2018-2019学年高一上学期期末考试数学试卷含答案
广东省惠州市2018-2019学年第一学期期末考试高一数学试题答案与评分标准

惠州市2018-2019学年第一学期期末考试高一数学试题答案与评分标准一.选择题:本大题共12小题,每小题5分。
(1)【解析】}{1,3A =,}{3,4,5B =,所以}{3AB =故选A.(2)【解析】∵()4,2a =, ()1,b x =,且a b ⊥,∴420x +=,解得2x =-。
选B 。
(3)【解析】因为3cos(23)=cos 22y x x ⎛⎫⎛⎫=++⎪ ⎪⎝⎭⎝⎭,所以向左移23个单位,选A 。
(4)【解析】()1 2.7230,(2)7.3940,(1)(2)0f f f f =-<=->⋅< 选B(5)【解析】由指数函数的性质可知:,,,且,,综上可得:,故选D .(6)【解析】3112cos =⎪⎭⎫⎝⎛-θπ,3112cos 12-2sin 125sin =⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+θπθππθπ,故选C. (7)【解析】设2()ln f x x x =+,定义域为{|0}x x ≠,22()()ln ln ()f x x x x x f x -=-+-=+=,所以函数()f x 为偶函数,其图象关于y 轴对称.且当0x >时,2()ln f x x x =+为单调递增函数.故选A (8)【解析】()()()1841,4)1(==-=-f f f f ,即21824=⇒=+αα,故选C.(9)【解析】由图象可知32=A ,πππ=--=)127(125T ,从而222===πππωT ,又当12π-=x 时,32)12-2sin(32=+⎪⎭⎫ ⎝⎛⋅=ϕπy ,所以()Z k k ∈+=+⎪⎭⎫⎝⎛⋅ππϕπ2212-2,又πϕ<,解得:32πϕ=,选D (10)【解析】如图所示O 是三角形ABC 的垂心,BE ⊥AC ,AD ⊥BC , D 、E 是垂足.()OA OB OB OC OB OC OA ⋅⇔⋅⋅=-=0,0OB CA OB CA ⇒⇔⋅⊥=,()2310,12a ⎛⎫=∈ ⎪⎝⎭()1310,13b ⎛⎫=∈ ⎪⎝⎭ln31c =>2312a ⎛⎫= ⎪⎝⎭1313b ⎛⎫== ⎪⎝⎭b a >c b a >>同理,OA BC OC AB ⊥⊥⇔O 为ABC ∆的垂心,故选D (11)【解析】如图,由题意可得:4,32==∠OA AOB π在Rt △AOD 中,可得:∠AOD =3π,∠DAO =6π,OD =12AO =1422⨯=, 可得:矢=4-2=2,由322343sin=⨯=⋅=πAO AD ,可得:弦=2AD =34322=⨯, 所以:弧田面积=12(弦×矢+矢2)=12(2+22)2平方米. 实际面积C . (12)【解析】当[]3,2∈x 时,()()223218122--=-+-=x x x x f ,图象为开口向下,顶点为()0,3的抛物线, 函数()1log )(+-=x x f y a 在()∞+,0上至少有三个零点,令()()1log +=x x g a ,因为()0≤x f ,所以()0≤x g ,可得10<<a ,要使函数()1log )(+-=x x f y a 在()∞+,0上至少有三个零点,如图要求()()22f g >, ()()23log 2212log ->⇒-=>+a a f ,可得3333132<<-⇒<a a,0>a ,所以330<<a ,故选A . 二.填空题:本大题共4小题,每小题5分。
双牌县一中2018-2019学年高三上学期11月月考数学试卷含答案

A.﹣
B.
C.
4. 如果执行右面的框图,输入 N=5,则输出的数等于(
D. )
A. B. C. D. 5. 有下列关于三角函数的命题 P1:∀x∈R,x≠kπ+ (k∈Z),若 tanx>0,则 sin2x>0;
P2:函数 y=sin(x﹣ )与函数 y=cosx 的图象相同;
P3:∃x0∈R,2cosx0=3;
人数的 1 ,则此次数学考试成绩在 100 分到 110 分之间的人数约为(
)
10
(A) 400
( B ) 500
(C) 600
(D) 800
2. 函数 f(x)=cos2x﹣cos4x 的最大值和最小正周期分别为(
)
A. ,π B. , C. ,π D. ,
3. ( )0﹣(1﹣0.5﹣2)÷
的值为( )
(3)当 a
1 时,函数
f
x 有两个零点
x1, x2
x1
x2 ,且
x0
x1
x2 2
,求证:
f
x0
0.
22.在四棱锥 E﹣ABCD 中,底面 ABCD 是边长为 1 的正方形,AC 与 BD 交于点 O,EC⊥底面 ABCD,F 为 BE 的中点. (Ⅰ)求证:DE∥平面 ACF; (Ⅱ)求证:BD⊥AE.
【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新
课标的这一重要思想.
10.已知集合 M {x | 2x2 5x 0, x Z} , N {0, a},若 M N ,则 a ( )
A. 1
B.
C. 1或
江西省南昌市南昌县2019-2020学年高一上学期期末考试数学试卷(含答案)

江西省南昌市南昌县2019-2020学年高一上学期期末考试数学试卷一、单选题(5*12=60) 1.下面与角233π终边相同的角是 A .43π B .3π C .53π D .23π 2.计算sin (-1380°)的值为 A .1-2B .12C .3-D .3 3.已知a =log 20.3,b =20.1,c =0.21.3,则a ,b ,c 的大小关系是 A .a b c <<B .c a b <<C .b c a <<D .a c b <<4.已知cos sin()0απα⋅+<,那么角α是A.第一或第二象限角B .第二或第三象限C .第一或第三象限角D .第一或第四象限角 5.使不等式2-2sin x ≥0成立的x 的取值集合是 A .3|22,44x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭B .7|22,44x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C .5|22,44x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭D .57|22,44x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭6.函数()y Asin x ωϕ=+的部分图象如图所示,则 A .2sin 26y x π⎛⎫=-⎪⎝⎭B .2sin 23y x π⎛⎫=-⎪⎝⎭C .2sin 26y x π⎛⎫=+ ⎪⎝⎭ D2sin 23y x π⎛⎫=+ ⎪⎝⎭ 7.已知()()()235121(11)521x x f x x x x x ⎧+≤-⎪=+-<<⎨⎪-≥⎩,若()2f x =,则x 的值是A .1-B .1-或45C .22±D . 1-或 22±8.已知0,2x π⎛⎫∈ ⎪⎝⎭,3cos 45x π⎛⎫+= ⎪⎝⎭,则sin x 的值为A .10-B .10C .10D .10-9.已知奇函数()f x 满足()()2f x f x +=,当()0,1x ∈时,函数()2xf x =,则12log 23f ⎛⎫ ⎪⎝⎭=A .1623-B .1623C .2316-D .231610.关于函数2sin 314y x π⎛⎫=++ ⎪⎝⎭,下列叙述有误的是 A .其图象关于直线4πx =-对称 B .其图象关于点14π⎛⎫⎪⎝⎭,对称 C .其值域是[]1,3- D .其图象可由2sin 14y x π⎛⎫=++ ⎪⎝⎭图象上所有点的横坐标变为原来的3倍得到 11.先把函数()sin()6f x x π=-的图象上各点的横坐标变为原来的12(纵坐标不变),再把新得到的图象向右平移3π个单位,得到()y g x =的图象,当3(,)44x ππ∈时,函数()g x 的值域为A .(B .1(,1]2- C .( D .[1,0)- 12.已知函数22()2sin cos ()sin (0)24x f x x x ωπωωω=-->在区间25[,]36ππ-上是增函数,且在区间[0,]π上恰好取得一次最大值,则ω的范围是 A .3(0,]5B .13[,]25C .13[,]24D .15[,)22二、填空题(5*4=20)13.已知tan =2α,则3sin(2)cos()2cos 2ππααα-⋅+= _________.14.函数()2sin(2),0,32f x x x ππ⎡⎤=-∈⎢⎥⎣⎦的单调减区间___________ 15.已知函数2()4,[0,3],f x x x a x =-++∈若()f x 有最小值2-,则()f x 的最大值为____16.对于函数,给出下列四个命题:①该函数是以为最小正周期的周期函数;②当且仅当时,该函数取得最小值是-1;③该函数的图象关于直线对称;④当且仅时,.其中正确命题的序号是_____(请将所有正确命题的序号都填上)三、解答题17.(本小题满分10分)已知扇形的圆心角所对的弦长为2,圆心角为2弧度. (1)求这个圆心角所对的弧长; (2)求这个扇形的面积.18.(本小题满分12分)已知函数f (x )的定义域为A ,函数g (x )(﹣1≤x ≤0)的值域为B .(1)求A ∩B ;(2)若C ={x |a ≤x ≤2a ﹣1}且C ⊆B ,求a 的取值范围.19.(本小题满分12分)若函数2()3sin 22cos 3.f x x x =++ (I )求()y f x =的最小正周期;(II )求()y f x =在x ∈R 时的最小值,并求相应的x 取值集合.20.(本小题满分12分)已知43cos α=,0,2πα⎛⎫∈ ⎪⎝⎭.(1)求()sin4απ+的值; (2)若()11cos 14αβ+=,0,2πβ⎛⎫∈ ⎪⎝⎭,求β的值.21.(本小题满分12分)函数()()sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭在它的某一个周期内的单调减区间是511,1212ππ⎡⎤⎢⎥⎣⎦. (1)求()f x 的解析式;(2)将()y f x =的图象先向右平移6π个单位,再将图象上所有点的横坐标变为原来的12倍(纵坐标不变),所得到的图象对应的函数记为()g x ,求函数()g x 在3,88ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.22.(本小题满分12分)已知定义在上的函数是奇函数.(1)求的值,并判断函数在定义域中的单调性(不用证明);(2)若对任意的,不等式恒成立,求实数的取值范围.参考答案一.选择题二.填空题 13.43 14.5,122ππ⎡⎤⎢⎥⎣⎦15.2 16.③④ 三.解答题17.∵扇形的圆心角所对的弦长为2,圆心角α=2弧度,∴扇形半径为1sin1r =. (1)这个圆心角所对的弧长为122sin1sin1l r α==⨯=. (2)扇形面积为21121122sin1sin1sin 1S lr ==⨯⨯=.19.(I )()cos2132sin 246f x x x x π⎛⎫=+++=++ ⎪⎝⎭,T π∴=.(II )()()min 2sin 24,2,6f x x f x π⎛⎫=++∴= ⎪⎝⎭()ππ,2x 2k πk Z 62+=-+∈此时 , ()ππx k πk Z ,x {x |x k π,k Z}.33∴=-+∈=-+∈即的取值集合为20.解:(1)由cos α=,0,2πα⎛⎫∈ ⎪⎝⎭,得17sin α===,所以sin cos cos sin 444sin πππααα⎛⎫+=+⎪⎝⎭ 17==(2)因为,0,2παβ⎛⎫∈ ⎪⎝⎭,所以()0,αβπ+∈,又()11cos 14αβ+=,则()sin αβ+===,所以()sin sin βαβα=+- ()()sin cos cos sin αβααβα=+-+11111471472=-⨯=, 因为0,2πβ⎛⎫∈ ⎪⎝⎭,所以6πβ=.21.(1)由条件,115212122T πππ=-=, ∴2,ππω= ∴2ω= 又5sin 21,12πϕ⎛⎫⨯+= ⎪⎝⎭∴3πϕ=- ∴()f x 的解析式为()sin 23f x x π⎛⎫=-⎪⎝⎭(2)将()y f x =的图象先向右平移6π个单位,得2sin 23x π⎛⎫- ⎪⎝⎭∴()2sin 43g x x π⎛⎫=-⎪⎝⎭而325,,488636x x πππππ⎡⎤∈∴-≤-≤⎢⎥⎣⎦∴函数()g x 在3,88ππ⎡⎤⎢⎥⎣⎦上的最大值为1,最小值为12-。
河北省任丘一中2018-2019学年高一上学期期末考试数学试卷

高一数学期末试题注意事项:1. 答卷前,考生务必将自己的班级、姓名、准考证号填写在答题卡上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,用黑色墨水签字笔在答题卡上书写作答。
写在本试卷上的答案无效。
3. 考试结束后,将答题卡上交。
一、选择题(本大题共12小题,每小题5分,共60分)1.已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合 A ∩(∁U B )等于( ) A .{2,5} B .{3,6} C .{2,5,6}D .{2,3,5,6,8}2.已知函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如图所示的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f (g (2))等于( )A .3B .2C .1D . 03.若函数f (2x +1)=x 2-2x ,则f (3)等于( ) A .0 B .1 C .2 D .34.下列函数中,既是奇函数又是增函数的是( ) A .y =x +1 B .y =-x 3C .y =1xD .y =x |x |5 .4e -32=( )A .e -3B .3-e C.3-eD .±3-e6.已知函数f (x )=⎩⎪⎨⎪⎧e x-1,x ≤1,ln x ,x >1,那么f (ln 2)的值是( ) A .0 B.1 C .ln(ln 2)D .27.幂函数的图象过点⎪⎭⎫ ⎝⎛41,2,则它的单调递增区间是( ) A .(0,+∞) B.[0,+∞) C .(-∞,0)D .(-∞,+∞)8.已知a =0.3,b =20.3,c =0.30.2,则a ,b ,c 三者的大小关系是( ) A .b >c >a B.b >a >c C .a >b >cD .c >b >a9.下列函数中,定义域为R 的是( ) A .y =x -2B.y =x 12C .y =x 2D .y =x -110.若a =ln 22,b =ln 33,c =ln 55,则有( )A .a >b >c B.b >a >c C .b >c >aD .a >c >b11.已知a =312,b =log1312,c =log 213,则( ) A .a >b >c B .b >c >a C .c >b >aD .b >a >c12.已知f (x )是函数y =log 2x 的反函数,则y =f (1-x )的图象是( )二、填空题(每小题5分) 13. 函数f (x )=1x +1+4-2x 的定义域为_______________14.若函数f (x )=⎩⎪⎨⎪⎧2,x >0,x 2,x ≤0,则满足f (a )=1的实数a 的值为_______________15.2log 3log _______________16.设奇函数f (x )的定义域为[-5,5],当x ∈[0,5]时,函数y =f (x )的图象如图,则使函数值y <0的x 的取值集合为________________.17.函数y =-1x,x ∈[-3,-1]的最大值与最小值的差是________.三、解答题(每小题13分)18.已知函数f (x )=lg(3+x )+lg(3-x ).(1)求函数f (x )的定义域; (2)判断函数f (x )的奇偶性.19.(本小题满分10分)已知函数f (x )=x +m x,且f (1)=3.(1)求m 的值;(2)判断函数f (x )的奇偶性.20.求函数f (x )=⎩⎪⎨⎪⎧1x0<x <1x 1≤x ≤2的最值.21.已知f (x )=log 3x .(1)作出这个函数的图象;(2)若f (a )<f (2),利用图象求a 的取值范围.22.已知函数f (x )=ax -1(x ≥0)的图象经过点⎝ ⎛⎭⎪⎫2,12(其中a >0,且a ≠1). (1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.数学答案一、选择题(本大题共12小题,每小题5分,共60分)二、填空题(每小题5分)13、 (-1,2] 14、-115、log 735 16、(-2,0)∪(2,5) 17、23三、解答题 18解:(1)由30,30,x x +>⎧⎨->⎩得-3<x <3,∴函数f (x )的定义域为(-3,3).(2)由(1)知,函数f (x )的定义域关于原点对称, 又∵f (-x )=lg(3-x )+lg(3+x )=f (x ), ∴函数f (x )为偶函数.19解:(1)∵f (1)=3,即1+m =3, ∴m =2.(2)由(1)知,f (x )=x +2x ,其定义域是{x |x ≠0},关于原点对称, 又f (-x )=-x +2-x=-⎝⎛⎭⎫x +2x =-f (x ), ∴此函数是奇函数.20解:函数f (x )的图象如图,由图象可知f (x )的最小值为f (1)=1.无最大值. 21解:(1)作出函数y =log 3x 的图象,如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2. 由图象知:当0<a <2时, 恒有f (a )<f (2).∴所求a 的取值范围为0<a <2. 22 (1)解:(数图象过点⎝⎛⎭⎫2,12, 所以a 2-1=12,则a =12.(2)f (x )=⎝⎛⎭⎫12x -1(x ≥0), 由x ≥0得,x -1≥-1, 于是0<⎝⎛⎭⎫12x -1≤⎝⎛⎭⎫12-1=2.。
函数的单调性+奇偶性(含答案)

函数的单调性+奇偶性(含解析)一、单选题1.函数1()lg(21)f x x =-的定义域为( ) A .1|2x x ⎧⎫>⎨⎬⎩⎭ B .12x x ⎧≥⎨⎩且}1x ≠ C .12x x ⎧⎨⎩且}1x ≠ D .1|2x x ⎧⎫≥⎨⎬⎩⎭2.函数()f x = ) A .1,3⎛⎫-+∞ ⎪⎝⎭ B .1,13⎛⎫- ⎪⎝⎭ C .1,13⎡⎫-⎪⎢⎣⎭ D .1,3⎛⎫-∞- ⎪⎝⎭3.已知函数,若方程有两个实数根,则实数k 的取值范围是( ) A .(−1,−12] B .[−12,0) C .[−1,+∞) D .[−12,+∞) 4.设函数()1,02,0x x x f x b x +≥⎧=⎨+<⎩是R 上的单调增函数,则实数b 的取值范围为( ) A .(),1-∞ B .[)0,+∞ C .(],0-∞ D .(]1,1- 5.下列函数既是偶函数,又在(),0-∞上单调递减的是()A .12x y ⎛⎫= ⎪⎝⎭B .23y x -=C .1y x x =-D .()2ln 1y x =+ 6.设 ()212,11,1x x f x x x ⎧--≤⎪=⎨+>⎪⎩,则()()2f f =( ) A .-2B .2C .5D .267.集合{|,P x y =={|,Q y y ==U =R ,则()U P Q ⋂是( ) A .[)1,+∞B .∅C .[)0,1D .[)1,1- 8.函数x x x f 431)(3-=的单调递减区间是( )A .)2,(--∞B .)2,2(-C .),2(∞+D .),2()2,(+∞⋃--∞9.已知集合214A x x ⎧⎫=⎨⎬⎩⎭∣,集合{B y y ==∣,则A B =( ) A .11,22⎡⎤-⎢⎥⎣⎦ B .[1,1]- C .[0,1] D .1[0,]210.若函数()f x 满足()2f x x =+,则()32f x +的解析式是( )A .()3298f x x +=+B .()3232f x x +=+C .()3234f x x +=--D .()3234f x x +=+11.函数f (x )是定义域为R 的奇函数,当x>0时,f (x )=x+1,则当x<0时,f (x )的 表达式为( )A .1)(+-=x x fB .1)(--=x x fC .1)(+=x x fD .1)(-=x x f12.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩, 则[(2)]f f -的值为( ) A .1B .2C .4D .5二、多选题13.已知函数()f x 是一次函数,满足()()98ff x x =+,则()f x 的解析式可能为( ) A .()32f x x =+B .()32f x x =-C .()34f x x =-+D .()34f x x =-- 14.已知函数2,[1,2)x y x ∈-=,下列说法正确的是( )A .函数是偶函数B .函数是非奇非偶函数C .函数有最大值是4D .函数的单调增区间是为(0,2)15.下列函数中,与y x =是同一个函数的是( ) A .3log 3x y = B.3log 3x y = C.y = D .2y = 16.中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function ”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合-{}1,1,2,4M =-,{}1,2,4,16N =,给出下列四个对应法则,请由函数定义判断,其中能构成从M 到N 的函数的是( )A .2y x =B .2y x =+C .2x y =D .2y x三、填空题17.函数()f x =_______.18.偶函数()f x 满足当0x >时,()34f x x =+,则()1f -=_____.19.已知定义在R 上的偶函数()f x 在(0,)+∞上单调递增,则()f x 在(,0)-∞上的单调性是________.20.设,0()ln ,0x e x g x x x ⎧≤=⎨>⎩则1()2g g ⎡⎤=⎢⎥⎣⎦____________.四、解答题21.已知()222f x x x =-+.(1)画出()f x 的图象.(2)根据图象写出()f x 的单调区间和值域.22.用函数的单调性的定义证明函数()4f x x x=+在()2,+∞上是增函数. 23.求解下列函数的定义域(1)(2) 24.求函数1,01(),12x f x x x x ⎧<<⎪=⎨⎪⎩的最值25.已知函数1(),f x a x=-其中0a >。
黑龙江省哈尔滨市第三中学校2018-2019学年高一上学期期末考试数学试题(解析版)

哈三中2018—2019学年度上学期高一学年第一模块数学试卷第I卷(选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.()A. B. C. D.【答案】A【解析】【分析】利用特殊角的三角函数值计算即可求出值.【详解】故选:A【点睛】此题考查了特殊角的三角函数值,正确记忆相关角的的三角函数值是解题的关键.2.()A. 2B. -3C. 7D. 1【答案】B【解析】【分析】利用根式的性质及对数的运算性质直接化简求值即可.【详解】.故选:B【点睛】本题考查了根式的运算性质,考查了对数的运算性质,考查了计算能力.3.已知集合,,,则()A. B.C. D.【答案】C【解析】【分析】,借助余弦图像即可得到结果.【详解】∵,∴即故选:C【点睛】本题考查交集概念及运算,考查余弦函数的图象与性质,属于基础题.4.函数的零点所在区间为()A. B.C. D.【答案】C【解析】【分析】令函数f(x)=0得到,转化为两个简单函数g(x)=2x,h(x),最后在同一坐标系中画出g(x),h(x)的图象,进而可得答案.【详解】令0,可得,再令g(x)=2x,,在同一坐标系中画出g(x),h(x)的图象,可知g(x)与h(x)的交点在(,1),从而函数f(x)的零点在(,1),故选:C.【点睛】本题主要考查函数零点所在区间的求法.考查数形结合思想是中档题.5.下图给出四个幂函数的图象,则图象与函数的大致对应是()①②③④A. ①,②,③,④B. ①,②,③,④C. ①,②,③,④D. ①,②,③,④【答案】B【解析】【分析】通过②的图象的对称性判断出②对应的函数是偶函数;①对应的幂指数大于1,通过排除法得到选项【详解】②的图象关于y轴对称,②应为偶函数,故排除选项C,D,①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A故选:B.【点睛】本题考查幂函数的图象与性质,幂函数的图象取决于幂指数.属于基础题.6.函数的单调递减区间是()A. B. C. D.【答案】A【分析】先求出函数的定义域,再由复合函数的单调性求单调减区间.【详解】∵x2+2x﹣3>0,∴x>1或x<﹣3;又∵y=x2+2x﹣3在(﹣∞,﹣1]上是减函数,在[﹣1,+∞)上是增函数;且y=log2x在(0,+∞)上是增函数;∴函数y=log2(x2+2x﹣3)的单调递减区间为(﹣∞,﹣3);故选:A.【点睛】复合函数的单调性:对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t=g(x)与y=f(t)的单调性相同(同时为增或减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y=f[g(x)]为减函数.简称:同增异减.7.在中,角所对的边分别为,,则A. B. C. D.【答案】B【解析】【分析】利用正弦定理,即可解得.【详解】∵∴,即,∴,又a<b,A三角形的内角,∴故选:B【点睛】本题考查了正弦定理的应用,注意利用大边对大角进行角的限制,属于基础题.8.已知则()A. B. C. D.【答案】D【解析】先利用同角三角函数基本关系式求出和,然后利用两角和的余弦公式展开代入即可求出cos(α+β).【详解】∵∴,∴。
2018-2019学年第二学期期末考试高一年级数学试卷(含答案)

2018-2019学年第二学期期末考试高一年级数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的人数为20000人,其中持各种态度的人数如表所示:电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为()A.25,25,25,25 B.48,72,64,16 C.20,40,30,10 D.24,36,32,82.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=()A.860 B.720 C.1020 D.10403. 在中,,,则等于()A. 3B.C. 1D. 24.(1+tan20°)(1+tan25°)=()A.2 B.1 C.﹣1 D.﹣25.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A.i<99 B.i≤99 C.i>99 D.i≥997. 已知直线平面,直线平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则8.已知过点P(0,2)的直线l与圆(x﹣1)2+y2=5相切,且与直线ax﹣2y+1=0垂直,则a=()A.2 B.4 C.﹣4 D.19.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::( +1),试用以上给出的公式求得△ABC的面积为()A. B. C. D.10.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.1511.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A.B.C.D.12.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是()A.图象关于点(﹣,0)中心对称B.图象关于x=﹣轴对称C.在区间[﹣,﹣]单调递增D.在[﹣,]单调递减二、填空题(共4小题,每小题5分,满分20分)13.函数f(x)=Asin(ωx+φ)+b的图象如图所示,则f(x)的解析式为.14.在△ABC中,内角A、B、C所对应的边分别为a、b、c,若bsinA﹣acosB=0,则A+C= .15. 已知直线的倾斜角为,则直线的斜率为__________.16.已知正实数x,y满足x+2y﹣xy=0,则x+2y的最小值为8y的取值范围是.三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.某同学用“五点法”画函数f (x )=Asin (ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f (x )的解析式;(2)将y=f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g (x )的图象.若y=g (x )图象的一个对称中心为(,0),求θ的最小值.18. 在中,内角所对的边分别为,且.(1)求;(2)若,且的面积为,求的值.19.设函数f (x )=mx 2﹣mx ﹣1.若对一切实数x ,f (x )<0恒成立,求实数m 的取值范围.20.已知函数f (x )=cosx (sinx+cosx )﹣. (1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.21.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.22.(12分)(2016秋•德化县校级期末)已知f(x)=sin2(2x﹣)﹣2t•sin(2x﹣)+t2﹣6t+1(x∈[,])其最小值为g(t).(1)求g(t)的表达式;(2)当﹣≤t≤1时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.参考答案:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D2.D3.D4.A5.C6.B7. B8.C9.A10.B11.C12.C二、填空题(共4小题,每小题5分,满分20分)13..14.120°. 15. 16. 8;(1,+∞).三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.18. (1) ;(2). 19.(﹣4,0].20.(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z..21.1) P==.(2)a=0.00422.(1)∵x∈[,],∴sin(2x﹣)∈[﹣,1],∴f(x)=[sin(2x﹣﹣t]2﹣6t+1,当t<﹣时,则当sinx=﹣时,f(x)min=;当﹣≤t≤1时,当sinx=t时,f(x)min=﹣6t+1;当t>1时,当sinx=1时,f(x)min=t2﹣8t+2;∴g(t)=(2)k≤﹣8或k≥﹣5.。
福建省师范大学附属中学2018-2019学年高一上学期期末考试化学试题附答案解析

福建师大附中2018-2019学年上学期期末考试高一化学试卷可能用到的相对原子质量:H-1 C-12 O-16 Na-23 Mg-24 Al-27 S-32第Ⅰ卷(选择题,共60分)一、单项选择题:每小题2分,共60分。
1.实验室有四个药品橱,已存放如下药品:实验室新购进一些活性炭,应将它存放在A. 甲橱B. 乙橱C. 丙橱D. 丁橱【答案】C【解析】【分析】化学药品一般根据物质的类别来保存,结合物质的组成和性质解答。
【详解】A.盐酸、硫酸属于酸,活性炭不能放在甲橱,A不选;B.CCl4、C2H5OH属于有机物,活性炭不能放在乙橱,B不选;C.红磷、硫都是由非金属元素组成的非金属单质,属于纯净物,与活性炭的类别相同,活性炭可以放在丙橱,C选;D.铜、锌属于金属单质,活性炭是非金属单质,不能放在丁橱,D不选。
答案选C。
2.在水溶液中能大量共存的离子组是A. Al3+ H+ HCO3- Cl-B. Na+ AlO2- OH- SO42-C. Ca2+ K+ NO3- CO32-D. H+ Fe2+ MnO4- NO3-【答案】B【解析】【分析】离子间如果发生化学反应,则不能大量共存,结合离子的性质分析判断。
【详解】A. Al3+、H+与HCO3-均反应,不能大量共存,A不选;B. Na+、AlO2-、OH-、SO42-之间不反应,可以大量共存,B选;C. Ca2+与CO32-反应生成碳酸钙沉淀,不能大量共存,C不选;D. 在酸性溶液中Fe2+能被MnO4-、NO3-氧化,不能大量共存,D不选;答案选B。
3.下列数量的各物质中,含分子个数最多的是A. 1mol HClB. 3.01×1023个氧分子C. 22g COD. 标况下5.6L H2【答案】A【解析】【分析】根据n=m/M、n=V/V m、n=N/N A分析解答。
【详解】A.1molHCl含N A个分子;B.含3.01×1023个O2的物质的量为0.5mol,氧分子数为0.5N A;C.22g CO的物质的量为22g÷44g/mol=0.5mol,分子数为0.5N A;D.标况下5.6L H2的物质的量为5.6L÷22.4L/mol=0.25mol,分子数为0.25N A;所以分子数最多的是氯化氢,故答案为A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019高一上期期末考试试题一.选择题(本大题共12个小题,每小题5分,共60分)1. 设集合{|1A x =-≤x ≤2},B ={x |0≤x ≤4},则A ∩B = ( )A .[0,2]B .[1,2]C .[0,4]D .[1,4]2. 下列四组函数,表示同一函数的是 ( ).A ()()2,f x x g x x == .B )(log 22)(,)(x x g x x f -==.C ()()24,22f x x g x x x =-=+- .D 44)(|,|)(x x g x x f ==3.已知直线m n l 、、和平面αβ、,则下列命题中正确的是 ( )A.若,,,m n l m l n αα⊂⊂⊥⊥,则l α⊥B.若,,m m αββα⊥⊥⊄,则//m αC .若,m αβα⊥⊂,则m β⊥ D.若,,//,//m n m n ααββ⊂⊂,则//αβ4. 如图Rt △O ′A ′B ′是一个平面图形的直观图,若O ′B ′=2,则这个平面图形的面积是( )A .1B . 2C .2 2D .4 25. 设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, ( ) A .0 B .1 C .2 D .36.函数2134y x x =+- )A ]43,21[- B )43,21(- C ),43[]21,(+∞⋃-∞ D ),0()0,21(+∞⋃-7. 设20.920.9,2,log 0.9a b c ===,则 ( )A. b a c >>B.b c a >>C. a b c >>D.a c b >>8. 如图,在正方体ABCD-A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 为CC 1的中点,那么异面直线OE 与AD 1所成角的余弦值等于( )A. B. C. D.9、某三棱锥的三视图如图所示,则该三棱锥的体积是 ( ) 16 B 、 13 C 、23 D 、110.已知三棱锥的三条侧棱两两垂直,且,则该三棱锥的外接球的半径为( )A. 3B. 6C. 36D. 911. 方程2log 20x x +-=在下列哪个区间必有实数解( )A (1,2)B (2,3)C (3,4)D (4,5) 12.如图,等边三角形的中线与中位线相交于,已知是△绕旋转过程中的一个图形,下列命题中,错误的是( )A. 动点在平面上的射影在线段上, B. 恒有平面⊥平面 C. 三棱锥的体积有最大值 D. 异面直线与不可能垂直二、填空题(共4道小题,每道小题5分,共20分)13.若幂函数y =()x f 的图象经过点(9,13), 则f(25)的值是_____ 14. 若一系列函数的解析式相同、值域相同,但其定义域不同,则称这些函数为"同族函 数",那么函数解析式为 ,值域为 的"同族函数"共有 个.15.《九章算术》是我国古代内容记为丰富的数学名著,书中有如下问题:“今有圆堡壔,周四丈八尺,高一丈一尺,问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡壔就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡壔(圆柱体)的体积112V =⨯(底面的圆周长的平方⨯高),则该问题中圆周率π的取值为 . 16、偶函数)(x f 在0-,(∞)上是减函数,若)(lg -1)(x f f <,则实数x 的取值范围是______________。
三.解答题17.(本小题满分10分)(1)计算: ()()1223021329.63 1.548--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭---+ (2)计算:2log 3log 2)27(log )4(log 3)81(661832log 313-+⋅--;18.(本小题满分12分)2()2x x a f x b +=+已知集合{}2120A x x x =--<,集合{}0822>-+=x x x B ,集合22{|430}(0)C x x ax a a =-+<>.(Ⅰ)求()R A C B ;(Ⅱ)若)(B A C ⊇,试确定正实数a 的取值范围.19.(本小题满分12分)已知定义在R 上的函数是奇函数.(Ⅰ)求a ,b 的值;(Ⅱ)判断()f x 在R 上的单调性,并用单调性的定义加以证明.20(12分)如图所示,在直三棱柱ABC A 1B 1C 1中,E , F 分别为A 1C 1和BC 的中点.(1)求证:EF ∥平面AA 1B 1B ;(2)若AA 1=3,AB =23,求EF 与平面ABC 所成的角.21、(12分)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中.(1)求证:B 1D ⊥平面A 1C 1B ;(2)求异面直线BC 1与AA 1所成的角的大小.(3)求三棱锥B 1-A 1C 1B 的体积;22.(12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x f x x =-. (1)求()f x 的解析式;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围。
2018-2019高一上期期末考试试题参考答案一、选择题:ADBCC AADBA AD二、填空题:13. 14.9 15.3 16. (0,)∪(10, +∞) 三、解答题:17.解:(1)12……………………………………………………5分 (2)-3…………………………………….10分18.解:(Ⅰ)依题意得,{}{34,4A x x B x x =-<<=<-或}2x >……………………4分 ()(3,2]R A C B =-………………………………………………6分(Ⅱ)(2,4)A B =,由于0a >则{}3C x a x a =<<………………………9分 由()C A B ⊇得2,34,a a ≤⎧⎨≥⎩………………………11分 所以4 2.3a ≤≤……………………………………………………………….12分 19.解:(Ⅰ)∵()f x 是定义在R 上的奇函数,∴(0)0(1)(1)f f f =⎧⎨-=-⎩,111012222a b a a b b --+⎧=⎪⎪+⎨++⎪=-⎪++⎩解得11a b =-⎧⎨=⎩ ………………………………… 5分 经检验得:1a =-,1b =时()f x 为奇函数∴1a =-,1b =. ………………………………… 6分(Ⅱ)∵1a =-,1b =,∴212()12121x x x f x -==-++ 函数2()121x f x =-+在R 上单调递增………………………………… 7分 证明:设12,x x R ∈且12x x <则121222()()(1)(1)2121x x f x f x -=---++12212(22)(21)(21)x x x x -=++ ……………… 9分 ∵12x x <∴1222x x <,∴12220x x -<,又∵2210x +>,1210x +>∴12212(22)0(21)(21)x x x x -<++ ∴12()()0f x f x -<即12()()f x f x <∴函数()f x 在R 上单调递增.………………………………… 12分20.(1). 证明:取的中点D ,连接DE , BD. …………………2分∵E 是的中点,∴DE ∥且DE=又BC∥,BC=, BF=BC,∴四边形BDEF为平行四边形…………………4分∴BD∥EF,又BD在平面A内,EF不在平面A内,∴EF∥平面A………………………………… 6分(2)取AC的中点H,连接HF.∵EH∥A, A平面ABC,∴EH⊥平面ABC, ∠EFH就是EF与平面ABC所成的角;……………………………9分在直角⊿EHF中,FH=EH=A=3∴∠EFH=………………………………… 11分故EF与平面ABC所成的角为………………………………… 12分21.(1)证明:连接,∵为正方形,∴⊥,又⊥平面, 在平面内,∴⊥, 又∩=,∴⊥平面D, 又在平面D内,∴⊥D………………………………3分同理D ⊥B 又B =, ∴D ⊥平面 B. …………………………6 分(2) ∵A ∥B ,∴异面直线B与A 所成的角就是B 与B 所成的角 即∠B =………………………………… 8分故异面直线B与A 所成的角为.……………… 9分 (3)==××B =××1×1×1=.……………… 12分 22(1)∵定义域为R 的函数()f x 是奇函数 ()00f ∴= ------------2分 当0x <时,0x -> ()23x f x x -∴-=-- 又∵函数()f x 是奇函数 ()()f x f x ∴-=-()23x f x x -∴=+ ------------5分 综上所述()()()()20300203x xf x x x x x x -=⎧->⎪⎪=⎨⎪⎪+<⎩ (6)(2)()()51003f f =-<=且()f x 在R 上单调 ()f x ∴在R 上单调递减 ………………- -8分 由22(2)(2)0f t t f t k -+-<得22(2)(2)f t t f t k -<--∵f(x)是奇函数 22(2)(2)f t t f k t ∴-<-又∵()f x 是减函数 ∴2222t t k t ->-------------10分即2320t t k -->对任意t R ∈恒成立 4120k ∴∆=+<得13k <-即为所求 ----------------12分。