BD ∴=+=,四边形ABCD 是平行四边形, 22DC AB ∴==,2BC AD ==,∴()222222424ABCD C AB AD =+=+=+平行四边形,224ABCD S AD BD ∴=⨯=⨯=平行四边形;(2)解:连接AC ,与BD 相交于点O ,如图所示: 四边形ABCD 是平行四边形, ∴112OD BD ==,2AC AO =, 在Rt AOD ∆中,90ADO ∠=︒, ∴2222215OA AD OD =+=+=,∴25AC =,所以A 、C 两点间的距离为25.四、解答题(本大题共2题,每题8分,满分16分)25.如图,在平面直角坐标系xOy 中,O 为坐标原点,已知直线1l 经过点(6,0)A -,它与y 轴交于点B ,点B 在y 轴正半轴上,且2OA OB =. (1)求直线1l 的函数解析式;(2)若直线2l 也经过点(6,0)A -,且与y 轴交于点C ,如果ABC ∆的面积为6,求C 点的坐标.【分析】(1)先求出(0,3)B ,再由待定系数法求出直线1l 的解析式; (2)根据三角形面积公式可求2BC =,依此可求C 点的坐标. 【解答】解:(1)(6,0)A -,6OA ∴=, 2OA OB =, 3OB ∴=,B 在y 轴正半轴, (0,3)B ∴,∴设直线1l 解析式为:3(0)y kx k =+≠,(6,0)A -在此图象上,代入得 630k +=,解得12k =. ∴132y x =+; (2)62ABC BC AOS ∆⨯==, 6AO =, 2BC ∴=,(0,5)C ∴或(0,1).26.甲、乙两城间的铁路路程为1600千米,经过技术改造,列车实施了提速,提速后比提速前速度增加了20千米/时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有条件下安全行驶速度不得超过140千米/时,请你用学过的知识说明在这条铁路的现有条件下列车是否还可以再次提速.【分析】提速前后路程没变,关键描述语为:“列车从A 到B 地行驶的时间减少了4h ”;等量关系为:提速前的列车所用时间=提速后的列车所用时间4+.【解答】解:设提速前的列车速度为/xkm h . 则:16001600420x x =++. 解之得:80x =.经检验,80x =是原方程的解. 所以,提速前的列车速度为80/km h . 因为8020100140+=<. 所以可以再提速.五、(本大题共12分,第(1)小题3分,第(2)小题5分,第(3)小题4分) 27.如图,直线333y x =-+图象与y 轴、x 轴分别交于A 、B 两点 (1)求点A 、B 坐标和BAO ∠度数;(2)点C 、D 分别是线段OA 、AB 上一动点(不与端点重合),且CD DA =,设线段OC 的长度为x ,OCD S y ∆=,请求出y 关于x 的函数关系式以及定义域;(3)点C 、D 分别是射线OA 、射线BA 上一动点,且CD DA =,当ODB ∆为等腰三角形时,求C 的坐标.(第(3)小题直接写出分类情况和答案,不用过程)【分析】(1)利用一次函数图象上点的坐标特征可求出点A ,B 的坐标及OA ,OB 的长度,在Rt AOB ∆中,利用勾股定理可求出AB 的长度,由12AO AB =可得出30ABO ∠=︒,再利用三角形内角和定理可求出BAO ∠的度数;(2)过点D 作DM y ⊥轴,垂足为点M ,由OA ,OC 的长度可得出3AC x =-,由AD CD =,60BAO ∠=︒可得出ADC ∆为等边三角形,利用等边三角形的性质及勾股定理可得出DM 的长度,再利用三角形的面积公式即可得出y 关于x 的函数关系式;(3)分OD DB =,BD BO =及OB OD =三种情况考虑:①当OD DB =时,点1C 与点O 重合,进而可得出点1C 的坐标;②当BD BO =时,由2AD AB OB =-可求出2AD 的长度,结合△22AC D 是等边三角形可得出2AC 的长度,由22OC OA AC =-可求出2OC 的长度,进而可得出点2C 的坐标;③当OB OD =时,过点O 作ON ⊥直线AB ,垂足为点N ,通过解直角三角形可求出BN 的长度,由等腰三角形的性质及AB 的长度可求出3AD 的长度,结合△33AC D 为等边三角形可得出3AC 的长度,由33OC OA AC =+可求出3OC 的长度,进而可得出点3C 的坐标.综上,此题得解.【解答】解:(1)当0x =时,33y =+=, 3OA ∴=,点A 的坐标为(0,3);当0y =时,30x +=,解得:x =,OB ∴=,点B 的坐标为,0).在Rt AOB ∆中,90AOB ∠=︒,6AB ∴==,12AO AB ∴=, 30ABO ∴∠=︒, 60BAO ∴∠=︒.(2)在图2中,过点D 作DM y ⊥轴,垂足为点M . 3OA =,OC x =, 3AC x ∴=-.AD CD =,60BAO ∠=︒, ADC ∴∆为等边三角形,1322xAM AC -∴==,3(3)x DM -∴==,113(3)3)22x y OC DM xx -∴===<<. (3)分三种情况考虑,如图3所示. ①当OD DB =时,点1C 与点O 重合,∴点1C 的坐标为(0,0);②当BD BO =时,2633AD AB OB =-=-, △22AC D 是等边三角形, 22633AC AD ∴==-, 22333OC OA AC ∴=-=-, ∴点2C 的坐标为(0,333)-;③当OB OD =时,过点O 作ON ⊥直线AB ,垂足为点N , 在Rt BON ∆中,33OB =,30OBN ∠=︒, 13322ON OB ∴==,2292BN OB ON =-=. 3OB OD =, 329BD BN ∴==, 333AD BD AB ∴=-=.△33AC D 为等边三角形, 333AC AD ∴==, 336OC OA AC ∴=+=, ∴点3C 的坐标为(0,6).综上所述:当ODB ∆为等腰三角形时,点C 的坐标为(0,0),(0,333)-或(0,6).。

杨浦区期末八年级数学试卷

杨浦区期末八年级数学试卷

一、选择题(每题3分,共30分)1. 已知一个等边三角形的边长为a,则其周长为()A. 3aB. 2aC. aD. a/22. 下列选项中,能表示圆的方程是()A. x² + y² = 1B. x² + y² = 4C. x² + y² = 9D. x² + y² = 163. 已知一次函数y=kx+b的图象经过点(2,3),则k+b的值为()A. 5B. 4C. 3D. 24. 在直角坐标系中,点A(-1,2)关于y轴的对称点为()A. (1,2)B. (-1,-2)C. (-1,2)D. (1,-2)5. 已知正方形的对角线长度为4,则其边长为()A. 2B. 4C. 6D. 86. 已知等腰三角形底边长为6,腰长为8,则其高为()A. 2B. 4C. 6D. 87. 下列选项中,能表示正比例函数的是()A. y=2x+3B. y=x²C. y=3/xD. y=2x8. 在等差数列中,已知首项为2,公差为3,则第10项为()A. 29B. 30C. 31D. 329. 已知一次函数y=kx+b的图象经过点(0,1),则k+b的值为()A. 1B. 0C. -1D. 210. 在直角坐标系中,点B(3,-4)关于x轴的对称点为()A. (3,4)B. (-3,-4)C. (-3,4)D. (3,-4)二、填空题(每题3分,共30分)11. 已知等边三角形的边长为a,则其面积S为______。

12. 下列方程中,表示圆的方程是______。

13. 一次函数y=kx+b的图象经过点(2,3),则k+b的值为______。

14. 在直角坐标系中,点A(-1,2)关于y轴的对称点为______。

15. 正方形的对角线长度为4,则其边长为______。

16. 等腰三角形底边长为6,腰长为8,则其高为______。

17. 能表示正比例函数的是______。

2019-2020学年上海市杨浦区八年级下学期期末数学试题(解析版)

2019-2020学年上海市杨浦区八年级下学期期末数学试题(解析版)

2019学年第二学期期末质量调研卷初二数学一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.一次函数23y x =-的图像在y 轴的截距是()A.2B.-2C.3D.-3【答案】D【解析】【分析】根据函数解析式得到b=-3,即可得到截距.【详解】∵23y x =-,即b=-3,∴图像与y 轴的截距为-3,故选:D.【点睛】此题考查一次函数的图象与坐标轴的截距,与y 轴的截距即为b 的值,注意有正负.2.一次函数y =x ﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】分析:根据函数图像的性质解决即可.解析:1y x =-的图像经过第一、三、四象限,所以不经过第二象限.故选B.3.下列方程组是二元二次方程组的是()A.2322y x xy x =⎧⎨+-=⎩ B.2013xy x x y +=⎧⎪⎨+=⎪⎩C.531x y x y +=⎧⎨-=-⎩D.23y y x==-⎪⎩【答案】A【解析】【分析】根据二元二次方程组的定义,逐个判断得结论.【详解】解:选项A符合二元二次方程组的概念;选项B含分式方程,选项D含无理方程,故B、C都不是二元二次方程组;选项C是二元一次方程组.故选:A.【点睛】本题考查了二元二次方程组的定义,掌握二元二次方程组的概念是解决本题的关键.4.若一个多边形的外角和与它的内角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【答案】B【解析】【分析】任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可.【详解】解:设多边形的边数为n.根据题意得:(n-2)×180°=360°,解得:n=4.故选:B.【点睛】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360°和多边形的内角和公式是解题的关键.5.下列事件为必然事件的是()A.方程x²+1=0在实数范围内有解;B.抛掷一枚硬币,落地后正面朝上;C.对角线相等的平行四边形是矩形;D.对角线互相垂直的四边形是菱形.【答案】C【解析】【分析】根据一元二次方程的解法、矩形和菱形的判定定理判断.【详解】解:A 、方程210x +=在实数范围内有解,是不可能事件;B 、抛掷一枚硬币,落地后正面朝上,是随机事件;C 、对角线相等的平行四边形是矩形,是必然事件;D 、对角线互相垂直的四边形是菱形,是随机事件;故选:C .【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图,点C 、D 在线段AB 上,AC BD =,那么下列结论中,正确的是()A.AC 与BD 是相等向量B.AD 与BD 是平行向量C.AD 与BD 是相反向量D.AD 与BC是相等向量【答案】B【解析】【分析】由AC=BD ,可得AD=BD ,即可得AD 与BD 是平行向量,AD BC AC BD =-=-,,继而证得结论.【详解】A 、∵AC=BD ,∴AC BD =- ,该选项错误;B 、∵点C 、D 是线段AB 上的两个点,∴AD 与BD 是平行向量,该选项正确;C 、∵AC=BC ,∴AD≠BD ,∴AD 与BD不是相反向量,该选项错误;D 、∵AC=BD ,∴AD=BC ,∴AD BC =- ,,该选项错误;故选:B .【点睛】本题考查了平面向量的知识.注意掌握相等向量与相反向量的定义是解此题的关键.二、填空题(本大题共12个小题,每小题2分,共24分)7.已知一次函数(1)2y k x =-+的图像与直线3y x =平行,那么k =__________.【答案】4【解析】【分析】根据两直线平行,则函数解析式的一次项系数相同,即可确定k 的值.【详解】解: 一次函数(1)2y k x =-+的图象与直线3y x =平行,13k ∴-=,4k ∴=,故答案为:4.【点睛】本题考查了两条直线平行问题,属于基础题,关键是掌握两直线平行则k 值相同.8.已知一次函数(12)y m x m =-+,函数值y 随自变量x 的值增大而减小,那么m 的取值范围是__________.【答案】12m >【解析】【分析】根据一次函数(12)y m x m =-+的增减性列出不等式120m -<,通过解该不等式即可求得m 的取值范围.【详解】解:由题意得,120m -<,解得,12m >;故答案为:12m >.【点睛】本题考查了一次函数图象与系数的关系.在直线(0)y kx b k =+≠中,当0k >时,y 随x 的增大而增大;当k 0<时,y 随x 的增大而减小.9.方程3270x -=的解是__________.【答案】3x =【解析】【分析】先移项,再开立方即可.【详解】解:3270x-=,327x=,3x==,故答案为:3x=.【点睛】本题考查了解高次方程,能把高次方程转化成低次方程是解此题的关键.10.方程x=的解为__________.【答案】2x=【解析】【分析】本题含根号,计算比较不便,因此可先对方程两边平方,得到x+2=x2,再对方程进行因式分解即可解出本题.【详解】原方程变形为:x+2=x2即x2-x-2=0∴(x-2)(x+1)=0∴x=2或x=-1∵x=-1时不满足题意.∴x=2.故答案为:2.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.11.二元二次方程2260x xy y--=可以化为两个一次方程,他们是__________.【答案】30x y-=和20x y+=.【解析】【分析】先因式分解二元二次方程,根据两个式子的积为0得结论.【详解】解:因为226(3)(2)x xy y x y x y--=-+,所以2260x xy y--=可化为30x y-=或20x y+=.故答案为:30x y-=和20x y+=.【点睛】本题考查了高次方程,因式分解二元二次方程是解决本题的关键.若0ab=,则0a=或0b=.12.已知方程322301x x x x--+=-,如果设1x y x =-,那么原方程可化为关于y 的整式方程是__________.【答案】23320y y +-=【解析】【分析】由设出的y ,将方程左边前两项代换后,得到关于y 的方程,去分母整理即可得到结果.【详解】解:设1x y x =-,方程322301x x x x--+=-变形为2330-+=y y ,整理得:23320y y +-=.故答案为:23320y y +-=.【点睛】此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.13.一个不透明的口袋中,装有红球4个,黑球3个,这些球除颜色不同外其他都相同,从中任意摸出一个球,则摸到黑球的概率为__________.【答案】37【解析】【分析】先求出所有球的个数与黑球的个数,再根据概率公式解答即可.【详解】解: 共437+=个球在袋中,其中3个黑球,∴摸到黑球的概率为37.故答案为:37.【点睛】本题考查了概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )m n=,难度适中.14.在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信,已知全公司共发出2450条短信,那么这个公司有_________员工人.【答案】50【解析】【分析】设这个公司有员工x 人,则每人需发送(1)x -条祝贺元旦的短信,根据全公司共发出2450条短信,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设这个公司有员工x 人,则每人需发送(1)x -条祝贺元旦的短信,依题意,得:(1)2450x x -=,解得:150x =,249x =-(不合题意,舍去).故答案为:50.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.在平行四边形ABCD 中,如果3B A ∠=∠,那么A ∠=_________度.【答案】45【解析】【分析】由四边形ABCD 是平行四边形,根据平行四边形的对角相等,即可得A C ∠=∠,B D ∠=∠,又由180A B ∠+∠=︒,即可求得答案.【详解】解:四边形ABCD 是平行四边形,A C ∴∠=∠,B D ∠=∠,3B A ∠=∠Q ,180A B +∠=︒,45A ∴∠=︒.故答案为:45.【点睛】此题考查了平行四边形的性质.解题的关键是注意数形结合思想与平行四边形的对角相等定理的应用.16.已知菱形的边长为13,一条对角线长为10,那么它的面积等于__________.【答案】120【解析】【分析】根据菱形的对角线互相垂直平分,得已知对角线的一半是5.根据勾股定理,得要求的对角线的一半是12,则另一条对角线的长是24,进而求出菱形的面积.【详解】解:在菱形ABCD 中,13AB =,10AC =,对角线互相垂直平分,90AOB ∠=︒∴,5AO =,在Rt AOB ∆中,12BO =,224BD BO ∴==.∴则此菱形面积是10241202⨯=,故答案为:120.【点睛】本题考查了菱形的性质,注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.17.已知在梯形ABCD 中,//AD BC ,4AB AD DC ===,AC AB ⊥,那么梯形ABCD 的周长等于__________.【答案】20【解析】【分析】根据等腰三角形的性质得到DAC DCA ∠=∠,根据平行线的性质得到DAC ACB ∠=∠,得到DCA ACB ∠=∠,根据直角三角形的性质列式求出30BCA ∠=︒,根据直角三角形的性质求出BC ,根据梯形的周长公式计算,得到答案.【详解】解:AD DC = ,DAC DCA ∴∠=∠,//AD BC ,DAC ACB ∴∠=∠,DCA ACB ∴∠=∠,//AD BC ,AB DC =,2B BCD ACB ∴∠=∠=∠,AC AB ⊥ ,90B BCA ∴∠+∠=︒,即390BCA ∠=︒,30BCA ∴∠=︒,28BC AB ∴==,4AB AD DC === ,8BC =,∴梯形的周长444820=+++=,故答案为:20.【点睛】本题考查的是梯形的性质、直角三角形的性质、等腰三角形的性质,掌握含30°的直角三角形的性质是解题的关键.18.已知在直线l 上有,A B 两点,1AB =,以AB 为边作正方形ABCD ,联结BD ,将BD 绕着点B 旋转,使点D 落在直线l 上的点E 处,那么AE =__________.【答案】1+1-【解析】【分析】分两情况,当点E 在AB 的延长线上,当点E 在BA 的延长线上,由勾股定理求出BD 的长,则可得出答案.【详解】解:如图1,当点E 在AB 的延长线上,正方形ABCD 中,1AB AD ==,90DAB ∠=︒,BD ∴==将BD 绕着点B 旋转,使点D 落在直线l 上的点E 处,BD BE ∴==1AE AB BE ∴=+=+;如图2,当点E 在BA 的延长线上,同理可得2BD BE ==21AE BE AB ∴=-=.AE ∴21+21.21+或21-.【点睛】此题考查了旋转的性质,勾股定理,以及正方形的性质,熟练掌握勾股定理是解本题的关键.三、解答题:本大题共6个小题,共40分.19.21x x +-=【答案】14x =【解析】【分析】方程两边同时平方可把根号化去,逐渐化为整式方程,可求出解.【详解】解:移项,得21x x+=两边平方,得x移项整理,得x两边平方,得4x=1所以,正数x=14故答案为14.【点睛】本题考核知识点:二次根式,无理方程.解题关键点:方程两边同时平方把根号化去.20.解方程组:2220326x xy x xy y ⎧+=⎨-+=⎩①②【答案】110x y =⎧⎪⎨=⎪⎩220x y =⎧⎪⎨=⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩【解析】【分析】解①,用含y 的代数式表示x ,然后代入②求出y ,再求出方程组的解.【详解】解:2220326x xy x xy y ⎧+=⎨-+=⎩①②,由①,得()0x x y +=,所以0x =或x y =-.把0x =代入②,得226y =,解得y =.把x y =-代入②,得222326y y y ++=,整理,得21y =,所以1y =±.所以1x =-或1.故原方程组的解为:110x y =⎧⎪⎨=⎪⎩220x y =⎧⎪⎨=⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩.【点睛】本题考查了高次方程组的解法.变形①用代入法把二元二次方程组转化为一元二次方程,是解决本题的关键.21.如图,已知梯形ABCD ,//AD BC ,AB DC =,点E 在边BC 上,//DE AB ,请回答下列问题:(1)写出所有与AB 互为相反数的向量是.(2)在图中求作AB 与AD 的和向量:=AB AD + .(3)在图中求作BC 与DC 的差向量:=BC DC -.(4)AB BC CD ++= .【答案】(1)BA 或ED ;(2)A E ;(3)BD ;(4)AD【解析】【分析】(1)根据相反向量的定义判断即可.(2)利用三角形法则计算即可.(3)利用三角形法则计算即可.(4)利用三角形法则计算即可.【详解】解:(1)//AD BC ,//AB DE ,∴四边形ABED 是平行四边形,AB DE ∴=,∴与AB 互为相反的向量是BA 或ED .故答案为BA 或ED.(2)由题意,AB AD AD DE AE +=+= ,故答案为A E .(3)由题意,BC DC BC CD BD -=+= ,故答案为BD .(4)由题意AB BC CD AD ++= ,故答案为AD .【点睛】本题考查平面向量,平行四边形的判定和性质,三角形法则等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.如图,已知在ABC 中,AB AC =,点O 是ABC 内任意一点,点,,,D E F G 分别是,,,AB AC OB OC 的中点,2A BDF ∠=∠.求证:四边形DEFG 是矩形.【答案】见解析【解析】【分析】易证DE 是ABC ∆的中位线,FG 是OBC ∆的中位线,推出ADE ABC =∠∠,AED ACB ∠=∠,//DE FG ,DE FG =,则四边形DEGF 是平行四边形,由AB AC =,得A ABC CB =∠∠,则ADE AED ∠=∠,证1902ADE A ∠+∠=︒,90ADE BDF ∠+∠=︒,推出90EDF ∠=︒,即可得出结论.【详解】解:证明: 点D 、E 、F 、G 分别是AB 、AC 、OB 、OC 的中点,DE ∴是ABC ∆的中位线,FG 是OBC ∆的中位线,//DE BC ∴,12DE BC =,//FG BC ,12FG BC =,ADE ABC ∴∠=∠,AED ACB ∠=∠,//DE FG ,DE FG =,∴四边形DEGF 是平行四边形,AB AC = ,ABC ACB ∴∠=∠,ADE AED ∴∠=∠,180ADE AED A ∠+∠+∠=︒ ,即2180ADE A ∠+∠=︒,1902ADE A ∴∠+∠=︒,2A BDF ∠=∠ ,12BDF A ∴∠=∠,90ADE BDF ∴∠+∠=︒,1801809090EDF ADE BDF ∴∠=︒-∠-∠=︒-︒=︒,∴四边形DEGF 是矩形.【点睛】本题考查了平行线的性质、等腰三角形的性质、三角形中位线定理、平行四边形的判定、矩形的判定等知识;熟练掌握三角形中位线定理和矩形的判定是解题的关键.23.某校组织学生步行到科技展览馆参观,学校与展览馆相距6千米,返回时由于步行速度比去时每小时少1千米,结果时间比去时多用了半小时,求学生返回时步行的速度.【答案】3千米/小时【解析】【分析】设学生返回时步行的速度为x 千米/小时,则去时步行的速度为(1)x +千米/小时,根据时间=路程÷速度结合返回时比去时多用了半小时,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设学生返回时步行的速度为x 千米/小时,则去时步行的速度为(1)x +千米/小时,依题意,得:66112x x -=+,整理,得:2120x x +-=,解得:13x =,24x =-,经检验,13x =,24x =-是原方程的解,13x =符合题意,24x =-不符合题意,舍去.答:学生返回时步行的速度为3千米/小时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.某市为鼓励市民节约用水和加强对节水的管理,制订了以下每年每户用水的收费标准:①用水量不超过220立方米时,每立方米收费1.92元,并加收每立方米1.53元的污水处理费;②用水量超过220立方米时,在①的基础上,超过220立方米的部分,每立方米收费3.30元,并加收每立方米1.53元污水处理费;设某户一年的用水量为x 立方米,应交水费y 元.(1)分别对①、②两种情况,写出y 与x 的函数解析式,并指出函数的定义域;(2)当某户2019年全年缴纳的水费共计1000.5元时,求这户2019年全年用水量.【答案】(1)① 3.45(0220)y x x =< ;② 4.83303.6(220)y x x =->;(2)270立方米【解析】【分析】(1)由题意列出y 关于x 的函数解析式,根据限制条件写出函数定义域.(2)由交费可知说明该户用水量已超过220立方米,把数值代入函数关系式.【详解】解:(1)情况①:(1.92 1.53)y x =+,即 3.45(0220)y x x =<,情况②:220(1.92 1.53)(220)(3.30 1.53)y x =⨯++-+,即所求的函数解析式为 4.83303.6(220)y x x =->;(2)当该户一个月应交水费为1000.5元时,说明该户用水量已超过220立方米,则4.83303.61000.5x-=,解得270x=.答:该户一个月的用水量为270立方米.【点睛】本题主要考查了根据实际问题列一次函数解析式,根据220x>得出水费应有两部分组成是解题关键.四、解答题(本大题共2题,满分18分)25.如图,在平面直角坐标系中,直线y=2x与反比例函数y=kx在第一象限内的图像交于点A(m,2),将直线y=2x向下平移后与反比例函数y=kx在第一象限内的图像交于点P,且△POA的面积为2.(1)求k的值;(2)求平移后的直线的函数解析式.【答案】(1)k=2(2)y=2x-4【解析】【分析】(1)由点A的纵坐标求得m,即点A的坐标,把点A的坐标代入反比例函数中即可;(2)先求出PM,再求出BN然后用锐角三角函数求出OB,即可.【详解】(1)∵点A(m,2)在直线y=2x上,∴2=2m,∴m=1,∴点A(1,2),∵点A(1,2)在反比例函数y=kx上,∴k=2,(2)如图,设平移后的直线与y 轴相交于B ,过点P 作PM ⊥OA ,BN ⊥OA ,AC ⊥y 轴由(1)知,A(1,2),∴5∠BON=sin ∠AOC=55AC OA =,∵S △POA =12OA×PM=125,∴PM=55,∵PM ⊥OA ,BN ⊥OA ,∴PM ∥BN ,∵PB ∥OA ,∴四边形BPMN 是平行四边形,∴BN=PM=455,∵sin ∠BON=45555BN OB OB ==,∴OB=4,∵PB ∥AO ,∴B(0,−4),∴平移后的直线PB 的函数解析式y=2x−4.【点睛】此题是反比例函数和一次函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,待定系数法求函数解析式,平行四边形的判定和性质,坐标与图形变化-平移,锐角三角函数的意义,解本题的关键是作出辅助线.26.已知在平行四边形ABCD 中,AB BC ≠,将ABC 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B ∠=︒,AB =,=BC OAC 的面积;(3)如果30B ∠=︒,AB =AED 是直角三角形时,求BC 的长.【答案】(1)见解析;(2)8;(3)4或6【解析】【分析】(1)由折叠的性质得ACB ACE ∠=∠,BC EC =,由平行四边形的性质得AD BC =,//AD BC .则EC AD =,ACB CAD ∠=∠,得ACE CAD ∠=∠,证出OA OC =,则OD OE =,由等腰三角形的性质得ODE OED ∠=∠,证出CAD ACE OED ODE ∠=∠=∠=∠,即可得出结论;(2)证四边形ABCD 是矩形,则90CDO ∠=︒,==CD AB ,AD BC ==OA OC x ==,则OD x =-,在Rt OCD ∆中,由勾股定理得出方程,求出4OA =,由三角形面积公式即可得出答案;(3)分两种情况:90EAD ∠=︒或90AED ∠=︒,需要画出图形分类讨论,根据含30°角的直角三角形的性质,即可得到BC 的长.【详解】解:(1)证明:由折叠的性质得:ABC ∆≅△AEC ∆,ACB ACE ∴∠=∠,BC EC =,四边形ABCD 是平行四边形,AD BC ∴=,//AD BC .EC AD ∴=,ACB CAD ∠=∠,ACE CAD ∴∠=∠,OA OC ∴=,OD OE ∴=,ODE OED ∴∠=∠,AOC DOE ∠=∠ ,CAD ACE OED ODE ∴∠=∠=∠=∠,//AC DE ∴;(2) 平行四边形ABCD 中,90B ∠=︒,∴四边形ABCD 是矩形,90CDO ∴∠=︒,==CD ABAD BC ==由(1)得:OA OC =,设OA OC x ==,则OD x =,在Rt OCD ∆中,由勾股定理得:222)x x +-=,解得:364x =,4OA ∴=,OAC ∴∆的面积1192228OA CD =⨯=⨯;(3)分两种情况:①如图3,当90EAD ∠=︒时,延长EA 交BC 于G ,AD BC = ,BC EC =,AD EC ∴=,//AD BC ,90EAD ∠=︒,90EGC ∴∠=︒,30B ∠=︒ ,AB =30AEC ∴∠=︒,1122GC EC BC ∴==,G ∴是BC 的中点,在Rt ABG ∆中,32BG AB ==,26BC BG ∴==;②如图4,当90AED ∠=︒时AD BC = ,BC EC =,AD EC ∴=,由折叠的性质得:AE AB =,AE CD ∴=,在ACE ∆和CAD ∆中,AE CD CE AD AC CA =⎧⎪=⎨⎪=⎩,()ACE CAD SSS ∴∆≅∆,ECA DAC ∴∠=∠,OA OC ∴=,OE OD ∴=,OED ODE ∴∠=∠,AED CDE ∴∠=∠,90AED ∠=︒ ,90CDE \Ð=°,//AE CD ∴,又//AB CD ,B ∴,A ,E 在同一直线上,90BAC EAC ∴∠=∠=︒,Rt ABC ∆ 中,30B ∠=︒,AB =2AC ∴==,24BC AC ==;综上所述,当AED ∆是直角三角形时,BC 的长为4或6.【点睛】本题是四边形综合题目,考查了翻折变换的性质、平行四边形的性质、平行线的判定与性质、矩形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、勾股定理、直角三角形的性质等知识;本题综合性强,熟练掌握翻折变换的性质和平行四边形的性质是解题的关键.。

上海市杨浦区2018-2019学年八年级下学期期中考试数学试卷(解析版)

上海市杨浦区2018-2019学年八年级下学期期中考试数学试卷(解析版)

2018学年第二学期期中初二年级质量调研卷一、填空题(本大题15题,每题2分,满分30分)1.一次函数与x轴的交点是____________2.要使直线不经过第四象限,则该直线至少向上平移__________个单位3.直线与平行,且经过点(2,1),则k=______b=_______4.已知,一次函数的图像经过点A(2,1)(如下图所示),当时,x的取值范围是______5.已知点,是直线上的两点,且当<时,>,则该直线经过______________象限.6.关于x的方程的解是一切实数,那么实数a=_________7.已知方程若设,则原方程可化为关于y的整式方程__8.方程的解是_______________9.将方程组:转化成两个二元二次方程组分别________和____________10.若方程有增根,则a的值为______________11.关于x的方程:是二项方程,k=_____________12.如图,平行四边形ABCD中,对角线AC⊥BD,AC=10,BD=24 ,则AD=____________13.平行四边形ABCD中,∠A:∠B=2:7,则∠C=_________º14.如果从某个多边形的一个顶点出发的对角线共有2 条,那么该多边形的内角和是____度.15.如果一个平行四边形的一个内角的平分线分它的一边为1:2两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”,当协调边为6时,它的周长为______二、选择题(本大题共4题,每题3分,满分12分)16.下列方程组中,属于二元二次方程组的是()A. B. C. D.17.有实数根的方程是()A. B. C. D.18.一个多边形,边数每增加1,内角和是()A. 不变B. 增加1 ºC. 增加180 ºD. 增加360 º19.一次函数,若y 随着x的增大而减小,则该函数的图像经过()A一、二、三 B. 一、二、四 C. 二、三、四 D. 一、三、四三、简答题(本大题共5题,每题6分,满分30分)20.解方程:21.解方程:22.解方程组:23.声音在空气中传播速度y(米/秒)是气温x (摄氏度)的一次函数,下表列出了一组不同气温时的音速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杨浦区2019学年第二学期初二年级数学学科期末教学质量监控测试题(满分100分,考试时间90分钟)考生注意:1.本试卷含六个大题,共25题;2.除第一、二大题外,其余各题如无特别说明,都必须写出解答的主要步骤.一、选择题(本大题共6题,每题3分,满分18分)1.一次函数21y x =-+的图像经过 ( ) (A )一、二、三象限; (B )二、三、四象限;(C) 一、三、四象限; (D )一、二、四象限.2.下列关于x 的方程一定有实数根的是 ( ) (A )10ax +=; (B )210ax +=; (C )0x a +=; (D )20x a +=. 3.下列事件中,属于随机事件的是 ( ) (A )凸多边形的内角和为500°; (B )凸多边形的外角和为360°;(C )四边形绕它的对角线交点旋转180°能与它本身重合;(D )任何一个三角形的中位线都平行于这个三角形的第三边.4.如果点C 、D 在线段AB 上,AC=BD ,那么下列结论中正确的是 ( ) (A )AC 与BD 是相等向量; (B )AD 与BC 是相等向量;(C )AD 与BD 是相反向量; (D )AD 与BD 是平行向量 5.四边形ABCD 中,对角线AC 、BD 交于点O 。

给出下列四组条件:①AB //CD ,AD //BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB //CD ,AD =BC 。

其中一定能判定这个四边形是平行四边形的条件共有 ( ) (A )1组; (B )2组; (C )3组; (D )4组.6.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路线长为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是 ( )(第6题图) (A ) (B ) (C ) (D )二、填空题(本大题共12题,每题2分,满分24分)7.若一次函数(2)1y k x =-+中,y 随x 的增大而减小,则k 的取值范围是 . 8.已知直线()32+-=x k y 与直线23-=x y 平行,那么k = . 9.方程320x +=在实数范围内的解是 .10.用换元法解方程31122=-+-x x x x 时,如果设y x x =-12,那么得到关于y 的整式方程为 .11.如图,已知一次函数y =kx +b 的图像经过点A (5,0)与B (0,-4),那么关于x 的不等式kx +b <0的解集是 .12.设关于x 的一次函数11y a x b =+与22y a x b =+,则称函数1122()()y m a x b n a x b =+++(其中+1m n =)为此两个函数的生成函数。

写出一个1y x =+和2y x =的生成函数: .13.联欢会上,每位同学向其他同学赠送1件礼物,结果共有互赠礼物870件,求参加联欢会的同学人数.设参加联欢会的同学有x 人,那么可列出方程 . 14.写出一个既是轴对称图形又是中心对称图形的四边形 .15.如图,平行四边形ABCD 中,已知AB=3,AD=5,∠BAD 的平分线交BC 于点E ,则CE = .16.如果梯形的一底边长为6,中位线长为8,那么另一底边长为 .17.如图,将两个形状相同的三角板放置在一张矩形纸片上,按图示画线得到四边形ABCD ,那么四边形ABCD 的形状是 .18.从-1,1中任取一个数作为一次函数b kx y +=的系数k ,从-2,2中任取一个数作为一次函数b kx y +=的截距b ,则所得一次函数b kx y +=经过第一象限的概率是 .(第11题图)D CBA (第15题图)E三、(本大题共7题,满分38分)19.(本题6分)1= 20.(本题6分)解方程组:223240.xy x xy y =⎧⎨-+-=⎩解: 解:21.(本题6分)如图,在平面直角坐标系中,O 为原点,点A 、B 、C 的坐标分别为(2,0)、(-1,3)、(-2,-2). (1)在图中作向量OB OA +,并指出所求作的向量; (2)在图中作向量OC OB -,并指出所求作的向量; (3)填空:=++CA BC AB .22.(本题6分)有两个不透明的袋子分别装有红、白两种颜色的球(除颜色不同外其余均相同),甲袋中有2个红球和1个白球,乙袋中有1个红球和3个白球. (1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是 . (2)如果在乙袋中随机摸出两个小球,那么摸到两球颜色相同的概率是 . (3)如果在甲、乙两个袋子中分别随机摸出一个小球,那么摸到两球颜色相同的概率 是多少?(请用列表法或树状图法说明) 解:(3)x23.(本题6分)已知:如图,AM 是△ABC 的中线,D 是线段AM 的中点,AM =AC ,AE ∥BC .求证:四边形EBCA 是等腰梯形.证明:24.(本题8分)小王开车从甲地到乙地,去时走A 线路,全程约100千米,返回时走B 线路,全程约60千米.小王开车去时的平均速度比返回时的平均速度快20千米/小时,所用时间却比返回时多15分钟.若小王返回时的平均车速不低于70千米/小时,求小王开车返回时的平均速度.C四、(本大题共2题,满分20分)25.(本题10分)定义[],p q 为一次函数y px q =+的特征数。

(1)若特征数为[]2,2k -的一次函数为正比例函数,求k 的值;(2)已知直角坐标系中点A (1,3),点B (4,0),求图像过A 、B 两点的一次函数的特征数; (3)在(2)的条件下,若原点O 与A 、B 、C 构成的四边形为平行四边形,求所有符合条件的点C 的坐标.26.(本题10分) (1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE .求证:CE =CF ;(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果∠GCE =45°,请你利用(1)的结论证明:GE =BE +GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC ,E 是AB 上一点,且∠DCE =45°,BE =4,DE =10, 求直角梯形ABCD 的面积.A BE BCD E(图1)(图2)(图3)杨浦区第二学期八年级数学期末卷一、 选择题(每小题3分)1、 D ;2、C ;3、C ;4、D ;5、C ;6、B 二、 填空题(每小题2分)7、2k >;8、5;9、x =;10、2310y y -+=;11、5x <;12、略;13、(1)870x x -=14、略;15、2;16、10;17、等腰梯形;18、34三、解答题 19.解:,51x x -=----------------------------------------------1分两边平方整理得:x x -=-2, -----------------------------1分两边平方整理得:0452=+-x x ,------------------------------1分 解得 .4,121==x x ----------------------------------------2分 经检验:1=x 是增根,4=x 是原方程的根. -------------------1分 所以原方程的根是4=x . 20. 解:由(2)得22x-y x-y ==-或∴原方程组转化为32.xy x-y==⎧⎨⎩或32.xy x-y=-=⎧⎨⎩---------------------------------2分解得:3141234131313312x =x =x =-x =-,,,y =y =-y =y =-⎧⎧⎧⎧⎨⎨⎨⎨⎩⎩⎩⎩-----------------------------------4分 21.(1)(2)图略-----------------------每小题各2分 (3)0-----------------------------2分 22. 解:(1)32.-----------------------1分 (2)21.------------------------2分(3)解:列表法或画树状图(略)---------------------------------1分共有12种等可能的情况,其中摸到的两球颜色相同的可能情况有5种,所以摸到的两球颜色相同的概率P =125.--------------------2分 23. 证明:∵AE ∥BC ,∴∠AED =∠MCD ,∠EAD =∠CMD .∵AD =MD ,∴△AED ≌△MCD .∴AE =CM .--------------------------1分 ∵BM =CM ,∴AE =BM .∴四边形AEBM 是平行四边形.-------------------------------------------1分 ∴EB =AM .----------------------------------------------------------------------1分 而AM =AC ,∴EB =AC .------------------------------------------------------1分 ∵AE ∥BC ,EB 与AC 不平行,∴四边形EBCA 是梯形.-----------1分 ∴梯形EBCA 是等腰梯形.--------------------------------------------------1分24. 解:设小王开车返回时的平均速度是x 千米/时,根据题意得:-------------------1分1006015x+20x 60-=,---------------------------------------------------------------------3分 整理得214048000x x -+=解这个方程,得x 1=80,x 2=60,--------------------------------------------------2分 经检验,x 1=80,x 2=60,是原方程的解,但x 2=60不符题意,舍去。

----1分 答:小王开车返回时的平均速度是80千米/时。

-----------------------------------------1分 四、解答题25. 解:(1)特征数为[]2,2k -的一次函数为2(2)y x k =+-,∵它是正比例函数,∴k-2=0,∴k=2---------------------------------------------------2分 (2)设图像过A 、B 两点的一次函数解析式为y kx b =+ ∴304k b k b =+⎧⎨=+⎩,解得14k b =-⎧⎨=⎩,----------------------------------------------------------2分 ∴图像过A 、B 两点的一次函数的特征数为[]1,4------------------------------1分(3)情况一:AO//BC 1,AC 1//OB , 作AH ⊥x 轴,C 1N ⊥x 轴,BM ⊥C 1N ,则 ∵OAC 1B 为平行四边形,∴AO=C 1B,AO// BC 1, ∴∠AOH=∠C 1BN, ∴△AOH ≌△C 1BN , ∴C 1N=AH=3,BN=OH=1,∴C 1N=3,ON=5∴C 1情况二:AB//OC 2,AO//C 2B ,(过程略)解得C 2(3,-3)------------------------------------------------1分 情况:AB//OC 3,AC 3//OB ,(过程略)解得C 3(-3, 3)------------------------------------------------1分(注:还有2分给第(3)小题的解题过程,三种情况中若有一种情况的解题过程正确,就可以得此2分;当三种情况的解题过程都不完全时,酌情给分)xC 126. 解:(1)证明:在正方形ABCD 中,∵BC =CD ,∠B =∠CDF ,BE =DF ,∴△CBE ≌△CDF (SAS )。

相关文档
最新文档