广东省广雅中学2020-2021学年高三上学期期中数学(理)试题

合集下载

广东省华附、省实、广雅、深中2021 届高三四校联考数学答案(定稿)

广东省华附、省实、广雅、深中2021 届高三四校联考数学答案(定稿)

揭阳市2020—2021学年度高中三年级教学质量测试数学试题参考答案与评分标准一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

12345678ABDCABBD1.A本题考查集合的基本运算.解一元二次不等式求出集合}032|{2<--=x x x A ,再与集合}42|{≤≤=x x B 取交集,最后得出答案.因为}31|{}032|{2<<-=<--=x x x x x A ,所以}32|{<≤=x x B A .故选A.2.B本题考查复数的基本运算和复数的基本概念.根据复数的除法运算把复数化成)i(R ,∈+=b a b a z 的形式,再根据虚部定义得出答案.因为i 25i10i 21)(i 21()i 21)(i 24(i 21i 24-=-=-+--=+-=)z ,所以z 的虚部为-2.故选B.3.D本题考查计数原理的应用,完成该事情分两步:先分别确定学生进入校园的方式和教师进入校园的方式;再用分步乘法原理求得答案.因为学生只能从东门或西门进入校园,所以3名学生进入校园的方式共823=种.因为教师只可以从南门或北门进入校园,所以2名教师进入校园的方式共有422=种.所以2名教师和3名学生要进入校园的方式共有3248=⨯种情况.故选D.4.C本题考查等比数列通项公式的应用,根据题目提供的条件列出曲线长度组成的数列{}n a 的前4项,本题所求的结果为4a .依题意得11a =,243a =,3169a =,46427a =.所以当进行三次操作后形成图3的曲线时,曲线的长度46427a =.故选C.5.A本题考查古典概型概率、组合数的应用.根据题目条件求出从八味药中任取四味共有多少种情况,再利用古典概型概率公式求得答案.记取到的四味药刚好组成“四君子汤”或“四物汤”为事件M .依题意得351C 2)(48==M P .故选A.6.B本题考查对数函数的运算和应用.根据函数图象求出1.0≥t 时的函数解析式,即求出a 的值,再解不等式求得答案.把点)1,1.0(代入ta y -=10中,1.0101-=a ,解得1.0=a .所以当1.0≥t 时,2.0101.0<=-ty ,解得8.02lg 1.1≈->t .至少需要经过48608.0=⨯分钟后,学生才能回到教室.故选B.7.B本题考查平面向量的坐标运算和基本不等式的应用.如图,建立平面直角坐标系,写出各点的坐标,根据向量性质得到y x +的关系式,再利用基本不等式求最小值.如图,建立平面直角坐标系,则)0,0(A ,)0,4(B ,)3,4(C ,)3,0(D ,设)0,(m M ,),0(n N ,因为12=+AN AM ,所以12=+n m ,210<<m ,10<<n .因为AN y AM x AC +=,所以m x 4=,n y 3=,所以()492425188252989832=+≥++=+⎪⎭⎫ ⎝⎛+=+=+nm m n n m n m n m y x .当且仅当n m m n 188=,即72=m ,73=n 时取等号.故选B.8.D本题考查函数的综合应用.根据()(2)f x f x =-得到函数()f x 关于直线1x =对称,对任意121x x ≤<均有1212()[()()]0x x f x f x --<成立得函数()f x 在[1,)+∞上单调递减.再利用函数的单调性解不等式求得答案.因为函数()f x 满足()(2)f x f x =-,所以函数()f x 关于直线1x =对称,因为对任意121x x ≤<均有1212()[()()]0x x f x f x --<成立,所以函数()f x 在[1,)+∞上单调递减.由对称性可知()f x 在(,1]-∞上单调递增.因为(21(30))f x f x ---≥,即(21(3))f x f x ≥--,所以|211||31|x x ≤----,即|22||2|x x ≤--,解得403x ≤≤.故选D.二、选择题:本大题共4小题,每小题5分,共20分。

广东省广雅中学、执信、六中、深外四校2020届高三8月开学联考(理)数学试题及答案解析

广东省广雅中学、执信、六中、深外四校2020届高三8月开学联考(理)数学试题及答案解析

广东省广雅中学等四校2020届高三8月开学联考(理)数学试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题1.已知全集为R ,集合{}1,0,1,2,3A =-,201x B xx ⎧⎫-=≥⎨⎬+⎩⎭,则A B 元素个数为 ( )A .1B .2C .3D .42.若复数z 满足()1i 1z +=+,则复数z 的共轭复数的模为( )A .1 BC .2D .3.某校有高一、高二、高三3个年级,其人数之比为2:2:1,现用分层抽样的方法从总体中抽取一个容量为10的样本,现从所抽取样本中选两人做问卷调查,至少有一个是高一学生的概率为( )A .13B .12C .23D .344.如图是2018年第一季度五省GDP 情况图,则下列陈述中不正确的是( )A .2018年第一季度GDP 增速由高到低排位第5的是浙江省B .与2017年同期相比,各省2018年第一季度的GDP 总量实现了增长C .2017年同期河南省的GDP 总量不超过4000亿元D .2018年第一季度GDP 总量和增速由高到低排位均居同一位的省只有1个5.P 是双曲线22:12x C y -=右支上一点, 直线l 是双曲线C 的一条渐近线.P 在l 上的射影为Q ,1F 是双曲线C 的左焦点, 则1PF PQ +的最小值为( )A .1B .25+C .45+D .16.已知函数()sin 3f x x π⎛⎫=-⎪⎝⎭,若120x x >,且()()120f x f x +=,则12x x +的最小值为( )A .6πB .3πC .2πD .23π 7.我国古代数学名著《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升,问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的1.5s =(单位:升),则输入的k 的值为( ) A .4.5B .6C .7.5D .98.函数ln ||cos x y x x x=+的部分图象大致为( ) A . B .C .D .9.在ABC △中,1CA =,2CB =,23ACB π∠=,点M 满足2CM CB CA =+,则MA MB ⋅= ( )A .0B .2C .D .410.在棱长为1的正方体1111ABCD A B C D -中,点C 关于平面1BDC 的对称点为M ,则AM 与平面ABCD 所成角的正切值为( )A .2BCD .211.已知函数()f x 的图象在点()00,x y 处的切线为():l y g x =,若函数()f x 满足x I ∀∈(其中I 为函数()f x 的定义域,当0x x ≠时,()()()00f x g x x x -->⎡⎤⎣⎦恒成立,则称0x 为函数()f x 的“转折点”,已知函数()2122x f x e ax x =--在区间[]0,1上存在一个“转折点”,则a 的取值范围是( ) A .[]0,e B .[]1,e C .[]1,+∞ D .(],e -∞ 12.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,再接下来的三项是02,12,22,依此类推,若该数列前n 项和N 满足:①80N> ②N 是2的整数次幂,则满足条件的最小的n 为( ) A .21 B .91 C .95 D .10第II 卷(非选择题)二、填空题13.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为________. 14.若5,24ππα⎛⎫∈ ⎪⎝⎭,3sin 45πα⎛⎫ ⎪⎝=⎭-,则cos2α=________. 15.已知抛物线22(0)y px p =>的焦点为,F O 为坐标原点,点,M N 为抛物线准线上相异的两点,且,M N 两点的纵坐标之积为-4,直线OM ,ON 分别交抛物线于A ,B 两点,若A ,B ,F 三点共线,则p =__________.16.如图所示,在平面四边形ABCD 中,1AB =,2BC =,ACD 是以D 为顶点的等腰直角三角形,则BCD 面积的最大值为_________.三、解答题17.设数列{}n a 的前n 项和为n S ,12a =,()*12n n a S n +=+∈N .(1)求数列{}n a 的通项公式; (2)令()()11211n n n n b a a-+=--,求数列{}n b 的前n 项和n T ,求证:12n T <.18.已知三棱锥P ABC -的展开图如图二,其中四边形ABCD的正方形,ABE △和BCF 均为正三角形,在三棱锥P ABC -中:(1)证明:平面PAC ⊥平面ABC ;(2)若M 是PA 的中点,求二面角P BC M --的余弦值.19.设斜率不为0的直线l 与抛物线24x y =交于A ,B 两点,与椭圆22164x y +=交于C ,D 两点,记直线OA ,OB ,OC ,OD 的斜率分别为1k ,2k ,3k ,4k .(1)若直线l 过()0,4,证明:OA OB ⊥;(2)求证:1234k k k k ++的值与直线l 的斜率的大小无关.20.某地有种特产水果很受当地老百姓欢迎,但该种水果只能在9月份销售,且该种水果只能当天食用口感最好,隔天食用口感较差。

2023-2024学年广东省四校联考高三(上)期中数学试卷【答案版】

2023-2024学年广东省四校联考高三(上)期中数学试卷【答案版】

2023-2024学年广东省四校联考高三(上)期中数学试卷一、单选题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的).1.已知集合A ={x |lgx ≤0},B ={x ||x ﹣1|≤1},则A ∩B =( ) A .AB .BC .∁R AD .∁R B2.已知向量a →=(﹣3,m ),b →=(1,﹣2),若b →∥(a →−b →),则m 的值为( ) A .﹣6B .﹣4C .0D .63.若函数f (x )={a x−3,x ≥4−ax +4,x <4(a >0,a ≠1)是定义在R 上的单调函数,则a 的取值范围为( )A .(0,1)∪(1,54]B .(1,54]C .(0,45]D .[45,1)4.若复数z 满足(1+i )z =|1+i |,则z 的虚部为( ) A .−√2iB .−√22C .√22i D .√225.数列{a n }满足a 1=2019,且对∀n ∈N *,恒有a n+3=a n +2n ,则a 7=( ) A .2021B .2023C .2035D .20376.如图,已知圆锥的顶点为S ,AB 为底面圆的直径,点M ,C 为底面圆周上的点,并将弧AB 三等分,过AC 作平面α,使SB ∥α,设α与SM 交于点N ,则SM SN的值为( )A .43B .32C .23D .347.已知函数f (x )及其导函数f ′(x )的定义域均为R ,且f (x )为偶函数,f(π6)=−2,3f (x )cos x +f '(x )sin x >0,则不等式f(x +π2)cos 3x +12>0的解集为( )A .(−π3,+∞)B .(−2π3,+∞) C .(−2π3,π3) D .(π3,+∞)8.已知函数f(x)=√3sin 2ωx 2+12sinωx −√32(ω>0),若f (x )在(π2,3π2)上无零点,则ω的取值范围是( )A .(0,29]∪[89,+∞)B .(0,29]∪[23,89]C .(0,29]∪[89,1]D .(29,89]∪[1,+∞)二、多选题(本大题共4小题,每小题5分,共20分。

2020-2021学年广东省广州市广雅中学高三数学文模拟试卷含解析

2020-2021学年广东省广州市广雅中学高三数学文模拟试卷含解析

2020-2021学年广东省广州市广雅中学高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数,若方程有四个不同的解,且,则的取值范围是A. (-1,+∞)B. [-1,1)C. (-∞,1)D. (-1,1]参考答案:D2. 设集合,则()A. B.C.D.参考答案:A3. 设实数满足约束条件目标函数的取值范围为( )A. B. C. D.参考答案:D略4. 下列命题中,正确的个数是()①②已知m为直线,为平面,若“”是“”的充分不必要条件.③.④对于两个分类变量X,Y,随机变量K2的观测值k越大,则认为这两个变量有关系的把握越大.A. 1B. 2C. 3D. 4参考答案:B【分析】对每个选项逐一进行判断,得到答案【详解】①中,则无意义③中应为.故选B【点睛】本题考查了命题的判断,充分必要条件,命题的否定以及相关性,综合性比较大.5. 将函数f(x)=cos2ωx的图象向右平移个单位,得到函数y=g(x)的图象,若y=g(x)在上为减函数,则正实数ω的最大值为()A.B.1 C.D.3参考答案:B【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用诱导公式,正弦函数的单调性,求得实数ω的最大值.【解答】解:将函数f(x)=cos2ωx的图象向右平移个单位,得到函数y=g(x)=cos2ω(x﹣)=cos(2ωx﹣)=﹣sin2ωx的图象,若y=g(x)在上为减函数,则sin2ωx在上为增函数,∴2ω?(﹣)≥﹣,且2ω?≤,求得ω≤1,故正实数ω的最大值为1,故选:B6. 在平面直角坐标系xoy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是( )A.B.C.D.参考答案:A考点:直线与圆的位置关系.专题:计算题;转化思想;直线与圆.分析:化圆C的方程为(x﹣4)2+y2=1,求出圆心与半径,由题意,只需(x﹣4)2+y2=4与直线y=kx+2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx+2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=4与直线y=kx+2有公共点即可.设圆心C(4,0)到直线y=kx+2的距离为d,则d=≤2,即3k2≤﹣4k,∴﹣≤k≤0.∴k的最小值是.故选A.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx+2有公共点”是关键,考查学生灵活解决问题的能力,是中档题.7. 已知函数是定义在上的单调增函数且为奇函数,数列是等差数列,,则的值………()..恒为正数恒为负数.恒为0 .可正可负参考答案:AT T T同理,,,…,,又T,以上各式相加,得. 选A.8. 已知等比数列满足,且,则当时,()A. B. C.D.参考答案:C略9. 若不重合的四点,满足,,则实数的值为A. B. C.D.参考答案:B,,,所以m-2=1,所以m=310. 某几何体的三视图如图所示,其中三角形的三边长与圆的直径均为2,则该几何体的体积为()A. B.C.D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 若,则的值为.参考答案:12. 对于,以点为中点的弦所在的直线方程是_____.参考答案:试题分析:,圆心为(1,0),故所求直线的斜率为,直线方程为即考点:直线方程13. 已知不等式的解集为,不等式的解集为,若是的充分不必要条件,则实数的取值范围是_______________参考答案:略14. 直线y=kx+1与曲线y=x3+ax+b相切于点A(1,2),则b﹣a= .参考答案:5【考点】6H:利用导数研究曲线上某点切线方程.【分析】先根据曲线y=x3+ax+b过点(1,2)得出a、b的关系式,再根据切线过点(1,2)求出k,然后求出x=1处的导数并求出a,从而得到b,即可得到b﹣a的值.【解答】解:∵y=x3+ax+b过点(1,2),∴a+b=1,∵直线y=kx+1过点(1,2),∴k+1=2,即k=1,又∵y′=3x2+a,∴k=y′|x=1=3+a=1,即a=﹣2,∴b=1﹣a=3,∴b﹣a=3+2=5.故答案为:5.15. 已知函数的图象过点(1,1),那的反函数的图象一定经过点_____参考答案:(1,3)16. 的展开式中含x2项的系数是参考答案:5略17. 如图,设,且.当时,定义平面坐标系为–仿射坐标系,在–仿射坐标系中,任意一点的斜坐标这样定义:,分别为与轴、轴正向相同的单位向量,若,则记为,那么在以下的结论中,正确的序号有.①设,则;②、,若,则;③、,若的夹角为,则;④、,若,则.参考答案:②、③试题分析:对于①,,,①错误;对于②,由,故②正确;对于③,,的夹角为,根据夹角公式得故即则;③正确对于④,∴④错误;所以正确的是②、③.考点:命题真假的判断及应用和向量坐标运算.三、解答题:本大题共5小题,共72分。

2020年广东华附、省实、深中、广雅2020届高三年级四校联考 理科数学 试卷与答案

2020年广东华附、省实、深中、广雅2020届高三年级四校联考 理科数学 试卷与答案

n
项 和 分 别 为 An 和 Bn , 且
An = 3n +1 , 则 Bn n +1
a2 + a5 + a8 = ***. b3 + b7
15. 已知随机变量 X~B(2,p),Y~N(2,σ2),若 P(X≥1) = 0.64,P(0<Y<2) = p,则 P(Y>4) = ***.
16. 在△ ABC 中,角 A , B ,C 所对的边分别为 a ,b , c , 2= b2 2a2 + c2 ,当 tan ( B − A) 取最
第一部分 选择题 (共 60 分)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有一项是 符合题目要求的.
1.
集合 M
= x
x
=k 2

1 4
,
k

Z

N
= x
x
=k + 4
1 2
,
k

Z
,则(***)
A. M = N
B.M ⊂≠ N
C.N ⊂≠ M
A.
奇函数且它的图象关于点
π 2
,
0
对称
B.
偶函数且它的图象关于点
π 2
,
0
对称
C. 奇函数且它的图象关于 x = π 对称
D. 偶函数且它的图象关于 x = π 对称
7. 已知函数 f ( x) 的图象连续且在 (2, +∞) 上单调,又函数=y f ( x + 2) 的图象关于 y 轴对称,
号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案; 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位

2020届广东省华附、省实、深中、广雅高三四校联考数学(理)试卷

2020届广东省华附、省实、深中、广雅高三四校联考数学(理)试卷

2020届广东省华附、省实、深中、广雅高三四校联考数学(理)试卷本试卷分选择题和非选择题两部分,共4页, 满分150分,考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号填写在答题卡上. 2.答案一律做在答题卡上,选择题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4. 保持答题卡的整洁,不要折叠,不要弄破,考试结束后,将试卷和答题卡一并收回.第一部分 选择题 (共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合1,24k M x x k Z ⎧⎫==-∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则(***) A .=M N B .M ⊂≠ N C .N ⊂≠ M D .M N =∅2. 原命题为“若12,z z 互为共轭复数,则12z z =”,其逆命题,否命题,逆否命题真假性依次为(***)A .真,假,真B .真,真,假C .假,假,真D .假,假,假3. 已知平面向量a ,b 是非零向量,2=a ,()2⊥+a a b ,则向量b 在向量a 方向上的投影为(***) A.1- B. 1 C. 2-D. 24. 平面∥α平面β的一个充分条件是(***) A .存在一条直线a a a αβ,∥,∥ B .存在一条直线a a a αβ⊂,,∥C .存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥D .存在两条异面直线a b a b a b αββα⊂⊂,,,,∥,∥ 5. 函数2()log 3sin()2π=-f x x x 零点的个数是(***)A .2B .3C .4D .56. 已知函数()sin 2cos2=-f x a x b x (a ,b 为常数,0≠a ,∈x R )在12π=x 处取得最大值,则函数3π⎛⎫=+⎪⎝⎭y f x 是(***) A. 奇函数且它的图象关于点,02π⎛⎫⎪⎝⎭对称 B. 偶函数且它的图象关于点,02π⎛⎫⎪⎝⎭对称 C. 奇函数且它的图象关于π=x 对称 D. 偶函数且它的图象关于π=x 对称 7. 已知函数()f x 的图象连续且在()2,+∞上单调,又函数()2=+y f x 的图象关于y 轴对称, 若数列{}n a 是公差不为0的等差数列,且()()42016=f a f a ,则{}n a 的前2019项之和为(***) A .0B .2019C .4038D .40408.函数()2sin cos2=+f x x x 在,22ππ⎡⎤-⎢⎥⎣⎦上的单调减区间为(***) A .,26ππ⎡⎤--⎢⎥⎣⎦和0,6π⎡⎤⎢⎥⎣⎦B .,06π⎡⎤-⎢⎥⎣⎦和,62ππ⎡⎤⎢⎥⎣⎦C .,26ππ⎡⎤--⎢⎥⎣⎦和,62ππ⎡⎤⎢⎥⎣⎦D .,66ππ⎡⎤-⎢⎥⎣⎦9. 函数()2112---=x x x f 的值域是(***)A. 44,33⎡⎤-⎢⎥⎣⎦B. 4,03⎡⎤-⎢⎥⎣⎦C. []0,1D. 40,3⎡⎤⎢⎥⎣⎦10. 已知圆221x y +=,点(1,0)A ,△ABC 内接于圆,且60∠=BAC ,当B ,C 在圆上运动时,BC 中点的轨迹方程是(***)A .2212x y +=B .2214x y +=C .221122⎛⎫+=< ⎪⎝⎭x y x D. 221144⎛⎫+=< ⎪⎝⎭x y x 11. 已知双曲线2222:1x y C a b-=的右焦点为F ,过点F 向双曲线的一条渐近线引垂线,垂足为M ,交另一条渐近线于N ,若2MF FN =,则双曲线的离心率(***)A .3 B .3C D. 2 12. 若正四面体SABC 的面ABC 内有一动点P 到平面SAB ,平面SBC ,平面SCA 的距离依次成等差数列,则点P 在平面ABC 内的轨迹是(***)A .一条线段B .一个点C .一段圆弧D .抛物线的一段第二部分 非选择题 (共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡的相应位置上. 13. 在区间[]0,2上分别任取两个数m ,n ,若向量(),=a m n ,()1,1=b ,则满足1-≤a b 的概率是***.14. 已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且311+=+n n A n B n ,则25837++=+a a a b b ***. 15. 已知随机变量X~B (2,p ),Y~N (2,σ2),若P (X ≥1)=0.64,P (0<Y<2)=p ,则P (Y>4)=***.16. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22222=+b a c ,当()tan -B A 取最大值时,角A 的值为***.三、解答题:满分 70 分. 解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个 试题考生都必须做答,第22、23题为选考题,考生根据要求做答. (一)必考题:共60分. 17. (本小题满分12分)已知数列{}n a 满足:21=a ,241-=+-n a a n n (2≥n ). (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:n nb b b b )12(73321-++++ =n a ,求数列{}n b 的通项公式.18. (本小题满分12分)某花店根据过往某品种鲜花的销售记录,绘制出日销售量的频率分布直方图,如图所示,将日销售量落入各组区间的频率视为概率,且假设每天的销售量相互独立. (Ⅰ)求在未来的4天中,有2天的日销售量低于100枝 且另外2天不低于150枝的概率;(Ⅱ)用ξ表示在未来的4天日销售量不低于100枝的天 数,求随机变量ξ的分布列和数学期望.19. (本小题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直 线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(Ⅰ)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与 平面PAC 的位置关系,并加以证明;(Ⅱ)设2PC AB =,求二面角E l C --大小的取值范围.20. (本小题满分12分)已知椭圆2222:1+=x y C a b(0a b >>)2,过左焦点F 的直线与椭圆交于A ,B 两点,且线段AB 的中点为21,33⎛⎫-⎪⎝⎭. (Ⅰ)求椭圆C 的方程;(Ⅱ)设M 为C 上一个动点,过点M 与椭圆C 只有一个公共点的直线为1l ,过点F 与MF 垂直的直线为2l ,求证:1l 与2l 的交点在定直线上,并求出该定直线的方程.21. (本小题满分12分)已知函数()f x =ln ,x a x a +∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;(Ⅲ)试问过点(1,3)P 可作多少条直线与曲线()y f x =相切?并说明理由.(二)选考题:共10分. 请考生从给出的第22、23两题中任选一题作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑,注意所做题目的题号必须与所涂题号一致,如果多做,则按所做的第一题计分. 22. (本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程为cos sin x m t y t αα=+⎧⎨=⎩(t 为参数,0)απ≤<,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=,射线θϕ=,4πθϕ=+,4πθϕ=-,分别与曲线C 交于,,A B C 三点(不包括极点O ),其中(,)44ππϕ∈-.(Ⅰ)求证:OB OC OA +=; (Ⅱ)当12πϕ=时,若,B C 两点在直线l 上,求m 与α的值.23. (本小题满分10分)选修4-5:不等式选讲已知函数()222f x x a x a =+-+-.(Ⅰ)若()13<f ,求实数a 的取值范围;(Ⅱ)若关于x 的不等式()2≥f x 恒成立,求实数a 的取值范围.数学(理科)参考答案一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.13.4π 14. 215 15. 0.1 16. 6π 三、解答题:满分 70 分. 解答应写出文字说明、证明过程或演算步骤.17. (本小题满分12分)解:(Ⅰ)由241-=+-n a a n n (2≥n )可化为()()12220--+-+=n n a n a n . 令2=-n n c a n ,则10-+=n n c c ,即1-=-n n c c . 因为12=a ,所以1120=-=c a , 所以0=n c ,即20-=n a n ,故2.=n a n ……6分 (若用不完全归纳,没有证明,可给4分) (Ⅱ)由()1233721++++-=n n n b b b b a ,可知()()11231137212---++++-=≥n n n b b b b a n ,两式作差得()()12122--=-=≥n n n n b a a n , 即()2221=≥-n nb n . ……10分 又当1=n 时,也112==b a 满足上式, ……11分 故221=-n n b . ……12分18. (本小题满分12分) 解:(Ⅰ)设日销售量为x ,“有2天日销售低于100枝,另外2天不低于150枝”为事件A. 则()1000.002500.006500.4Px ≤=⨯+⨯=,……1分()1500.005500.25P x ≥=⨯=,……2分()22240.40.250.06.P A C ∴=⨯⨯=……4分(Ⅱ)日销售量不低于100枝的概率0.6=P ,则()~4,0.6B ξ.……6分题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C A D B A CBCDAA于是()()440.60.40,1,2,3,4.k k k Pk C k ξ-==⨯⨯=……8分则分布列为ξ1234P16625 96625 216625 216625 81625……10分()16962162168101234 2.4.625625625625625E ξ∴=⨯+⨯+⨯+⨯+⨯=……12分19. (本小题满分12分) 解:(Ⅰ)//平面l PAC . ……………1分证明如下://EF AC ,AC ABC ⊂平面,EF ABC ⊄平面,//平面∴EF ABC . ……………2分又EF BEF ⊂平面,平面BEF 与平面ABC 的交线为l ,//∴EF l . ……………3分而,l PAC EF PAC ⊄⊂平面平面,//平面∴l PAC . ……………………4分(Ⅱ)解法一:设直线l 与圆O 的另一个交点为D ,连结D E ,FB .由(Ⅰ)知,//BD AC ,而,AC BC BD BC ⊥∴⊥.PC ⊥平面ABC ,PC BD ∴⊥.而PC BC C =,,BD PBC ∴⊥平面又FB PBC ⊂平面,BD BF ∴⊥,FBC ∴∠是二面角E l C --的平面角. ………………8分1tan cos FC AB FBC BC BC ABC∠===∠. 注意到0,0cos 12ABC ABC π<∠<∴<∠<,tan 1FBC ∴∠>.02FBC π<∠<,(,)42FBC ππ∴∠∈,即二面角E l C --的取值范围是(,)42ππ.………………12分解法二:由题意,AC ⊥BC ,以CA 为x 轴,CB 为y 轴,CP 为z 轴建立空间直角坐标系,设AB =2,BC =t (02)t <<,则2(0,,0),(0,0,2),(4,,0)B t F D t t -,2(0,,2),(4,0,0)BF t BD t =-=-. …………6分设平面DBF 的法向量为(,,)m x y z =,则由00m BF m BD ⎧⋅=⎪⎨⋅=⎪⎩得22040ty z t x -+=⎧-=,取2y =得(0,2,)m t =.易知平面BCD 的法向量(0,0,1)n =, …………8分 设二面角E l C --的大小为θ,易知θ为锐角.22||2cos (0,2||||441m n m n tt θ⋅===⋅++, …………11分42ππθ∴<<,即二面角E l C --的取值范围是(,)42ππ. …………12分20. (本小题满分12分)解:(Ⅰ)由题可知(,0)-F c ,直线AB 的斜率存在.设11(,)A x y ,22(,)B x y ,由于点A ,B 都在椭圆上,所以2211221+=x y a b ①,2222221+=x y a b②①—②,化简得2221222212--=-y y b a x x ③ 2,所以2212=b a . …………2分又因为直线AB 过焦点F ,线段AB 的中点为21,33⎛⎫-⎪⎝⎭, 所以1243+=-x x ,1223+=y y ,12121323-=--+y y x x c ,代入③式,得1213324233⨯-=⎛⎫⎛⎫-+⨯- ⎪ ⎪⎝⎭⎝⎭c ,解得1=c . …………5分再结合222-=a b c ,解得22=a ,21=b ,故所求椭圆的方程为2212+=x y . …………6分(Ⅱ)证明:设00(,)M x y ,由对称性,设00>y ,由2212+=x y,得椭圆上半部分的方程为=y'()=-=y x ,又1l 过点M且与椭圆只有一个公共点,所以12==-l x k y , 所以01000:()2-=--x l y y x x y , ④ 因为2l 过点F 且与MF 垂直,所以0201:(1)+=-+x l y x y , ⑤………10分 联立④⑤,消去y ,得220000122+=----x x x y x x ,又220012+=x y ,所以002202+⋅++=x x x ,从而可得2=-x ,所以1l 与2l 的交点在定直线2=-x 上. …………12分21. (本小题满分12分)解:(Ⅰ)函数()f x 的定义域为{}0x x >,()1a x af x x x+'=+=.…………………1分 (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数;当x a >-时,()0f x '>,函数()f x 为增函数.…………………2分 综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(,+)-∞a .……………………………………………………………………3分(Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (4)分(2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得>-a e ,所以21a -<<-.………………5分 (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数, 所以min ()(2)2ln 2==+f x f a .依题意有min ()2ln 20=+>f x a ,解得2ln 2a >-,所以22ln 2a -<≤-. …………6分 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………7分(Ⅱ)另解:当1x =时,显然ln 10x a x +=>恒成立. …………4分当(1,2]x ∈时,ln 0+>x a x 恒成立ln ⇔>-x a x 恒成立ln x a x⇔>-的最大值. 令()ln =-x m x x ,则21ln '()0ln -=>x m x x ,易知()ln =-xm x x在(1,2]上单调递增, 所以()m x 最大值为2(2)ln 2m =-,此时应有2ln 2>-a . …………6分综上,a 的取值范围是2(,)ln 2-+∞. …………7分(Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01ak x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=.………………① ………………8分令1()(ln 1)2g x a x x =+--(0)x >,则2211(1)()()a x g x a x x x -'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>,()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式.因此当0a <时,切线的条数为0. ………………9分(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增,所以函数()g x 的最小值为(1)20g =-<.取211+=>ax ee ,则221112()(11)20----=++--=>a a g x a e ae a.故()g x 在(1,)+∞上存在唯一零点.取2121--=<ax ee ,则221122()(11)224++=--+--=--aa g x a e ae a a212[2(1)]+=-+a a e a .设21(1)t t a=+>,()2=-t u t e t ,则()2'=-t u t e . 当1t >时,()220'=->->tu t e e 恒成立.所以()u t 在(1,)+∞单调递增,()(1)20>=->u t u e 恒成立. 所以2()0g x >.故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (1,3)存在两条切线. ………………11分(3)当0a =时,()f x x =,显然不存在过点P (1,3)的切线.综上所述,当0a >时,过点P (1,3)存在两条切线;当0a ≤时,不存在过点P (1,3)的切线.………………………………12分(Ⅲ)另解:设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-.因为切线过点(1,3)P ,则00003(ln )(1)(1)a x a x x x -+=+-, 即001(ln 1)20a x x +--=. ………………8分 当0a =时,020-=无解. ………………9分当0a ≠时,12ln 1x x a +-=-, 令1()ln 1g x x x =+-,则21'()-=x g x x, 易知当01<<x 时,21'()0-=<x g x x ;当1>x 时,21'()0-=>x g x x, 所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. ………………10分 又(1)0g =,且0lim ()lim ()x x g x g x →→+∞==+∞, 故当20a ->时有两条切线,当20a-<时无切线, 即当0a <时有两条切线,当0a >时无切线. ………………11分综上所述,0a <时有两条切线,0a ≥时无切线. ………………12分22. (本小题满分10分)选修4-4:坐标系与参数方程 证明:(Ⅰ)依题意,4cos ϕ=OA ,………………………………………………1分 4cos 4πϕ⎛⎫=+ ⎪⎝⎭OB ,4cos 4πϕ⎛⎫=- ⎪⎝⎭OC ,……………3分 则4cos 4cos 44ππϕϕ⎛⎫⎛⎫+=++- ⎪ ⎪⎝⎭⎝⎭OB OC 8cos cos 4πϕ=ϕ=.=OA …………5分 解:(Ⅱ)当12πϕ=时,,B C 两点的极坐标分别为2,3π⎛⎫ ⎪⎝⎭,6π⎛⎫- ⎪⎝⎭,…………6分化成直角坐标为(B,(3,C . ……………………………7分 经过点,B C的直线方程为)2=-y x ,……………………………8分 又直线l 经过点(),0m ,倾斜角为α,且0απ≤<,故2=m ,23πα=. ………………10分23. (本小题满分10分)选修4-5:不等式选讲解:(Ⅰ)∵()13<f ,∴123+-<a a . …………………………………1分① 当0≤a 时,得()123-+-<a a ,即23>-a ,∴203-<≤a ;…………2分② 当102<<a 时,得()123+-<a a ,即2>-a ,∴102<<a ; …………3分 ③ 当12≥a 时,得()123--<a a ,即43<a ,∴1423≤<a . …………4分 综上所述,实数a 的取值范围是24,33⎛⎫- ⎪⎝⎭. ……………………………………5分 (Ⅱ)∵()222f x x a x a =+-+-2122=+-+-a x x a 11+222=+-++--a a x x x a 51122≥+-+-a a x 512≥-a , 当12=-a x 时,等号成立, ∴()f x 的值最小为512-a . …………8分 ∴5122-≥a , 解得25≤-a 或65≥a .……………………………………9分 ∴ 实数a 的取值范围是26,,55⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. …………10分。

广东省广州市广东实验中学2020-2021学年高三第三次阶段考试理科数学试题

广东省广州市广东实验中学2020-2021学年高三第三次阶段考试理科数学试题

广东省广州市广东实验中学2020-2021学年高三第三次阶段考试理科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.集合{}2|60A x x x =--<,集合{}2|lo 1g B x x =<,则A B =( )A .()2,3-B .(),3-∞C .()2,2-D .()0,2 2.已知i 是虚数单位,复数z 满足1z i z =-,则z 的模是( ) A .1 B .12CD3.若2,a ln =125b -=,201cos 2c xdx π=⎰,则,,a b c 的大小关系( ) A .a b c <<B .b a c <<C .c b a <<D .b c a << 4.若2sin cos 12x x π⎛⎫-+=⎪⎝⎭,则cos2x =( ) A .89- B .79- C .79 D .-15.(,2)m ∈-∞-是方程222156x y m m m +=---表示的图形为双曲线的( ) A .充分不必要条件B .必要不充分条件C .充要条D .既不充分也不必要条件 6.点P 是ABC 所在平面上一点,若2355A AP B AC =+,则ABP △与ACP △的面积之比是( )A .35B .52C .32D .23 7.已知()121sin 221x x f x x x -⎛⎫=-⋅ ⎪+⎝⎭,则函数()y f x =的图象大致为() A . B .C .D .8.某班上午有五节课,分别安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是 A .24 B .16C .8D .12 9.已知函数22()2sin cos sin (0)24x f x x x ωπωωω⎛⎫=⋅--> ⎪⎝⎭在区间25,56ππ⎡⎤-⎢⎥⎣⎦上是增函数,且在区间[0,]π上恰好取得一次最大值,则ω的取值范围是( )A .30,5⎛⎤ ⎥⎝⎦B .15,22⎡⎫⎪⎢⎣⎭C .13,24⎡⎤⎢⎥⎣⎦D .13,25⎡⎤⎢⎥⎣⎦10.设变量y 满足约束条件342y x x y x ≥⎧⎪+≤⎨⎪≥-⎩则z =|x -3y |的最大值为( )A .8B .4C .2 D11.AOB 中,OA a OB b ==,,满足||2a b a b ⋅=-=,则AOB ∆的面积的最大值为( )AB .2 C.D.12.椭圆22221(0)x y a b a b+=>>上有一点P ,1F ,2F 分别为椭圆的左、右焦点,椭圆内一点Q 在线段2PF 的延长线上,且1,QF QP ⊥15sin 13F PQ ∠=,则该椭圆离心率的取值范围是( ) A.⎫⎪⎪⎝⎭B.15⎛ ⎝⎭ C.1,52⎛ ⎝⎭ D.2⎝⎭二、填空题 13.设函数()3ln 2f x x x x =+,则曲线()y f x =在点()1,2处的切线方程是___________.14.()422x x --的展开式中,3x 的系数为 . (用数字填写答案)15.已知函数sin ()x x a f x e-=有极值,则实数a 的取值范围为_____________ 16.点D 是直角ABC ∆斜边AB 上一动点,5,AC =4,BC =将直角ABC ∆沿着CD 翻折,使B DC '∆与ADC ∆构成直二面角,则翻折后AB '的最小值是_______.三、解答题17.设等差数列{}n a 的前n 项和为n S ,公比是正数的等比数列{}n b 的前n 项和为n T ,已知.1122331,3,8,15a b a b T S ==+=-=(Ⅰ)求{}{},n n a b 的通项公式;(Ⅱ)若数列{}n c 满足11211222n n n n a c a c a c n +--+++=--对任意*n N ∈都成立;求证:数列{}n c 是等比数列.18.如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠BCD =120°,四边形BFED 为矩形,平面BFED ⊥平面ABCD ,BF =1.(1)求证:AD ⊥平面BFED ;(2)点P 在线段EF 上运动,设平面P AB 与平面ADE 所成锐二面角为θ,试求θ的最小值. 19.已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为()12,0F -,点(B 在椭圆C 上,直线()0y kx k =≠与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(1)求椭圆C 的方程;(2)以MN 为直径的圆是否经过定点?若是,求出定点的坐标;若不经过,请说明理由.20.某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试.现对测试数据进行分析,得到如图所示的频率分布直方图:(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表).(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程X 近似地服从正态分布())2,N μσ,经计算第(1)问中样本标准差s 的近似值为50.用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.参考数据:若随机变量服从正态分布()2N μσ,,则()0.6827P μσξμσ-<+≈,(33)0.9973P μσξμσ-<+≈,(22)0.9545P μσξμσ-<+≈.(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券3万元.已知硬币出现正、反面的概率都是0.5方格图上标有第0格、第1格、第2格、…、第20格.遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次.若掷出正面,遥控车向前移动一格(从k 到1k +)若掷出反面遥控车向前移动两格(从k 到2k +),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束.设遥控车移到第1(1)9n n 格的概率为P 试证明{}1n n P P --是等比数列,并求参与游戏一次的顾客获得优惠券金额的期望值. 21.已知函数sin ()()cos sin x f x g x x x x x==⋅-,. (1)判断函数()g x 在区间(0)3π,上零点的个数; (2)函数()f x 在区间(0)+∞,上的极值点从小到大分别为1234n x x x x x ,,,,,证明:(Ⅰ)()()120f x f x +<;(Ⅱ)对一切()()()()*1230n n N f x f x f x f x ∈++++<,成立.22.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为24cos 30ρρθ-+=,[)0,2θ∈π. (1)求1C 的直角坐标方程;(2)曲线2C 的参数方程为cos 6sin 6x t y t ππ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),求1C 与2C 的公共点的极坐标. 23.设()f x x 1x 1=-++ .(1)求()f x x 2≤+ 的解集;(2)若不等式()a 12a 1f x a +--≥,对任意实数a 0≠恒成立,求实数x 的取值范围.参考答案1.A【分析】先由二次不等式的解法得{}|23A x x =-<<,由对数不等式的解法得{}|02B x x =<<,再结合集合并集的运算即可得解.【详解】解不等式260x x --<,解得23x -<<,则{}|23A x x =-<<,解不等式2log 1x <,解得02x <<,即{}|02B x x =<<,即A B =()2,3-,故选:A.【点睛】本题考查了二次不等式的解法及对数不等式的解法,重点考查了集合并集的运算,属基础题. 2.C【分析】利用复数的运算法则和模的计算公式即可得出.【详解】1z z=-i , ∴z =i -zi ,∴z 1(1)11222i i i i i ===++-,∴|z |2==, 故选:C .【点睛】本题考查了复数的运算法则和模的计算公式,属于基础题.3.D【分析】 利用对数函数的性质,以及微积分定理与12比较即可. 【详解】12ln,2a ln=>=121,25b-=<==()2111cos sin2222c xdx xππ=⎰=⨯=,故选:D【点睛】本题考查实数大小的比较,考查对数函数的性质,微积分定理,考查利用中间量比较大小,属于常考题型.4.C【分析】利用诱导公式化简得到sin x,再结合二倍角的余弦公式即可求解.【详解】2sin sin1x x+=,即1sin3x=所以22cos212sin1799x x=-=-=故选:C【点睛】本题主要考查了三角函数的化简和求值,属于基础题.5.A【分析】方程表示双曲线,可得()()()5320m m m--+<,解得m范围即可判断出结论,解得m 范围即可判断出结论.【详解】由方程222156x ym m m+=---表示的图形为双曲线,可得()()2560m m m---<,即()()()5320m m m--+<即2m<-,或35m<<,∴ (,2)m ∈-∞-是方程222156x y m m m +=---表示的图形为双曲线的充分不必要条件, 故选:A【点睛】本题考查了双曲线的标准方程、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.6.C【分析】 由向量的线性运算可得32=BP PC ,即点P 在线段AB 上,且32=BP PC ,由三角形面积公式可得:ABP S ∆APC S ∆:3:2BP PC ==,得解.【详解】解:因为点P 是ABC 所在平面上一点,又2355AP AB AC =+, 所以2233-=-5555AP AB AC AP ,即23=55BP PC ,即32=BP PC , 则点P 在线段BC 上,且32=BP PC , 又1sin 2APC S AP PC APC ∆=∠,1sin 2ABP S AP BP APB ∆=∠, 又APB APC π∠+∠=,即sin sin APC APB ∠=∠,所以点P 在线段BC 上,且32=BP PC , :ABP S ∆APCS ∆1sin :2AP BP APB =∠1sin 2AP PC APC ∠:3:2BP PC ==, 故选:C.【点睛】 本题考查了向量的线性运算及三角形的面积公式,重点考查了运算能力,属中档题. 7.D【分析】由函数解析式可得()()f x f x =-,则函数()y f x =为偶函数,其图像关于y 轴对称,再取特殊变量4π得04f π⎛⎫< ⎪⎝⎭,即可得在()0,∞+存在变量使得()0f x <,再观察图像即可. 【详解】解:因为()121sin 221x x f x x x -⎛⎫=-⋅ ⎪+⎝⎭, 则()121sin 221x x f x x x ---⎛⎫-=-+⋅ ⎪+⎝⎭=121sin 221x x x x -⎛⎫-⋅ ⎪+⎝⎭, 即()()f x f x =-,则函数()y f x =为偶函数,其图像关于y 轴对称, 不妨取4x π=,则 ()4421(0821f x πππ-=<+, 即在()0,∞+存在变量使得()0f x <,故选D.【点睛】本题考查了函数奇偶性的判断及函数的图像,重点考查了函数的思想,属中档题.8.B【分析】根据题意,可分三步进行分析:(1)要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序;(2)将这个整体与英语全排列,排好后,有3个空位;(3)数学课不排第一行,有2个空位可选,在剩下的2个空位中任选1个,得数学、物理的安排方法,最后利用分步计数原理,即可求解.【详解】根据题意,可分三步进行分析:(1)要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序,有222A =种情况;(2)将这个整体与英语全排列,有222A =中顺序,排好后,有3个空位; (3)数学课不排第一行,有2个空位可选,在剩下的2个空位中任选1个,安排物理,有2中情况,则数学、物理的安排方法有224⨯=种,所以不同的排课方法的种数是22416⨯⨯=种,故选B .【点睛】本题主要考查了排列、组合的综合应用,其中解答红注意特殊问题和相邻问题与不能相邻问题的处理方法是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 9.D 【分析】将函数()f x 用三角恒等变换化简成正弦型函数,根据整体代换与正弦函数的性质,结合已知建立ω的不等量关系,即可求解. 【详解】22()2sin cos sin 24x f x x x ωπωω⎛⎫=⋅-- ⎪⎝⎭2sin [1cos()]sin sin 2x x x x πωωωω=⋅+--=,()f x 在区间25,56ππ⎡⎤-⎢⎥⎣⎦上是增函数, 250,56x ωπωωπω>-≤≤,53,0625ππωω∴≤∴<≤. 当22(),()22k x k k Z x k Z πππωπωω=+∈=+∈时,()f x 取得最大值, 而()f x 在区间[0,]π上恰好取得一次最大值,222ππωπππωω⎧≤⎪⎪∴⎨⎪+>⎪⎩,解得1522ω≤<,综上,1325ω≤≤. 故选:D. 【点睛】本题考查三角函数恒等变换、正弦函数的性质,整体代换是解题的关键,属于中档题. 10.A 【解析】由题意作出满足条件的可行域如图中阴影部分,则对于目标函数z=|x ﹣3y |,平移直线y=13x 可知,当直线经过点A (﹣2,2)时,z=|x ﹣3y |取得最大值, 代值计算可得z max =|﹣2﹣3×2|=8. 故选:A .11.A 【分析】利用数量积公式以及平方关系计算得到sin AOB ∠,利用模长公式以及基本不等式得到||||4a b ≤,结合三角形面积公式化简即可求解.【详解】||||cos 2a b a b AOB ⋅=∠=,即2cos ||||AOB a b ∠=2(||||)4sin |||||||a b AOB a b a b -∴∠==⎪⎭22||||2||2a b a a b b -=-⋅+= ,即228||||2||||a b a b =+≥所以||||4a b ≤ 所以22(||||)41111||||sin ||||=(||||)4164=32222||||AOBa b S a b AOB a b a b a b ∆-=∠=-≤-故选:A 【点睛】本题主要考查了平面向量的数量积公式以及模长公式的应用,属于中档题.12.C 【分析】首先满足QF 1⊥QP ,点Q 在椭圆的内部,故点Q 轨迹在以F 1F 2为直径,原点为圆心的圆上,且圆在椭圆的内部,得到2e <;根据Q 在线段2PF 的延长线上,考虑极端情况,得到15e >,得到答案. 【详解】∵QF 1⊥QP ,∴点Q 在以F 1F 2为直径,原点为圆心的圆上, ∵点Q 在椭圆的内部,∴以F 1F 2为直径的圆在椭圆内,∴c <b ;∴c 2<a 2﹣c 2,∴212e <,故0<e ; 当Q 点与2F 重合时,此时不妨设113PF =,则125F F =,故212PF =. 即252a =,52c =,此时15e =. Q 在线段2PF 的延长线上,故212PF F π>∠,故15e >.综上可得:1,52e ⎛⎫∈ ⎪ ⎪⎝⎭. 故选:C .【点睛】本题考查了椭圆的性质、圆的性质,考查了推理能力与计算能力,属于难题. 13.750x y --= 【分析】先求函数()f x 的导函数()'fx ,再由导数的几何意义,求()'17f =,则曲线()y f x =在点()1,2处的切线的斜率为7,再由直线的点斜式方程求解即可. 【详解】解:因为()3ln 2f x x x x =+,所以()'2ln 16fx x x =++,则()'21ln11617f =++⨯=,即曲线()y f x =在点()1,2处的切线方程是27(1)y x -=-,即750x y --=, 故答案为750x y --=. 【点睛】本题考查了导数的几何意义、直线的点斜式方程,重点考查了导数的应用及运算能力,属基础题. 14.40- 【解析】试题分析:()422x x --()422x x ⎡⎤=-+⎣⎦展开后只有()42x +与()33242C x x -+中含3x 项其系数和为133124432240C C C ⨯-⨯⨯=-,故答案为40-.考点:二项展开式定理.15.( 【分析】求出函数的导函数,则cos sin ()xx x af x e -+'=有可变零点,求三角函数的值域得到结果.【详解】由sin ()x x a f x e -=可得:cos sin ()x x x af x e -+'=,∵函数sin ()xx af x e-=有极值, ∴cos sin ()xx x af x e -+'=有可变零点,∴cos sin 0x x a -+=,即sin cos 4a x x x π⎛⎫=-=- ⎪⎝⎭,∴(a ∈故答案为:( 【点睛】本题考查函数存在极值的条件,考查三角函数的值域问题,考查转化思想,属于中档题.16【分析】过点B ′作B ′E ⊥CD 于E ,连结BE ,AE ,设∠BCD =∠B ′CD =α,则有B ′E =4sin α,CE =4cos α,2ACE πα∠=-,由此利用余弦定理、勾股定理能求出当4πα=时,AB ′取【详解】解:过点B ′作B ′E ⊥CD 于E ,连结BE ,AE , 设∠BCD =∠B ′CD =α,则有B ′E =4sin α,CE =4cos α,2ACE πα∠=-,在△AEC 中,由余弦定理得:222516402AE cos cos cos πααα⎛⎫=+-- ⎪⎝⎭=25+16cos 2α﹣40sin αcos α, 在Rt △AEB ′中,由勾股定理得:AB '2=AE 2+B ′E 2=25+16cos 2α﹣40sin αcos α+16sin 2α=41﹣20sin2α,∴当4πα=时,AB .【点睛】本题考查线段长的最小值的求法,考查余弦定理、勾股定理、直二面角等基础知识,运算求解能力,考查函数与方程思想,是中档题.17.(1)1,32n n n a n b -==⋅;(2)证明见解析.【解析】(Ⅰ)设数列{}n a 的公差为d ,数列{}n b 的公比为(0)q q >2375d q q q d +=+-=由题意得……………………………………………………………2分2375d q q q d +=+-=解得………………………………………………………5分(Ⅱ)由知两式相减:………………………………8分…………………………………………………………………10分当时,,适合上式即是等比数列…………………………18.(1)证明见解析 (2)θ最小值为60° 【分析】(1)在梯形ABCD 中,利用勾股定理,得到AD ⊥BD ,再结合面面垂直的判定,证得DE ⊥平面ABCD ,即可证得AD ⊥平面BFED ;(2)以D 为原点,直线DA ,DB ,DE 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,求得平面P AB 与平面ADE 法向量,利用向量的夹角公式,即可求解。

2020届广东省华南师大附中、实验中学、广雅中学、深圳中学高三上学期期末联考数学(理)试题(含答案解析)

2020届广东省华南师大附中、实验中学、广雅中学、深圳中学高三上学期期末联考数学(理)试题(含答案解析)

2020届广东省华南师大附中、实验中学、广雅中学、深圳中学高三上学期期末联考数学(理)试题一、单选题1.集合1|,24k M x x k Z ⎧⎫==-∈⎨⎬⎩⎭,1|,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则( ) A .M N = B .MN C .N M D .M N ⋂=∅【答案】B【解析】首先求出集合M 、N 中的元素,由集合的包含关系即可求解. 【详解】121|,,244k k M x x k Z x x k Z ⎧⎫-⎧⎫==-∈==∈⎨⎬⎨⎬⎩⎭⎩⎭,12|,,424k k N x x k Z x k Z ⎧⎫+⎧⎫==+∈=∈⎨⎬⎨⎬⎩⎭⎩⎭,2k Z +∈Q 可表示全体整数,21k -表示全体奇数,∴MN ,故选:B 【点睛】本题考查了集合与集合之间的关系,解题的关键是确定集合中的元素,属于基础题. 2.原命题为“若12,z z 互为共轭复数,则12=z z ”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( ) A .真,假,真 B .假,假,真C .真,真,假D .假,假,假【答案】B【解析】试题分析:设复数1z a bi =+,则21z z a bi ==-,所以2212z z a b ==+,故原命题为真;逆命题:若12z z =,则12,z z 互为共轭复数;如134z i =+,243z i =+,且125z z ==,但此时12,z z 不互为共轭复,故逆命题为假;否命题:若12,z z 不互为共轭复数,则12z z ≠;如134z i =+,243z i =+,此时12,z z 不互为共轭复,但125z z ==,故否命题为假;原命题和逆否命题的真假相同,所以逆否命题为真;故选B.【考点】命题以及命题的真假.3.已知平面向量a r ,b r 是非零向量,|a r |=2,a r ⊥(a r +2b r ),则向量b r 在向量a r方向上的投影为( ) A .1 B .-1C .2D .-2【答案】B【解析】先根据向量垂直得到a r g (a r +2b r ),=0,化简得到a r g b r=﹣2,再根据投影的定义即可求出. 【详解】∵平面向量a r ,b r 是非零向量,|a r |=2,a r ⊥(a r +2b r), ∴a r g (a r +2b r),=0,即()2·20a a b +=vv v即a r g b r=﹣2∴向量b r 在向量a r 方向上的投影为·22a b a -=vv v =﹣1,故选:B . 【点睛】本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.4.平面α∥β平面的一个充分条件是( ) A .存在一条直线a ,a ∥α,a ∥β B .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α 【答案】D【解析】试题分析:对于A ,一条直线与两个平面都平行,两个平面不一定平行.故A 不对;对于B ,一个平面中的一条直线平行于另一个平面,两个平面不一定平行,故B 不对;对于C ,两个平面中的两条直线平行,不能保证两个平面平行,故C 不对;对于D ,两个平面中的两条互相异面的直线分别平行于另一个平面,可以保证两个平面平行,故D 正确【考点】空间线面平行的判定与性质 5.函数2()log 3sin()2f x x x π=-零点的个数是 ( )A .5B .4C .3D .2【答案】C【解析】试题分析:令2()log 3sin()2f x x x π=-=0,可得2()log 3sin()2f x x x π=-=, 因为2()log 3sin()2f x x x π=-[3,3]∈-,所以在同一平面直角坐标系内,画出y=2()log 3sin()2f x x x π=-,y=2()log 3sin()2f x x x π=-在[0,8]的图象,观察交点个数即得,选C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用电量(单位:度)
户数
7
8
15
13
7
(Ⅰ)在该县居民中随机抽取10户,记其中年用电量不超过600度的户数为 ,求 的数学期望;
(Ⅱ)在总结试点经验的基础上,将村级光伏电站稳定为光伏扶贫的主推方式.已知该县某自然村有居民300户.若计划在该村安装总装机容量为300千瓦的光伏发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以0.8元/度的价格进行收购.经测算每千瓦装机容量的发电机组年平均发电1000度,试估计该机组每年所发电量除保证正常用电外还能为该村创造直接受益多少元?
23.已知函数 .
(1)若不等式 对 恒成立,求实数 的取值范围;
(2)当 时,函数 的最小值为 ,求实数 的值.
参考答案
1.D
【解析】
【分析】
直接利用复数的模的求法的运算法则求解即可.
【详解】
( 是虚数单位)
可得
解得
本题确选项:
【点睛】
本题考查复数的模的运算法则的应用,复数的模的求法,考查计算能力.
4.B
【解析】
分析:求出 ,即可得出结论.
详解:由题意得,P(X≤-1)=P(X≥3)=0.0228,
15.已知二项式 的展开式中二项式系数之和为64,则展开式中 的系数为________.
16.设有四个数的数列 ,前三个数构成一个等比数列,其和为 ,后三个数构成一个等差数列,其和为15,且公差非零.对于任意固定的实数 ,若满足条件的数列个数大于1,则 的取值范围为________.
四、解答题
17.已知数列 满足 .
(1)证明数列 是等差数列,并求 的通项公式;
(2)若数列 满足 ,求数列 的前 项和 .
18.如图,四边形 是矩形,沿对角线 将 折起,使得点 在平面 上的射影恰好落在边 上.
(1)求证:平面 平面 ;
(2)当 时,求二面角 的余弦值.
19.光伏发电是将光能直接转变为电能的一种技术,具有资源的充足性及潜在的经济性等优点,在长期的能源战略中具有重要地位,2021年起,国家能源局、国务院扶贫办联合在6省的30个县开展光伏扶贫试点,在某县居民中随机抽取50户,统计其年用量得到以下统计表.以样本的频率作为概率.
A.243B.128C.81D.64
4.设X~N(1,σ2),其正态分布密度曲线如图所示,且P(X≥3)=0.0228,那么向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为( )
(附:随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)
A. B.8C.16D.
9.《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务 必须排在前三位,且任务 、 必须排在一起,则这六项任务的不同安排方案共有( )
A.240种B.188种C.156种D.120种
10.已知 , ,若存在 ,使得 ,则称函数 与 互为“ 度零点函数”.若 与 互为“1度零点函数”,则实数 的取值范围为( )
A. B. C. D.
11.如图,正三棱柱 的各条棱长均相等, 为 的中点, 分别是线段 和线段 上的动点(含端点),且满足 .当 运动时,下列结论中不正确的是( )
A.平面 平面 B.三棱锥 的体积为定值
22.选修4-4:坐标系与参数方程
在极坐标系中,直线 的极坐标方程为 ,现以极点 为原点,极轴为 轴的非负半轴建立平面直角坐标系,曲线 的参数方程为 ( 为参数).
(1)求直线 的直角坐标方程和曲线 的普通方程;
(2)若曲线 为曲线 关于直线 的对称曲线,点 , 分别为曲线 、曲线 上的动点,点 坐标为 ,求 的最小值.
广东省广雅中学2020-2021学年高三上学期期中数学(理)试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若 ( 是虚数单位),则 的值为( )
A.3B.5C. D.
2.命题“ ”的否定是()
A. B.
C. D.
3.已知等比数列 满足 ,则 ( )
A.6038B.6587C.7028D.7539
5.若 ,则 的大小关系为( )
A. B.
C. D.
6.在 中, , , ,则 ()
A. B. C. D.
7.函数 在区间 上的大致图象为( )
A. B.
C. D.
8.已知抛物线 的焦点为 ,准线为 , 是 上一点,直线 与抛物线交于 两点,若 ,则 ( )
20.已知圆 ,点 , 为平面内一动点,以线段 为直径的圆内切于圆 ,设动点 的轨迹为曲线 .
(1)求曲线 的标准方程;
(2)已知过坐标原点 的直线 交曲线 于 、 两点,若在曲线 上存在点 ,使得 ,求 的面积的最小值.
21.已知函数 ,其中 .
(1)讨论函数 的单调性;
(2)当 时,证明:不等式 恒成立(其中 , ).
2.D
【分析】
利用全称命题的否定是特称命题,即可直接得解.
【详解】
因为全称命题的否定是特称命题,
所以命题“ , ”的否定为“ , ”.
故选:D.
【点睛】
本题考查了全称命题的否定,属于基础题.
3.B
【解析】
分析:利用条件确定等比数列的首项与公比,从而得到结果.
详解:设等比数列 的公比为 ,
∴ ,
∴ ,即
∴ 128
故选B
点睛:等比数列的基本量运算问题的常见类型及解题策略:
①化基本量求通项.求等比数列的两个基本元素 和 ,通项便可求出,或利用知三求二,用方程求解.
②化基本量求特定项.利用通项公式或者等比数列的性质求解.
③化基本量求公比.利用等比数列的定义和性质,建立方程组求解.
④化基本量求和.直接将基本量代入前 项和公式求解或利用等比数列的性质求解.
C. 可能为直角三角形D.平面 与平面 所成的锐二面角范围为
二、多选题
12.关于函数 ,下列命题正确的是()
A.由 可得 是 的整数倍
B. 的表达式可改写成
C. 的图象关于点 对称
D. 的图象关于直线 对称
三、填空题
13.已知函数 若 ,则实数 __________.
14.已知双曲线 离心率为 ,则其渐近线与圆 的位置关系是________.
相关文档
最新文档