2019届上海市七宝中学高三上学期摸底考试数学试题(解析版)

合集下载

上海市七宝中学2019-2020学年高三数学上开学考(简略答案)

上海市七宝中学2019-2020学年高三数学上开学考(简略答案)

2019学年第一学期高三数学摸底考试卷一、填空题1. {}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U C A B ⋂=____________2. 已知复数512iz i=+(i 是虚数单位),则z z ⋅=____________ 3. 关于,x y 的二元一次方程组1323mx y mx my m +=-⎧⎨-=+⎩无解,则m =____________4. 直线1l 的一个方向向量()1,2d =,直线2l 的一个法向量()1,1n =,则直线1l 与直线2l 的夹角是____________5. 已知ABC 为钝角三角形,边长1,2a b ==,则边长c ∈____________6.设常数90a x ⎛>+ ⎝展开式中6x 的系数为()24lim n n a a a →∞+++=____________7. 已知()()111042xx f x x =-++>,则此函数的值域是____________ 8. 若函数()[]()sin 0,0,6f x x x πωωπ⎛⎫=->∈ ⎪⎝⎭的值域为1,12⎡⎤-⎢⎥⎣⎦,则ω的最小值为____________ 9. 已知P A ,PB ,PC 是从P 点引出的三条射线,每两条的夹角都是60°,那么直线PC 与平面P AB 所成的角的余弦值为____________10. 在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩,(θ为参数),直线l 的参数方程为()40x y a a +=>,若C 上的点到l,则a =____________11. 已知,,a b c ∈R ,函数()2,1,x x a f x b a x c x⎧≤⎪=⎨+<<⎪⎩的反函数的定义域为R ,则实数c 的所有取值的集合是____________12. 已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,过1F 的直线与C 的两条渐近线分别交于A 、B 两点,若112,0F A AB F B F B =⋅=,则双曲线C 的渐近线方程为____________二、选择题13. 设点A ,B ,C 三点不共线,则“AB 与AC 的夹角是锐角”是“AB AC BC +>”的( ) A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分也非必要条件14. 若1a b >>,01c <<,则( ) A . c c a b <B . log log c c a b <C . b a c c <D . log log a b c c <15. 定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意122,,,,kk m a a a ≤中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有( ) A . 18个B . 16个C . 14个D . 12个16. 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[],M M -,例如,当()()312,sin x x x x ϕϕ==时,()()12,x A x B ϕϕ∈∈,则下命题为假命题的是( )A . 函数()f x 的定义域为D ,则“()f x A ∈的充要条件是“对任意的b ∈R ,存在a ∈D ,满足()f a b =”B . 若函数()(),f x g x 的定义域相同,且()(),f x A g x B ∈∈,则()()f x g x B +∉C . 若函数()()()2ln 22,1xf x a x x a R x =++>-∈+有最大值,则()f x B ∈ D . 函数()f x B ∈的充要条件是()f x 有最大值和最小值三、解答题17. 关于x 的不等式201x a x+<的解集为()1,b -.(1)求实数,a b 的值;(2)若12,cos sin z a bi z i αα=+=+,且12z z 为纯虚数,求tan α的值.18. 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ⊥CD ,AD //BC ,P A =AD =CD =2,BC =3,E 为PD的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面P AD ;(2)若平面AEF与直线PB交于点G在,求PGPB的值.19. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为圆弧的中点)和线段MN构成,已知圆O的半径为40米,点P到MN的距离为50米,现规范在此农田修建两个温室大棚,大棚Ⅰ内的地块形状为梯形MNBA,其中AB//MN,且AB<MN,大棚Ⅱ内的地块形状为ABP,要求A、B均在圆弧上,设OB与MN所成的角为θ.(1)用θ表示多边形MAPBN的面积,并确定sinθ的取值范围;(2)若分别在两个大棚内种植两种不同的蔬菜,且这两种蔬菜单位面积的年产值相等,求当θ为何值时,能使种植蔬菜的收益最大.20. 已知椭圆()2222:10,0x y C a b a b+=>>的右焦点为(1,0),短轴长为4,设12,F F 的左右有两个焦点.(1)求椭圆C 的方程;(2)若P 是该椭圆上的一个动点,求12PF PF ⋅的取值范围;(3)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C ,D ,使得22F C F D =? 若存在,求出直线l的方程;若不存在,请说明两点.21. 若定义在R 上的函数()y f x =满足:对于任意实数,x y ,总有()()()()2f x y f x y f x f y ++-=恒成立,我们称()f x 为“类余弦型”函数. (1)已知()f x 为“类余弦型”函数,且()514f =,求()0f 和()2f 的值; (2)在(1)的条件下,定义数列()()()211,2,3,n a f n f n n =+-=,求20172018122222log log log log 3333a aa a ++++的值; (3)若()f x 为“类余弦型”函数,且对于任意非零实数t ,总有()1f t >,证明:函数()f x 为偶函数;设有理数12,x x 满足12x x <,判断()1f x 和()2f x 的大小关系,并加以证明.参考答案一、填空题1.{}1-2.53. 04.5.(()5,3 6.12 7.51,4⎛⎤⎥⎝⎦8.23 10. 1211.{}0 12.y =二、选择题13. C 14. B 15. C 16. D三、解答题17.(1)1,2a b =-=(2)12-18.(1)证明略 (2)2319.(1)12000cos ,14MAPBN S θθ⎡⎫=++⎪⎢⎣⎭(2)arctan23π- 20.(1)22154x y += (2)[]3,4(3)不存在,说明略21.(1)()()1701,28f f == (2)2035353(3)证明略;()()12f x f x <,证明略。

上海市七宝中学2018-2019学年高三上摸底考试数学试题

上海市七宝中学2018-2019学年高三上摸底考试数学试题

七宝中学2018-2019学年度第一学期高三数学9月摸底考试卷一、填空题(本大题共有12题,满分54分,其中16题每题4分,7-12每题6分)1.已知集合,,,R m mx x B x x x A 01|043|2且A B A ,则所有满足条件的m 构成的集合为____________.2.设R b a ,,则“a b tan ”是“b a arctan ”的__________条件.3.i z z 492(i 为虚数单位),则z_______. 4.若△ABC 中,4b a ,∠C=30°,则△ABC 面积的最大值是_________.5.设直线l 过点P(-4,0),且与直线013:y x m 的夹角为10103arccos ,则直线l 的方程是___________.6.设常数90x ax a ,>展开式中6x 的系数为4,则n n a a a a 2lim ________.7.已知x f y 是定义在R 上的奇函数,且当0>x 时,12141x x x f ,则此函数的值域为____________.8.已知函数x ax x f 8log 8在,2上是增函数,则实数a 的取值范围是________.9.奇函数x f y 满足对任意R x 都有022x f x f ,且91f ,则201820172016f f f 的值为____________.10.平面直角坐标系中,给出点A(1,0),B(4,0),若直线01my x 上存在点P,使得,PB PA 2则实数m 的取值范围是____________.11.下列命题:①关于y x 、的二元一次方程组3231m my mx y mx 的系数行列式D=0是该方程组有解的必要非充分条件;②已知H G F E 、、、是空间四点,命题甲:H G F E 、、、四点不共面,命题乙:直线EF 和GH 不想交,则甲成立是乙成立的充分非必要条件;③“2<a ”是“对任意的实数a x x x 11,恒成立”的充要条件;④“0p 或4p ”是“关于x 的方程p x x p有且仅有一个实根”的充要条件。

2019届上海市七宝中学高三上学期第一次月考(10月份)数学试题(解析版)

2019届上海市七宝中学高三上学期第一次月考(10月份)数学试题(解析版)

2019届上海市七宝中学高三上学期第一次月考(10月份)数学试题一、单选题 1.已知条件:;条件:,若是的充分不必要条件,则的取值范围是( ) A . B .C .D .【答案】C【解析】试题分析:由题意,得条件:,条件:,则由是的充分不必要条件,得,其中等号不可能同时取得,所以,故选C .【考点】1、不等式解法;2、充分与必要条件. 2.设1()1xf x x+=-,记1()()f x f x =,1()(())k k f x f f x +=,1,2,k =⋅⋅⋅,则2018()f x =( ). A .1x-B .xC .11x x -+ D .11xx+- 【答案】A【解析】依次计算23(),(),f x f x ,可归纳出{()}n f x 为周期数列.【详解】依题意11()1x f x x +=-,则211111()(())111xx f x f f x x x x++-===-+--,3211()1()(())111()x x f x f f x x x +--===+--,4111()111x x f x x x x -++==--+,51()()1x f x f x x +==-, ∴{()}n f x 是周期数列,且周期为4, ∴20182016221()()()f x f x f x x+===-. 故选:A . 【点睛】本题考查函数的计算,考查周期数列,解题时只要按条件依序计算()n f x ,然后归纳可得.3.设函数321()21x x f x x -=++,若对任意实数(1,1)a ∈-,(1,1)b ∈-,则0a b +≥是()()0f a f b +≥的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】判断出函数()f x 的奇偶性与单调性,然后可得出结论。

【详解】∵332112()()()2112x x x xf x x x f x -----=-+=-+=-++,∴()f x 是奇函数, 32()121xf x x =+-+是增函数, ∴0a b +≥()()a b f a f b ⇔≥-⇔≥-,即()()f a f b ≥-,()()0f a f b +≥。

上海市七宝中学2018-2019学年上学期高三期中数学模拟题

上海市七宝中学2018-2019学年上学期高三期中数学模拟题

上海市七宝中学2018-2019学年上学期高三期中数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设集合,,则( )A BCD2. 函数2(44)x y a a a =-+是指数函数,则的值是( ) A .4 B .1或3 C .3 D .13. 已知全集U R =,{|239}x A x =<≤,1{|2}2B y y =<≤,则有( ) A .A ØB B .A B B =C .()R A B ≠∅ðD .()R A B R =ð4. 已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,}2- D .{}25. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{>--=x x x B ,则=)(B C A R ( ) A .)1,1(- B .]1,1(- C .]2,1( D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.6. 已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是( ) ABC D7. 已知实数[]4,0x ∈-,[]0,3y ∈,则点(,)P x y 落在区域00240x y y x y x ≤⎧⎪≥⎪⎨+≤⎪⎪--≤⎩内的概率为( )A .56B .12C .512D .712【命题意图】本题考查线性规划、几何概型等基础知识,意在考查基本运算能力. 8. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则ba的 取值范围是( )A .(1,)-+∞B .(1,0)- C. (2,)-+∞ D .(2,0)- 9. 已知是虚数单位,,a b R ∈,则“1a b ==-”是“2()2a bi i +=”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )A .11B .12C .13D .14 11.12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-212.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A.15 B. C.15 D.15【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.14.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力. 15.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.16.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.三、解答题(本大共6小题,共70分。

2019届上海市七宝中学高三上学期摸底考试数学试题(解析版)

2019届上海市七宝中学高三上学期摸底考试数学试题(解析版)

第 6 页 共 21 页
【解析】设 l 的方程为 a(x 4) b( y 1) 0 ( a, b 不同时为零),根据直线夹角公式可得:
| 3a b | a2 b2 32 (1)2
3 10 10
,化简可得 b 0 或 3a 4b ,即可求得直线 l 的方程.
【详解】
直线 m : 3x y 1 0 的方向向量为 (1,3)
(
1 2x
)2
1 2x
1,
1

2x
t,(0 t
1) ,所以 g(t) t2
4
2
综上所述,非零实数
的取值范围是:
(,
2]
5 2
,
.
故选:C.
【点睛】
本题考查了正弦函数在某区间上取最值时,求非零实数 的取值范围.解题关键是能够掌
握正弦函数 y Asin( x ) 图像性质,数学结合.
3.已知集合 M {(x, y) || x | | y | 1},若实数对 (, ) 满足:对任意的 (x, y) M ,都有
x0

①函数 f (x) 在[1, ) 上为周期函数
②函数 f (x) 在区间 m, m 1 , m N 上单调递增
③函数 f (x) 在 x m 1( m N )取到最大值 0 ,且无最小值
④若方程
f
(x)
loga (x
2)
(0
a
1)有且仅有两个不同的实根,则
a[1, 1) 32
A.1个
r
=
2
,则
a 2C92
4
,解得
a
1 3

所以, lim n
a a2 an
lim

上海市七宝中学2019届高三数学上学期期中试题(含解析)

上海市七宝中学2019届高三数学上学期期中试题(含解析)

上海市七宝中学2019届高三数学上学期期中试题(含解析)一。

填空题1.集合的真子集有________个【答案】【解析】【分析】直接写出集合A的真子集即得解.【详解】集合A的真子集有,{0},{1},{2018},{0,1},{0,2018},{1,2018},所以集合A的真子集个数为7,故答案为:7【点睛】本题主要考查集合的真子集及其个数,意在考查学生对这些知识的掌握水平和分析推理能力。

2。

设全集,,,则图中阴影部分所表示的集合是________(用区间表示)【答案】【解析】【分析】先化简集合M和N,再求M∩N,再求即得阴影部分所表示的集合。

【详解】由题得M={x|x>2或x〈-2},N={x|x≥0},所以M∩N={x|x>2},所以。

所以阴影部分所表示的集合为[0,2]。

故答案为:【点睛】本题主要考查韦恩图和集合的运算,意在考查学生对这些知识的掌握水平和分析推理能力。

3。

命题“若实数、满足,则或”是________命题(填“真”或“假”)【答案】真【解析】【分析】先考虑其逆否命题“a>2且b>3则a+b>5"的真假,即得原命题的真假。

【详解】由题得原命题的逆否命题为“a>2且b>3则a+b>5”,由不等式同向可加的性质得其逆否命题为真命题,所以原命题是真命题。

故答案为:真【点睛】(1)本题主要考查原命题及其逆否命题,考查命题真假性的判断,意在考查学生对这些知识的掌握水平和分析推理能力.(2)互为逆否关系的命题同真同假,即原命题与逆否命题的真假性相同,原命题的逆命题和否命题的真假性相同。

所以,如果某些命题(特别是含有否定概念的命题)的真假性难以判断,一般可以判断它的逆否命题的真假性。

4.某个时钟时针长6,则在本场考试时间内,该时针扫过的面积是________【答案】【解析】【分析】直接利用扇形的面积公式求解。

【详解】由题得该时针扫过的面积为故答案为:【点睛】本题主要考查扇形面积的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.5。

上海市七宝中学2018-2019学年高三上学期12月月考数学试题(详解版)

上海市七宝中学2018-2019学年高三上学期12月月考数学试题(详解版)
19.若
(1)当 时,设 所对应的自变量取值区间的长度为 (闭区间 的长度为 ),试求 的最大值;
(2)是否存在这样的 使得当 时, ?若存在,求出 的取值范围;若不存在,说明理由.
【答案】(1) (2)存在, 的取值范围为
【解析】
【分析】
(1)由具体到一般,针对 的范围条件,作差比较出 与 的大小,在 时,自变量 取哪些值时 ,进而确定求出 的解析式,对参数的讨论要结合具体的数值,从直观到抽象采取分类策略.
【答案】
【解析】
【分析】
由已知利用同角三角函数基本关系式可求 ,根据正弦定理即可解得 的值.
【详解】解: ,

由正弦定理 ,可得: .
故答案为5.
【点睛】本题主要考查了同角三角函数基本关系式,正弦定理在解三角形中的综合应用,属于基础题.
9.函数 在R上单调递增,设 若 则 的取值范围是_________.
∴函数f(x)=sin2x+x2在 上是增函数,在 上是减函数,
故①x1<x2,③x1<|x2|中的条件都不能保证f(x1)<f(x2)成立,
对于②④,当 ,|x1|<|x2|时,都有x12<x22保证f(x1)<f(x2)成立,
故选B.
【点睛】 本题考查了函数奇偶性和单调性的应用,利用奇(偶)函数图象的对称性,将函数值的大小对应的不等式进行转化,体现了转化思想.
【分析】
根据零向量与任何向量的数量积为零,得到关于 的关系式,再利用 的到不等式,即可得到答案。
【详解】
解得
解得
解得
故 中的最小值是是
故选:
【点睛】本题考查向量的数量积上的运算,关键是利用零向量与任意向量的数量积为零,构造关系式,属于中档题。

上海市七宝中学2019届高三上学期期末考试数学试题(精品解析)

上海市七宝中学2019届高三上学期期末考试数学试题(精品解析)

2019年上海市闵行区七宝中学高考数学一模试卷一、选择题(本大题共4小题)1.设集合P1={x|x2+ax+1>0},P2={x|x2+ax+2>0},其中a∈R,下列说法正确的是()A. 对任意a,P1是P2的子集B. 对任意a,P1不是P2的子集C. 存在a,使得P1不是P2的子集D. 存在a,使得P2是P1的子集【答案】A【解析】【分析】由不等式的性质得:由x2+ax+1>0,则有x2+ax+2=x2+ax+1+1>0+1>0,由x2+ax+2>0,不能推出x2+ax+1>0,由集合间的关系得:P1P2,得解.【详解】解:由x2+ax+1>0,则有x2+ax+2=x2+ax+1+1>0+1>0,由x2+ax+2>0,则有x2+ax+1=x2+ax+2-1>-1,不能推出x2+ax+1>0,即P1P2,故选:A.【点睛】本题考查了集合间的关系,不等式的性质,属简单题.2.△ABC中,a2:b2=tan A:tan B,则△ABC一定是()A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰或直角三角形【答案】D【解析】【分析】由已知a2:b2=tan A:tan B,利用正弦定理及同角基本关系对式子进行化简,然后结合二倍角公式在进行化简即可判断.【详解】解:∵a2:b2=tan A:tan B,由正弦定理可得,∵sin A sin B≠0∴∴sin A cosA=sin B cosB即sin2A=sin2B∴2A=2B或2A+2B=π∴A=B或A+B=,即三角形为等腰或直角三角形故选:D.【点睛】本题考查同角三角函数的基本关系,正弦定理的应用,式子变形是解题的关键和难点.3.抛物线y=2x2上有一动弦AB,中点为M,且弦AB的长度为3,则点M的纵坐标的最小值为()A. B. C. D. 1【答案】A【解析】【分析】由题意设,,直线的方程为,代入抛物线方程,写出韦达定理关系式及弦长与点的纵坐标关系式,通过基本不等式确定最小值.【详解】由题意设,,,直线的方程为,联立方程,整理得,,,点M的纵坐标,弦的长度为,即,整理得,即根据基本不等式,,当且仅当,时取等,即,,点的纵坐标的最小值为.故选A.【点睛】本题考查直线与抛物线位置关系,考查基本不等式在圆锥曲线综合问题中的应用,解题时要认真审题,注意等价转化思想的合理运用.解决直线与圆锥曲线综合问题基本步骤为:(1)设,即设交点坐标和直线方程,注意考虑直线斜率是否存在;(2)联,即联立直线方程与圆锥曲线,消元;(3)判,即直线与圆锥曲线的位置关系可以通过判别式加以判断;(4)韦,即韦达定理,确定两根与系数的关系.(5)代,即根据已知条件,将所求问题转换到与两点坐标和直线方程相关的问题,进而求解问题.4.已知正数数列{a n}满足a n+1≥2a n+1,且a n<2n+1对n∈N*恒成立,则a1的范围为()A. [1,3]B. (1,3)C. (0,3]D. (0,4)【答案】C【解析】【分析】由条件可得1+a n+1≥2(a n+1),设b n=1+a n,(a n>0,b n>1),运用累乘法,结合不等式恒成立,即可得到所求范围.【详解】解:正数数列{a n}满足a n+1≥2a n+1,可得1+a n+1≥2(a n+1),设b n=1+a n,(a n>0,b n>1)即有b2≥2b1,b3≥2b2,…,b n≥2b n-1,累乘可得b n≥b1•2n-1,可得1+a n≥(1+a1)•2n-1,又a n<2n+1对n∈N*恒成立,可得1+2n+1>1+a n≥(1+a1)•2n-1,即有1+2n+1>(1+a1)•2n-1,可得a1<3+恒成立,由3+>3,可得0<a1≤3.故选:C.【点睛】本题考查数列的递推式,注意累乘法的运用,考查等比数列的通项公式,考查不等式的性质和恒成立思想,属于中档题.二、填空题(本大题共12小题)5.设A={x||x|≤2018,x∈R},B={x|y=,x∈R},则A∩B=______.【答案】【解析】【分析】可解出集合A,B,然后进行交集的运算即可.【详解】解:A={x|-2018≤x≤2018},B={2019};∴A∩B=∅.故答案为:∅.【点睛】考查描述法、列举法的定义,绝对值不等式的解法,以及交集的运算6.已知定义域在[-1,1]上的函数y=f(x)的值域为[-2,0],则函数y=f(cos)的值域是______.【答案】[-2,0]【解析】【分析】可以看出-1,从而对应的函数值,这便得出了该函数的值域.【详解】解:∵cos∈[-1,1];∴;即y∈[-2,0];∴该函数的值域为[-2,0].故答案为:[-2,0].【点睛】考查函数定义域、值域的概念,本题可换元求值域:令cos=t,-1≤t≤1,从而得出f(t)∈[-2,0].7.若行列式的展开式的绝对值小于6的解集为(-1,2),则实数a等于______.【答案】4【解析】【分析】推导出|ax-2|<6的解集为(-1,2),从而-4<ax<8解集为(-1,2),由此能求出a的值.【详解】解:∵行列式的展开式的绝对值小于6的解集为(-1,2),∴|ax-2|<6的解集为(-1,2),∴-6<ax-2<6,即-4<ax<8解集为(-1,2),解得a=4.故答案为:4.【点睛】本题考查实数值的求法,考查行列式展开法则、不等式的性质等基础知识,考查运算求解能力,是基础题.8.在(0,2π)内使sin3x>cos3x成立的x的取值范围是______.【答案】(,)【解析】【分析】设f(x)=sin3x-cos3x,x∈(0,2π),化f(x)=(sin x-cos x)(1+sin2x),判断sin x-cos x>0时f(x)>0,由此求出不等式成立的x的取值范围.【详解】解:由题意,设f(x)=sin3x-cos3x,x∈(0,2π),∴f(x)=(sin x-cos x)(sin2x+sin x cosx+cos2x)=(sin x-cos x)(1+sin2x),又1+sin2x>0恒成立,∴sin x-cos x>0,即sin x>cos x,即<x<时,f(x)>0,∴(0,2π)内使sin3x>cos3x成立的x的取值范围是(,).故答案为:(,).【点睛】本题考查了三角函数的图象与性质的应用问题,也考查了转化应用问题,是中档题.9.在等差数列{a n}中,S7=8,则a4=______.【答案】【解析】【分析】由等差数列的性质及前n项和列式求解.【详解】解:在等差数列{a n}中,由S7=,得.故答案为:.【点睛】本题考查等差数列的前n项和,考查等差数列的性质,是基础题.10.已知f(x+1)=2x-2,那么f-1(2)的值是______.【答案】3【解析】【分析】令t=x+1,将已知等式中的x一律换为t,求出f(t)即得到f(x),然后令f(x)=2x-1-2=2,求出相应的x,即为f-1(2)的值.【详解】解:令t=x+1则x=t-1所以f(t)=2t-1-2所以f(x)=2x-1-2令f(x)=2x-1-2=2,解得x=3∴f-1(2)=3故答案为:3.【点睛】已知f(ax+b)的解析式,求f(x)的解析式,一般用换元的方法或配凑的方法,换元时,注意新变量的范围,同时考查了反函数求值,属于基础题.11.甲、乙、丙、丁四位同学站成一排照相留念,已知甲、乙相邻,则甲、丙相邻的概率为______.【答案】【解析】【分析】4人排成一排,其中甲、乙相邻的情况有12种,其中甲丙相邻的只有4种,由此能求出甲乙相邻,则甲丙相邻的概率.【详解】解:甲、乙相邻的方法有=12种情况,如果满足甲、丙相邻,则有4种情况,所以所求的概率为P=故答案为:.【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.12.若P(x,y)是双曲线上的动点,则|x-y|最小值是______.【答案】2【解析】【分析】利用双曲线方程,通过三角代换转化求解x,y,然后求解|x-y|的最小值.【详解】解:P(x,y)是双曲线上的动点,设:x=,y=2tanθ,所以|x-y|=|-2tanθ|=,表达式的几何意义是单位圆上的点与(0,)斜率的2倍,可得:2∈[2,2+2],故答案为:2【点睛】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.13.设点P到平面α的距离为,点Q在平面α上,使得直线PQ与平面α所成角不小于30°且不大于60°,则这样的PQ所构成的区域体积为______.【答案】【解析】【分析】由题意画出图形,分别求出两个圆锥的半径,代入圆锥体积公式作差即可.【详解】解:如图,过P作PO⊥α,则PO=,当∠PQO=60°时,OQ=1,当∠PQO=30°时,OQ=3.∴PQ所构成的区域体积为V=.故答案为:.【点睛】本题考查圆锥体积的求法,考查空间想象能力与思维能力,是中档题.14.已知AB为单位圆上弦长为的弦,P为单位圆上的点,若f(λ)=的最小值为m(其中λ∈R),当点P在单位圆上运动时,则m的最大值为______.【答案】【解析】【分析】设λ,根据向量减法的运算法则,转化为点到直线的距离,利用直线和圆相交时的垂径定理结合勾股定理进行求解即可.【详解】解:设λ,则f(λ)===,又C点在直线AB上,要求f(λ)最小值,等价为求出的最小值,显然当CP⊥AB时,CP最小,可得f(λ)的最小值m为点P到AB的距离,∵|AB|=,∴|BC|=,则|OC|=则|CP|=|OP|+|OC|=1+=,即m的最大值为,故答案为:.【点睛】本题考查向量共线定理的运用,以及圆的垂径定理和勾股定理的运用,利用向量的基本运算结合数形结合是解决本题的关键.综合性较强,有一定的难度.15.已知函数f(a,x)=sin x+cos x随着a,x在定义域内变化时,该函数的最大值为______【答案】【解析】【分析】运用辅助角公式和正弦函数的值域可得f(a,x)≤,再由柯西不等式,计算可得所求最大值.【详解】解:函数f(a,x)=sin x+cos x=sin(x+θ)(θ为辅助角),即有f(a,x)≤(sin(x+θ)=1取得等号),由柯西不等式可得()2≤(1+1)(a+1-a)=2,当且仅当a=时,取得等号,即有≤,即f(a,x)的最大值为.故答案为:.【点睛】本题考查函数的最值求法,注意运用辅助角公式和正弦函数的值域,以及柯西不等式,考查运算能力,属于中档题.16.已知定义在上的函数f(x)=,设a,b,c为三个互不相同的实数,满足f(a)=f(b)=f(c),则abc的取值范围为______.【答案】(81,144)【解析】【分析】先判断函数的性质以及图象的特点,设a<b<c,由图象得ab是个定值,利用数形结合的思想去解决即可.【详解】解:作出f(x)的图象如图:当x>9时,由f(x)=4-=0,得x=16,若a,b,c互不相等,不妨设a<b<c,因为f(a)=f(b)=f(c),所以由图象可知0<a<3<b<9,9<c<16,由f(a)=f(b),得1-log3a=log3b-1,即log3a+log3b=2,即log3(ab)=2,则ab=9,所以abc=9c,因为9<c<16,所以81<9c<144,即81<abc<144,所以abc的取值范围是(81,144).故答案为:(81,144).【点睛】本题主要考查函数与方程的应用,利用数形结合得到ab是个常数是解决本题的关键.综合考查学生的推理能力.三、解答题(本大题共5小题)17.在长方体ABCD-A1B1C1D1中(如图),AD=AA1=1,AB=2,点E是棱AB的中点.(1)求异面直线AD1与EC所成角的大小;(2)《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,试问四面体D1CDE是否为鳖臑?并说明理由.【答案】(1) (2)见解析【解析】【分析】(1)取CD中点F,连接AF,则AF∥EC,即∠D1AF为异面直线AD1与EC所成角,解三角形可得△AD1F为等边三角形,从而得到异面直线AD1与EC所成角的大小;(2)证明DE⊥CE,进一步得到D1E⊥CE,可知四面体D1CDE是鳖臑.【详解】解:(1)取CD中点F,连接AF,则AF∥EC,∴∠D1AF为异面直线AD1与EC所成角.在长方体ABCD-A1B1C1D1中,由AD=AA1=1,AB=2,得∴△AD1F为等边三角形,则.∴异面直线AD1与EC所成角的大小为;(2)连接DE,∵E为AB的中点,∴DE=EC=,又CD=2,∴DE2+CE2=DC2,得DE⊥CE.∵D1D⊥底面DEC,则D1D⊥CE,∴CE⊥平面D1DE,得D1E⊥CE.∴四面体D1CDE的四个面都是直角三角形,故四面体D1CDE是鳖臑.【点睛】本题考查异面直线所成角的求法,考查空间中直线与直线,直线与平面位置关系的判定,考查空间想象能力与思维能力,是中档题.18.设S,T是R的两个非空子集,如果函数y=f(x)满足:①T={f(x)|x∈S};②对任意x1,x2,当x1<x2时,恒有f(x1)<f(x2),那么称函数y=f(x)为集合S到集合T的“保序同构函数”.(1)试判断下列函数f(x)=,f(x)=tan(πx-)是否是集合A={x|0<x<1}到集合R的保序同构函数;请说明理由.(2)若f(x)=是集合[0,s]到集合[0,t]是保序同构函数,求s和t的最大值.【答案】(1)见解析;(2)s的最大值为1,t的最大值为【解析】【分析】(1)根据集合A={x|0<x<1}到集合R的保序同构函数的定义,判断函数是否是单调递增函数即可;(2)利用导数研究函数f(x)=在x≥0上的单调区间,结合保序同构函数的定义进行求解即可.【详解】解:(1)由②知,函数为增函数即可.若f(x)=,当0<x<1时,-1<-x<0,函数y=为增函数,同时y=为增函数,即f(x)=增函数,满足条件.若f(x)=tan(πx-),当0<x<1时,0<πx<π,-<πx-<,此时函数f(x)为增函数,满足条件.即两个函数都是集合A={x|0<x<1}到集合R的保序同构函数.(2)函数f(x)为f′(x)==,当x>0时,由f′(x)>0得1-x2>0得x2<1,得0<x<1,由f′(x)<0得1-x2<0得x2>1,即x>1,即函数f(x)在[0,1]上是增函数,在[1,+∞)上是减函数,则s的最大值为1,t的最大值为f(1)=.【点睛】本题主要考查函数与方程的应用,结合新定义保序同构函数转化为判断函数的单调性是解决本题的关键.19.如图,已知一个长方形展览大厅长为20m,宽为16m,展厅入口位于其长边的中间位置,为其正中央有一个圆心为C的圆盘形展台,现欲在展厅一角B点处安装一个监控摄像头对展台与入口进行监控(如图中阴影所示),要求B与圆C在同一水平面上.(1)若圆盘半径为2m,求监控摄像头最小水平摄像视角的正切值;(2)若监控摄像头最大水平摄像视角为60°,求圆盘半径的最大值.(注:水平摄像视角指镜头中心点与水平观察物体边缘的视线的夹角)【答案】(1) 1+ (2) 5-4【解析】【分析】(1)分别求出∠ABC和∠CBE的正切值,利用两角和的正切公式计算;(2)利用两角差的正切公式计算tan∠CBE,再根据正切的定义列方程求出圆的半径.【详解】解:(1)过C作入口所在边的高AC,垂足为A,由题意可知AC=8,AB=10,BC==2,∴tan∠ABC=,过B作圆C的切线BE,切点为E,则CE⊥BE,CE=2,且∠ABE为监控摄像头最小水平摄像视角.∵BE==12,∴tan∠CBE=,∴tan∠ABE=tan(∠ABC+∠CBE)=1+.∴当圆盘半径为2时,监控摄像头最小水平摄像视角的正切值为1+.(2)过B作直线BD,使得∠ABD=60°,过C作CM⊥BD,垂足为M,则∠CBD=60°-∠ABC,∴tan∠CBD=tan(60°-∠ABC)=.设圆盘的最大半径为r,则tan∠CBD=.解得r=5-4.∴圆盘的最大半径为5-4.【点睛】本题考查了函数模型的应用,直线与圆的位置关系,属于中档题.20.已知椭圆C:(a>b>0)的左右焦点分别为F1,F2,过F1任作一条与坐标轴都不垂直的直线,与C交于A,B两点,且△ABF2的周长为8.当直线AB的斜率为时,AF2与x轴垂直.(1)求椭圆C的方程(2)若A是该椭圆上位于第一象限的一点,过A作圆x2+y2=b2的切线,切点为P,求|AF1|-|AP|的值;(3)设P(0,m)(m≠±b)为定点,直线l过点P与x轴交于点Q,且与椭圆交于C,D两点,设,,,求λ+μ的值.【答案】(1)=1(2)2(3)【解析】【分析】(1)根据题意4a=8,再根据勾股定理求出c=1,即可求出椭圆方程,(2)由题意,根据直线和圆相切,以及勾股定理可得AF1|=2+x0,|PA|=x0,即可求出|AF1|-|AP|的值(3)根据向量的运算可得λ+μ=2+m(+),再题意直线l的方程为x=y(x+m),代入,由此利用韦达定理结合已知条件,即可求出.【详解】解:(1)∵△ABF2的周长为8,∴4a=8,即a=2,∵tan∠AF1F2=,设|AF2|=3m,则|F1F2|=2c=4m,∴|AF1|=5m,∵|AF1|+|AF2|=2a=4,∴3m+5m=4,∴m=,∴2c=2,∴c=1,∴b2=a2-c2=3,∴椭圆C的方程=1,(2)设A(x0,y0),则=1,(|x0|<2)∴|AF1|2=(x0+1)2+y02=(x0+4)2,∴|AF1|=2+x0,连接OP,OP,由相切条件知:|PA|2=|OP|2-|OP|2=x02+y02-3=x02+3-x02-3=x02,∴|PA|=x0,∴|AF1|-|AP|=2+x0-x0=2.(3)设C(x1,y1),D(x2,y2),显然可知直线l的斜率存在且不为0,设直线l的方程为x=k(y-m),令y=0,可得x=-km,则Q(-km,0),由,得(x1+km,y1)=λ(x1,y1-m),则y1=λ(y1-m),即λ==1+,,可得(x2+km,y2)=μ(x2,y2-m),即μ=1+将x=k(y-m),代入椭圆=1中(4+3k2)y2-6mk2y+3k2m2-12=0,由韦达定理得y1+y2=,y1y2=,∴λ+μ=2+m(+)=2+m•=2+==.【点睛】本题考查椭圆的求法,考查直线和椭圆的位置关系,韦达定理,考查两数和为定值的证明,解题时要认真审题,注意函数与方程思想的合理运用.21.设正项数列{a n}的前n项和为S n,首项为1,q为非零正常数,已知对任意整数n,m,当n>m时,S n-S m=q m•S n-m 恒成立.(1)求数列{a n}的通项公式;(2)证明数列是递增数列;(3)是否存在正常数c使得{lg(c-S n)}为等差数列?若存在,求出常数c的值;若不存在,说明理由.【答案】(1) a n=q n-1 (2)见证明 (2)见解析【解析】【分析】(1)由已知条件,可令m=n-1,代入结合数列的递推式,即可得到所求通项公式;(2)讨论公比q是否为1,求得S n,以及,由单调性的定义即可得证;(3)假设存在正常数c使得{lg(c-S n)}为等差数列,结合对数的运算性质和等差数列的通项公式,即可得到所求结论.【详解】解:(1)因为对任意正整数n,m,当n>m时,S n-S m=q m•S n-m总成立,所以n≥2时,令m=n-1,得到S n-S n-1=q n-1•S1,即a n=a1q n-1=q n-1,当n=1时,也成立,所以a n=q n-1,(2)证明:当q=1时,S n=n,=随着n的增大而增大;当q>0,q≠1时,S n=,,由<0,可得数列{}是递增数列;(3)假设存在正常数c使得{lg(c-S n)}为等差数列.当q=1时,S n=n,q≠1时,S n=,{lg(c-S n)}为等差数列,可得q≠1,lg(c-+)=lg=n lg q-lg(1-q)为等差数列,即有c=(0<q<1),【点睛】本题考查数列的通项和求和的关系,考查等比数列的通项公式和求和公式,以及数列的单调性的判断,考查运算能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届上海市七宝中学高三上学期摸底考试数学试题一、单选题1.若,a b 为实数,则“01ab <<”是“1b a<”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D 【解析】【详解】若“0<ab <1”,当a ,b 均小于0时,b >1a 即“0<ab <1”⇒“b <1a”为假命题; 若“b <1a 当a <0时,ab >1,即“b <1a ”⇒“0<ab <1”为假命题,综上“0<ab <1”是“b <1a”的既不充分也不必要条件,故选D2.若函数()2sin()f x x ω=在区间[,]54ππ-上存在最小值2-,则非零实数ω的取值范围是( )A .(,2]-∞-B .[6,)+∞C .5(,2][,)2-∞-+∞UD .15(,][6,)2-∞-+∞U【答案】C【解析】先根据x 的范围求出x ω的范围,根据函数()f x 在区间[,]54ππ-上存在最小值2-,然后对ω大于0和小于0两种情况讨论最值,即可求得非零实数ω的取值范围. 【详解】Q 函数()2sin()f x x ω=在区间[,]54ππ-①当0>ω时,,54x ππωωω⎡⎤∈-⎢⎥⎣⎦ Q 函数()2sin()f x x ω=在区间[,]54ππ-上存在最小值2-∴ 52ππω-≤-可得:52ω∴≥②当0ω<时,,45x ππωωω⎡⎤∈-⎢⎥⎣⎦Q 函数()2sin()f x x ω=在区间[,]54ππ-上存在最小值2-∴42ππω≤-可得:2ω≤-综上所述,非零实数ω的取值范围是:5(,2],2⎡⎫-∞-⋃+∞⎪⎢⎣⎭.故选:C. 【点睛】本题考查了正弦函数在某区间上取最值时,求非零实数ω的取值范围.解题关键是能够掌握正弦函数sin()y A x ωφ=+图像性质,数学结合.3.已知集合{(,)|||||1}M x y x y =+≤,若实数对(,)λμ满足:对任意的(,)x y M ∈,都有(,)x y M λμ∈,则称(,)λμ是集合M 的“嵌入实数对”,则以下集合中,不存在集合M 的“嵌入实数对”的是( ) A .{(,)|2}λμλμ-= B .{(,)|2}λμλμ+= C .22{(,)|2}λμλμ-= D .22{(,)|2}λμλμ+=【答案】C【解析】由定义可知||1λ≤,||1μ≤利用不等式的性质,即可得出2222,,,λμλμλμλμ+--+的范围,从而得出答案. 【详解】Q {(,)|||||1}M x y x y =+≤Q 对任意的(,)x y M ∈,都有(,)x y M λμ∈可得:||||1x y λμ+≤Q 11x y x y λμ⎧+≤⎪⎨+≤⎪⎩, 结合:实数对(,)λμ满足,对任意的(,)x y M ∈,都有(,)x y M λμ∈.∴ 可得||1λ≤,||1μ≤ 即11λ-≤≤,11μ-≤≤对于A,Q 11μ-≤≤,可得11μ-≤-≤,根据1111λμ-≤≤⎧⎨-≤-≤⎩可得:22λμ-≤-≤,∴ 故存在集合M 的“嵌入实数对使2λμ-=对于B,Q 1111λμ-≤≤⎧⎨-≤≤⎩可得22λμ-≤+≤,∴ 故存在集合M 的“嵌入实数对使2λμ+=对于C,Q ||1λ≤,||1μ≤可得:220110λμ⎧≤≤⎨-≤-≤⎩ 故2211λμ-≤-≤, ∴ 故不存在集合M 的“嵌入实数对使222λμ-=对于D, Q ||1λ≤,||1μ≤可得220101λμ⎧≤≤⎨≤≤⎩,故2202λμ≤+≤. ∴ 故存在集合M 的“嵌入实数对使222λμ+=综上所述,故C:22{(,)|2}λμλμ-=不存在集合M 的“嵌入实数对. 故选:C. 【点睛】本题考查了集合的新定义,解题关键是能理解新定义“嵌入实数对”,结合不等式知识进行求解,考查了学生的理解能力和推理能力,属于基础题.4.已知函数210()(1)0x x f x f x x -⎧-+≤=⎨->⎩,则下列命题中正确命题的个数是( )①函数()f x 在[1,)-+∞上为周期函数②函数()f x 在区间(),1m m +,()m N +∈上单调递增③函数()f x 在1x m =-(m N ∈)取到最大值0,且无最小值④若方程()log (2)a f x x =+(01a <<)有且仅有两个不同的实根,则11[,)32a ∈ A .1个 B .2个C .3个D .4个【答案】B【解析】作出()f x 的图像,由图像对各选项进行判断即可.0x ≤时,12112xx y -⎛⎫=-+=-+ ⎪⎝⎭,可由12xy ⎛⎫= ⎪⎝⎭的图像作关于x 轴的对称图像,再向上平移一个单位得到.当0x >时,()(1)f x f x =-故是周期为1的周期函数,01x <≤图像可由10x -<≤时,112xy ⎛⎫=-+ ⎪⎝⎭向右平移一个单位得到,根据周期函数的性质即可得到0x >图像. 【详解】()f x 的图像如图所示:对于①,因为(1)1f -=-,(0)0f =,可得(1)(0)f f -≠所以函数()f x 在[1,)-+∞上不是周期函数,故①不正确;对于②,当(),1m m +,()m N +∈结合函数图像可知,函数()f x 在区间(),1m m +,()m N +∈上单调递增,故②正确;对于③,因为0m =时,(1)(1)1f m f -=-=-,不是最大值, 故③不正确; 对于④,如图所示,图中两条曲线对应的a 分别为13和12,故方程为()log (2)(01)a f x x a =+<<,有且只有两个实根,则11,32a ⎡⎫∈⎪⎢⎣⎭,故④正确.故选:B. 【点睛】本题考查了分段函数和周期函数等相关知识.解题关键是根据函数平移变换画出其函数图像,结合函数图像对其单调性,最值进行求解,考查了计算能力和理解能力,属于中档题.二、填空题5.已知集合2{|340}A x x x =--=,{|10,}B x mx m R =+=∈.且A B A ⋃=,则所有满足条件的m 构成的集合为________ 【答案】1{0,,1}4-【解析】先化简集合A .由A B A ⋃=,可得B A ⊆,分类讨论=0m 和0m ≠,即可求出构成m 的集合. 【详解】Q 集合2{|340}A x x x =--=∴ {1,4}A =-Q A B A ⋃=,可得B A ⊆①当0m =时,满足B A ⊆,符合题意②当0m ≠时,1{|10}B x mx m ⎧⎫=+==-⎨⎬⎩⎭Q B A ⊆∴ 11m-=-或14m -=解得:1m =或14m =-.∴ 所有满足条件的m 构成的集合为:1{0,,1}4-.故答案为:1{0,,1}4-.【点睛】本题考查根据集合的关系求参数取值范围的问题,一般涉及子集问题时,需考虑集合是空集或非空集两种情况,属于基础题.6.设,a b ∈R ,则“tan b α=”是“arctan b α=”的________条件 【答案】必要不充分【解析】根据充分条件和必要条件的定义判断,即可得出答案. 【详解】Q ,a b ∈R ,只有当22ππα-<<时,由tan b α=才有arctan b α=∴ 由tan b α=不能推出arctan b α=故tan b α=不是arctan b α=的充分条件 又Q 由arctan b α=得tan tan(arctan )b α=∴ 可得tan b α=故tan b α=是arctan b α=的必要条件;∴ tan b α=是arctan b α=的必要不充分条件.故答案为:必要不充分. 【点睛】本题主要考查了充分条件与必要条件的判定,其中熟记充分条件和必要条件的判定方法是解答的关键,着重考查了理解能力与运算能力,属于基础题.7.294i z z +=+(i 为虚数单位),则||z =________ 【答案】5【解析】设z a bi =+(,a b ∈R ),则z a bi =-,代入294i z z +=+,整理后由复数相等的条件列式求得,a b 的值,根据z a bi =+的模为22z a b =+即可求得z .【详解】Q 设z a bi =+(,a b ∈R ),则z a bi =-,代入294i z z +=+,得:()2()394a bi a bi a bi i ++-=-=+39,4a b ∴=-= 故:3,4a b ==-∴ 34z i =-根据z a bi =+的模为22z a b =+∴ ()22345z =+-=故答案为:5. 【点睛】本题主要考查复数相等和复数求模,明确复数的实部与虚部是解题关键,考查计算能力,属于基础题.8. 若△ABC 中,a +b =4,C =30°,则△ABC 面积的最大值是________. 【答案】1 【解析】【详解】在△ABC 中,∵C =30°,a +b =4,∴△ABC 的面积S =12ab ·sin C =12ab ·sin30°=14ab ≤241()2a b +=14×4=1,当且仅当a =b =2时取等号.因此△ABC 面积的最大值是1. 故答案为1.9.设直线l 过点(4,0)P -,且与直线:310m x y -+=的夹角为310,则直线l 的方程是________ 【答案】4x =-或43160x y -+=【解析】设l 的方程为(4)(1)0a x b y ++-=(,a b 不同时为零),根据直线夹角公式可得2222310103(1)a b =++-,化简可得0b =或34a b =-,即可求得直线l 的方程. 【详解】直线:310m x y -+=的方向向量为(1,3)α= 设所求直线的方向向量为(,)a b β=(,a b 不同时为零)Q 依题意有:310310|cos ,|cos αβ⎛〈〉== ⎝⎭ ∴310||||10αβαβ⋅= ,2233101010a b a b+=⨯+ 解得243a ab =,即0a =或34a b =- ①当0a =时,则(0,)b β=且0b ≠∴ 此时直线l 的斜率不存在,直线的方程为:4x =-②当34a b =-时,则,a b 均不为0可得:3,4b b β⎛⎫= ⎪⎝⎭,故直线的斜率为:4334b b =∴ 直线的方程为:4(4)3y x =+ ,即43160x y -+=综上所述, 直线l 的方程:4x =-或43160x y -+=.故答案为: 4x =-或43160x y -+=. 【点睛】本题考查直线夹角的问题,解题关键是熟记直线夹角的计算公式,考查了计算能力.属于基础题.10.设常数0a >,9x x ⎛+ ⎝展开式中6x 的系数为4,则()2lim n n a a a →∞+++=L _______ 【答案】12【解析】根据二项展开式的通项公式3992199rrr r r r r T C x a C xx --+==和已知求出r ,再代入求a ,从而将a 代入所求表达式,结合等比数列的前n 项和公式求和并取极限即可. 【详解】9x x ⎛ ⎝展开式的通项公式为3992199rr r r r r r T C x a C xx --+==,令3962r -=,解得2r =,则2294a C =,解得13a =,所以,()2lim lim l 11(1)111331223213im n n n n n n a a a →∞→∞→∞-⎛⎫=-= ⎪⨯⎝-+⎭++=L .故答案为:12. 【点睛】本题考查二项展开式的通项公式和系数,考查了等比数列的前n 项和以及极限的简单计算,注意仔细审题,认真计算,属中档题.11.已知()y f x =是定义在R 上的奇函数,且当0x >时,11()142x x f x =-++,则此函数的值域为________.【答案】{}55,11,044⎡⎛⎫⎤--⋃⋃⎪ ⎢⎥⎭⎦⎣⎝【解析】先求当0x >时函数的值域,再根据函数的奇偶性得到函数在R 上的值域. 【详解】当0x >时,21111()1=()14222x x x x f x =-++-++, 令1,(01)2x t t =<<,所以2()1(01)g t t t t =-++<<, 所以5()(1,]4g t ∈.由于函数是奇函数,所以当0x <时,5()[,1)4f x ∈--. 当0x =时,(0)0f =.综上所述,此函数的值域为{}55,11,044⎡⎛⎫⎤--⋃⋃⎪ ⎢⎥⎭⎦⎣⎝.故答案为:{}55,11,044⎡⎛⎫⎤--⋃⋃⎪ ⎢⎥⎭⎦⎣⎝【点睛】本题主要考查函数奇偶性的应用,考查指数型函数的值域的求法,意在考查学生对这些知识的理解掌握水平.12.已知函数8()log (8)a f x x x=+-在[2,)+∞上是增函数,则实数a 的取值范围是________ 【答案】[4,20)-【解析】根据复合函数单调性同增异减,因为外层函数8log y x =是单调增函数,则需内层函数8a y x x =+-也是增函数,且满足80ax x+->,即可求得实数a 的取值范围. 【详解】Q 8()log (8)af x x x=+-设8log ,8a y t t x x==+-8log y t =Q 在(0,)+∞上为增函数要保证8()log (8)a f x x x=+-在[2,)+∞上是增函数8at x x ∴=+-在[2,)+∞上是增函数 ∴ 210at x'=+≥在[2,)+∞上恒成立2a x ∴≥- 在[2,)+∞上恒成立 22,4x x ≥≥Q 可得24x -≤-4a ∴≥-Q 8()log (8)af x x x=+-2802a∴+-> 20a ∴<∴ 实数a 的取值范围是:[4,20)-.故答案为:[4,20)-. 【点睛】本题考查了根据复合函数单调性求参数.对于复合函数单调性的判断要掌握同增异减,对函数的内层和外层分别判断,当外层函数是增函数时,内层函数也需要增函数,注意内层函数要满足外层函数的定义域. 13.奇函数()y f x =满足对任意x ∈R 都有(2)(2)0f x f x ++-=,且(1)9f =,则(2016)(2017)(2018)f f f ++的值为________【答案】9【解析】由(2)(2)0f x f x ++-=推导出(4)()f x f x +=即可得到()f x 的周期为4,当0x =时,由(2)(2)0f f +=得(2)0f =.结合(1)9f =,即可求得(2016)(2017)(2018)f f f ++的值.【详解】Q (2)(2)0f x f x ++-=(2)(2)f x f x ∴+=-- ┄①Q ()f x 为奇函数,故()()f x f x -=-(2)[(2)](2)f x f x f x ∴-=--=-- ┄②由①②可得:(2)(2)f x f x +=- 即:(4)()f x f x += 可得:()f x 的周期为4Q 函数()f x 是定义在R 上的奇函数,可得: (0)0f =Q 当0x =时, 由(2)(2)0f x f x ++-=,可得: (20)(20)0f f ++-=∴ (2)0f =(2016)(50440)(0)f f f ∴=⨯+= (2017)(20161)(1)9f f f =+== (2018)(20162)(2)0f f f =+==∴ (2016)(2017)(2018)9f f f ++=故答案为:9.【点睛】本题考查通过奇函数的定义及周期函数的定义求函数的周期,解题关键是通过赋值法求特定的函数值和利用周期性求函数的值.14.在直角坐标系中,已知()1,0A ,()4,0B ,若直线10x my +-=上存在点P ,使得2PA PB =,则实数m 的取值范围是______.【答案】(),33,⎡-∞-⋃+∞⎣【解析】设点P 的坐标为(),x y ,根据条件2PA PB =求出动点P 的轨迹方程,可得知动点P 的轨迹为圆,然后将问题转化为直线10x my +-=与动点P 的轨迹圆有公共点,转化为圆心到直线的距离不大于半径,从而列出关于实数m 的不等式,即可求出实数m 的值. 【详解】设点P 的坐标为(),x y ,2PA PB =Q ()()2222124x y x y -+=-+化简得()2254x y -+=,则动点P 的轨迹是以()5,0为圆心,半径为2的圆, 由题意可知,直线10x my +-=与圆()2254x y -+=有公共点,221m≤+,解得3m ≤或3m ≥.因此,实数m 的取值范围是(),33,⎡-∞-⋃+∞⎣. 故答案为:(),33,⎡-∞-⋃+∞⎣.【点睛】本题考查动点的轨迹方程,同时也考查了利用直线与圆的位置关系求参数,解题的关键就是利用距离公式求出动点的轨迹方程,考查化归与转化思想的应用,属于中等题. 15.下列命题:①关于x 、y 的二元一次方程组1323mx y mx my m +=-⎧⎨-=+⎩的系数行列式0D =是该方程组有解的必要非充分条件;②已知E 、F 、G 、H 是空间四点,命题甲:E 、F 、G 、H 四点不共面,命题乙:直线EF 和GH 不相交,则甲成立是乙成立的充分非必要条件;③“2a <”是“对任意的实数x ,|1||1|x x a ++-≥恒成立”的充要条件;④“0p =或4p =-”是“关于x 的方程px p x=+有且仅有一个实根”的充要条件; 其中,真命题序号是________ 【答案】②【解析】根据充分条件和必要条件的定义逐一判断,即可得出答案. 【详解】对于①,Q 系数行列式0D ≠,关于x 、y 的二元一次方程组1323mx y mx my m +=-⎧⎨-=+⎩有唯一解,∴ 0D =是该方程组有解的非充分条件又Q 系数行列式0D =,0x D ≠或0y D ≠关于x 、y 的二元一次方程组1323mx y mx my m +=-⎧⎨-=+⎩无解系数行列式0D =, 0x y D D ==关于x 、y 的二元一次方程组1323mx y mx my m +=-⎧⎨-=+⎩有无穷组解∴ 关于x 、y 的二元一次方程组1323mx y mx my m +=-⎧⎨-=+⎩的系数行列式0D =是该方程组有解的非必要非充分条件; 故①不正确;对于②,已知E 、F 、G 、H 是空间四点,命题甲:E 、F 、G 、H 四点不共面,命题乙:直线EF 和GH 不相交.Q 命题甲可以推出命题乙,甲成立是乙成立的充分条件又Q 直线EF 和GH 不相交,当EF GH P ,即E 、F 、G 、H 四点共面,∴ 命题乙不能推出命题甲,甲成立是乙成立的非必要条件 ∴ 甲成立是乙成立的充分非必要条件.故②正确;对于③,设|1||1|y x x =++- 当1x ≥时,22y x =≥; 当11x -≤<时,2y =;当1x <-时,22y x =->. 故|1||1|2x x ++-≥Q 2a <能推出任意的实数x ,|1||1|x x a ++-≥又Q 对任意的实数x ,|1||1|x x a ++-≥不能推出2a <故“2a <”是“对任意的实数x ,|1||1|x x a ++-≥恒成立”的充分不必要条件 故③不成立;对于④,由关于x 的实系数方程px p x=+有且仅有一个实数根,得:20x px p +-=, 由240p p ∆=+=得:0p =或4p =-当0p =时,得0x =,检验知:0x =不是方程px p x=+的实根,故此时方程无解 当4p =-时,2440x x -+=,解得2x =,检验知:2x =是方程px p x=+的实根.故此时关于x 的方程px p x=+有且仅有一个实数根∴ “0p =或4p =-”不能推出“关于x 的方程px p x=+有且仅有一个实根”又Q 关于x 的方程px p x=+有且仅有一个实根也不能推出“0p =或4p =-”∴ “0p =或4p =-”是“关于x 的方程px p x=+有且仅有一个实根”的既不充分也不必要条件.故④错误. 故答案为:②. 【点睛】本题主要考查了充分条件与必要条件的判定,其中熟记充分条件和必要条件的判定方法是解答的关键,着重考查了推理与运算能力,属于中档题.16.在直角坐标平面xOy 中,已知两定点1(2,0)F -与2(2,0)F 位于动直线:0l ax by c ++=的同侧,设集合{|P l =点1F 与点2F 到直线l 的距离之差等于2},22{(,)|4,,}Q x y x y x y R =+≤∈,记{(,)|(,),}S x y x y l l P =∉∈,{(,)|(,)}T x y x y Q S =∈I ,则由T 中的所有点所组成的图形的面积是________ 【答案】4433π【解析】根据条件确定集合P 对应的轨迹,利用集合T 的定义,确定T 对应图形,即可求得T 中的所有点组成的图形的面积. 【详解】Q 两定点1(2,0)F -与2(2,0)F 位于动直线:0l ax by c ++=的同侧,如图:过1(2,0)F -与2(2,0)F 分别作l 直线的垂线,垂足分别为,B C 由题意得122F B F C -=,即12F A =Q 在12Rt AF F △中214F F =,∴ 121cos 2AF F ∠=可得2160AF F ︒∠= ∴.集合P 对应的轨迹为线段2AF 的上方部分,Q 对应的区域为半径为2的单位圆内部根据T 的定义可知,T 中的所有点组成的图形为图形阴影部分∴ 阴影部分的面积为:21142224sin 4362360ππ︒⎛⎫⨯+⨯⨯⨯= ⎪⎝⎭故答案为:4433π. 【点睛】本题考查了集合的新定义的理解,解题关键是能够通过已知条件画出阴影面积的几何图像,数学结合,考查了分析能力和计算能力.三、解答题 17.关于x 的不等式201x a x+<的解集为()1,b -.()1求实数a ,b 的值;()2若1z a bi =+,2z cos isin αα=+,且12z z 为纯虚数,求tan α的值.【答案】(1)1a =-,2b =(2)12-【解析】(1)由题意可得:1-,b 是方程220x ax +-=的两个实数根,利用根与系数的关系即可得出答案; (2)利用(1)的结果得()()1222z z cos sin cos sin i αααα=--+-为纯虚数,利用纯虚数的定义即可得出. 【详解】 解:(1)不等式201x a x+<即()20x x a +-<的解集为()1,b -. 1∴-,b 是方程220x ax +-=的两个实数根,∴由1b a -+=-,2b -=-,解得1a =-,2b =.(2)由(1)知1,2a b =-=,()()()()121222z z i cos isin cos sin cos sin i αααααα∴=-++=--+-为纯虚数,20cos sin αα∴--=,20cos sin αα-≠,解得12tan α=-. 【点睛】本题考查了行列式,复数的运算法则、纯虚数的定义、一元二次方程的根与系数的关系、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.18.如图,四棱锥P ABCD -中,PD ⊥底面ABCD ,且底面ABCD 为平行四边形,若60DAB ∠=︒,2AB =,1AD =.(1)求证:PA BD ⊥;(2)若45PCD ∠=︒,求点D 到平面PBC 的距离h . 【答案】(1)答案见解析(2)2217. 【解析】(1) 因为60DAB ∠=︒,2AB =,1AD =,利用余弦定理求出BD ,即可判断出ABD △满足勾股定理,即ABD △直角三角形且角ADB ∠为直角,则AD BD ⊥,结合已知PD ⊥底面ABCD ,即可求证PA BD ⊥.(2)利用等体积法,根据P BCD D BCP V V --=列方程,即可求得点D 到平面PBC 的距离h . 【详解】(1)1,2,60AD AB DAB ︒==∠=Q根据余弦定理可得: 2222cos60BD AB AD AB AD ︒=+-⋅⋅∴3BD =222AD BD AB ∴+=AD BD ∴⊥Q PD ⊥底面ABCD ,BD ⊂底面ABCDPD BD ∴⊥,又AD PD D =IBD ∴⊥平面PADPA ⊂Q 平面PAD ∴ PA BD ⊥综上所述, PA BD ⊥ (2)由(1)可知BC BD ⊥132BCD S BC BD ∴=⨯⨯=V 45PCD ︒∠=Q 可得:2PD CD ==13323P BCD V -∴==22222,,1PC CD PB PD DB BC ===+=Q 222BC PB PC ∴+= PB BC ∴⊥172BCP S BC PB ∴=⋅=V 177326D BCP hV h -∴=⨯=又Q P BCD D BCP V V --=7363h =解得:2217h = . 【点睛】本题考查了判定空间两条直线垂直和点到面的距离问题.本题的解题关键是将判定空间线线垂直转化为求证空间线面垂直,考查了学生空间想象能力和计算能力.属于中等题.19.如果一条信息有n 1,N)n n >∈(种可能的情形(各种情形之间互不相容),且这些情形发生的概率分别为12,,,n p p p L ,则称H = ()()()12n f p f p f p ++L (其中()f x = log ,a x x - ()0,1x ∈)为该条信息的信息熵.已知1122f ⎛⎫= ⎪⎝⎭. (1)若某班共有32名学生,通过随机抽签的方式选一名学生参加某项活动,试求“谁被选中”的信息熵的大小;(2)某次比赛共有n 位选手(分别记为12,,,n A A A L )参加,若当1,2,k = ,1n -L 时,选手k A 获得冠军的概率为2k -,求“谁获得冠军”的信息熵H 关于n 的表达式.【答案】(1)5(2)422n -【解析】试题分析:利用11()22f =求出a ,根据题目(1)所给出的信息,32名学生,通过随机抽签的方式选一名学生参加某项活动,“某人被选中”的概率均为132,利用公式H =()()()12n f p f p f p ++L (其中()f x = log ,a x x - ()0,1x ∈),求出信息熵的值;比赛共有n 位选手(分别记为12,,,n A A A L )参加,若当1,2,k = ,1n -L 时,选手k A 获得冠军的概率为2k -,利用公式H = ()()()12n f p f p f p ++L (其中()f x = log ,a x x - ()0,1x ∈),表示出信息熵后,利用错位相减法求出数列的和. 试题解析:(1)由1122f ⎛⎫=⎪⎝⎭,可得111log 222a -=,解之得2a =. 由32种情形等可能,故()11,2,,3232k P k ==L , 所以21132log 53232H ⎛⎫=⨯-= ⎪⎝⎭,答:“谁被选中”的信息熵为5.(2)n A 获得冠军的概率为111111111+1124222n n n ---⎛⎫⎛⎫-++=--=⎪ ⎪⎝⎭⎝⎭L ,当1,2,k = ,1n -L 时,()22log 22k kk k k f p --=-=,又()112nn n f p --=, 故111231124822n n n n H ----=+++++L , 1112211+248222n n n n n n H L ----=++++, 以上两式相减,可得11111111+1224822n n H --=+++=-L ,故422n H =-, 答:“谁获得冠军”的信息熵为422n -.20.双曲线2221(0)y x b b-=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点.(1)若l 的倾斜角为π2,1F AB V 是等边三角形,求双曲线的渐近线方程; (2)设3b =l 的斜率存在,且11()0F A F B AB +⋅=u u u r u u u r u u u r,求l 的斜率. 【答案】(1)2y x =;(2)15. 【解析】试题分析:(1)设(),x y A A A ,根据题设条件得到()24413bb+=,从而解得2b 的值.(2)设()11,x y A ,()22,x y A ,直线:l ()2y k x =-与双曲线方程联立,得到一元二次方程,根据l 与双曲线交于两点,可得230k -≠,且()23610k∆=+>.再设AB 的中点为(),xy MM M ,由()110F F A +B ⋅AB =u u u r u u u r u u u r 即10F M⋅AB =u u u u r u u u r,从而得到11F k k M ⋅=-,进而构建关于k 的方程求解即可.试题解析:(1)设(),x y A A A .由题意,()2,0F c ,21c b =+,()22241y bcb A =-=,因为1F AB V 是等边三角形,所以23c y A =, 即()24413bb+=,解得22b =.故双曲线的渐近线方程为2y x =.(2)由已知,()12,0F -,()22,0F .设()11,x y A ,()22,x y B ,直线:l ()2y k x =-.显然0k ≠.由()221{32y x y k x -==-,得()222234430k x k x k --++=. 因为l 与双曲线交于两点,所以230k -≠,且()23610k ∆=+>.设AB 的中点为(),x y M M M .由11()0F A F B AB +⋅=u u u r u u u r u u u r 即10F M⋅AB =u u u u r u u u r ,知1F M ⊥AB ,故11F k k M ⋅=-. 而2122223x x k x k M +==-,()2623k y k x k M M =-=-,12323F k k k M =-, 所以23123k k k ⋅=--,得235k =,故l 的斜率为15. 【考点】双曲线的几何性质、直线与双曲线的位置关系、平面向量的数量积【名师点睛】本题对考生的计算能力要求较高,是一道难题.解答此类题目时,利用,,,a b c e 的关系,确定双曲线(圆锥曲线)方程是基础,通过联立直线方程与双曲线(圆锥曲线)方程得到方程组,应用一元二次方程根与系数的关系进行求解.本题能较好地考查考生的逻辑思维能力、运算求解能力、分析问题与解决问题的能力等.21.若定义在R 上的函数()y f x =满足:对于任意实数x 、y ,总有()()()()2f x y f x y f x f y ++-=恒成立,我们称()f x 为“类余弦型”函数.()1已知()f x 为“类余弦型”函数,且()514f =,求()0f 和()2f 的值;()2在()1的条件下,定义数列()()21(1,n a f n f n n =+-=2,3,).⋯求201720181222223333a a a alog log log log ++⋯++的值. ()3若()f x 为“类余弦型”函数,且对于任意非零实数t ,总有()1f t >,证明:函数()f x 为偶函数,设有理数1x ,2x 满足12x x <,判断()1f x 和()2f x 的大小关系,并证明你的结论.【答案】(1)()01f =,()1728f =(2)2035153(3)证明见解析,()()12.f x f x <,证明见解析 【解析】()1是抽象函数基础题,令121,0x x ==,求得()01f =;令121x x ==,求得()1728f =; ()2对于此数列,需要求其通项,而求通项又需要递推公式,令x n =,1y =,利用题中关系式推导出递推公式12n n a a -=,求通项然后利用对数的运算法则求解答案;()3属于难题,因为()()12的铺垫,代入特定的数即令0x =,y 为任意实数即可证明偶函数,证明()1f x 与()2f x 的大小关系需要定义新的数列,又因为题目中的有理数条件,要充分利用分数的特点.【详解】解:()1令1x =,0y =,则()()()()11210+=f f f f ,所以()01f =. 令1x =,1y =,则()()()()20211f f f f +=,所以()1728f =. ()2令x n =,1y =,其中n 是大于1的整数,则()()()()()511212f n f n f n f f n ++-==,所以()()()()()21221f n f n f n f n +-=--,即12n n a a -=.又因为()()12213a f f =-=,所以数列{}n a 是首项为3,公比为2的等比数列,所以132n n a -=⋅,则213na log n =-. 所以原式0120172035153=++⋯+=.(3)证明:由题意函数()f x 定义域为R 关于原点对称,令0x =,y 为任意实数,则()()()()()202f y f y f f y f y +-==,即()()-=f y f y ,所以()f x 是偶函数.令N 为1x ,2x 分母的最小公倍数,并且1a x N =,2b x N=,a b 、都是自然数,并且a b <. 令数列{}n c 满足n n c f N ⎛⎫= ⎪⎝⎭,0n =,1,.⋯下证:数列{}n c 单调递增.()1.01i f f N ⎛⎫=< ⎪⎝⎭,所以01c c <;.ii 若1n n c c -<,n 是正整数,即1n n f f N N -⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;令n x N =,1y N =,则11122n n n n f f f f f N N N N N +-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=> ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,即112n n n c c c +-+>. 所以()1112n n n n n n n c c c c c c c +-->-=+->.综上,数列{}n c 单调递增,所以()()12fx f x <,又因为()f x 是偶函数,所以()()12.f x f x < 【点睛】本题涉及抽象函数、数列求通项求和等知识,使用了赋值法、数学归纳法等方法,属于难题.。

相关文档
最新文档