最新初中数学三角形的知识点大全

合集下载

初中数学知识点:三角形的内心、外心、中心、重心

初中数学知识点:三角形的内心、外心、中心、重心

初中数学知识点:三角形的内心、外心、中心、重心三角形的四心定义:1、内心:三角形三条内角平分线的交点,即内切圆的圆心。

内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。

2、外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。

外心定理:三角形的三边的垂直平分线交于一点。

该点叫做三角形的外心。

3、中心:三角形只有五种心重心、垂心、内心、外心、旁心,当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心。

4、重心:重心是三角形三边中线的交点。

三角形的外心的性质:1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;3.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合。

在△ABC中4.OA=OB=OC=R5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA6.S△ABC=abc/4R三角形的内心的性质:1.三角形的三条角平分线交于一点,该点即为三角形的内心2.三角形的内心到三边的距离相等,都等于内切圆半径r3.r=2S/(a+b+c)4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2.5.∠BOC = 90 °+∠A/2 ∠BOA = 90°+∠C/2 ∠AOC = 90 °+∠B/26.S△=[(a+b+c)r]/2 (r是内切圆半径)三角形的垂心的性质:1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外。

(完整版)初中三角形知识点总结

(完整版)初中三角形知识点总结

图形的初步认识:三角形考点一、三角形1、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角平等边;等边平等角;大角对大边;大边对大角。

4、三角形的面积三角形的面积 = 1×底×高2考点二、全等三角形1、全等三角形的观点能够完整重合的两个三角形叫做全等三角形。

2、三角形全等的判断三角形全等的判断定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“ SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“ SSS”)。

(4)角角边定理:有两角和一边对应相等的两个三角形全等(可简写成“角角边”或“ AAS”)。

直角三角形全等的判断:关于特别的直角三角形,判断它们全等时,还有 HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“ HL”)3、全等变换只改变图形的地点,不改变其形状大小的图形变换叫做全等变换。

全等变换包含一下三种:(1)平移变换:把图形沿某条直线平行挪动的变换叫做平移变换。

(2)对称变换:将图形沿某直线翻折 180°,这类变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转必定的角度到另一个地点,这类变换叫做旋转变换。

考点三、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边平等角)推论 1:等腰三角形顶角均分线均分底边并且垂直于底边。

中考三角形知识点总结

中考三角形知识点总结

中考三角形知识点总结一、三角形的概念与分类。

1. 概念。

- 由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

- 三角形有三个顶点、三条边和三个内角。

2. 分类。

- 按角分类。

- 锐角三角形:三个角都是锐角的三角形。

- 直角三角形:有一个角是直角的三角形。

直角三角形可以用“Rt△”表示,直角所对的边称为斜边,其余两条边称为直角边。

- 钝角三角形:有一个角是钝角的三角形。

- 按边分类。

- 不等边三角形:三边都不相等的三角形。

- 等腰三角形:有两边相等的三角形。

相等的两边叫做腰,另一边叫做底边;两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

- 等边三角形:三边都相等的三角形,等边三角形是特殊的等腰三角形,它的三个角都相等,且每个角都是60°。

二、三角形的性质。

1. 三角形内角和定理。

- 三角形的内角和为180°。

- 直角三角形的两个锐角互余。

2. 三角形的外角性质。

- 三角形的一个外角等于与它不相邻的两个内角的和。

- 三角形的一个外角大于任何一个与它不相邻的内角。

3. 三角形的三边关系。

- 三角形任意两边之和大于第三边。

- 三角形任意两边之差小于第三边。

4. 等腰三角形的性质。

- 等腰三角形的两腰相等。

- 等腰三角形的两底角相等(简称为“等边对等角”)。

- 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简称为“三线合一”)。

5. 等边三角形的性质。

- 等边三角形的三条边相等。

- 等边三角形的三个角都相等,并且每个角都是60°。

三、三角形中的重要线段。

1. 中线。

- 连接三角形一个顶点和它对边中点的线段叫做三角形的中线。

- 三角形的三条中线相交于一点,这点叫做三角形的重心。

重心到顶点的距离是它到对边中点距离的2倍。

2. 角平分线。

- 三角形一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

- 三角形的三条角平分线相交于一点,这点到三角形三边的距离相等。

初中数学知识归纳三角形的概念与分类

初中数学知识归纳三角形的概念与分类

初中数学知识归纳三角形的概念与分类三角形是初中数学中常见的一种几何形状,它由三条线段组成,其中任意两条线段的和大于第三条线段。

本文将对三角形的概念与分类进行归纳总结。

一、三角形的概念三角形是由三条线段组成的图形,其中任意两条线段之和大于第三条线段。

三角形的内部有三个顶点和三条边,边延伸的部分称为顶点的一条生活,而顶点所在的直线则被称为该顶点对应的边。

三角形具有以下特点:1. 三角形的顶点三角形有三个顶点,分别用大写字母A、B、C表示,顺序可以任意排列。

2. 三角形的边三角形有三条边,分别用小写字母a、b、c表示,与顶点的对应关系为a与顶点A相对,b与顶点B相对,c与顶点C相对。

3. 三角形的内角三角形由三个顶点构成,因此也有三个内角,分别用α、β、γ表示,与顶点的对应关系为α与顶点A相对,β与顶点B相对,γ与顶点C相对。

二、三角形的分类根据三角形的角度和边长特点的不同,可以将三角形分为不同的类型。

下面将对常见的三角形分类进行介绍。

1. 根据内角的大小根据三角形的内角大小可以将其分为锐角三角形、直角三角形和钝角三角形三种类型。

- 锐角三角形:三个内角均小于90°。

例如,若三个内角分别为α、β、γ,则有0°< α, β, γ < 90°。

- 直角三角形:其中一个内角等于90°。

通常直角三角形的两个边之间存在直角关系。

例如,若三个内角分别为α、β、γ,则有α+β+γ=90°。

- 钝角三角形:其中一个内角大于90°。

例如,若三个内角分别为α、β、γ,则有0°< α, β, γ < 180°, 且至少存在一个内角大于90°。

2. 根据边长的关系根据三角形的边长关系可以将其分为等边三角形、等腰三角形和普通三角形三种类型。

- 等边三角形:三条边的边长相等。

例如,若三条边的边长分别为a、b、c,则有a = b = c。

关于三角形的知识点总结

关于三角形的知识点总结

关于三角形的知识点总结三角形是几何学中的重要概念,广泛应用于各个领域。

它具有独特的性质和特征。

本文将对三角形的定义、性质及分类进行总结,并介绍一些与三角形相关的重要定理。

1. 三角形的定义三角形是由三条线段连接起来形成的一个平面图形。

它由三个顶点和三条边组成,其中每条边连接两个顶点,而每个顶点又与其他两个顶点相连。

三角形的边可以是不等长的,但只能有一对边是平行的。

2. 三角形的性质(1)内角和:三角形的三个内角之和总是等于180度。

即∠A + ∠B + ∠C = 180°,其中∠A、∠B、∠C为三角形各内角度数。

(2)外角和:三角形的三个外角之和总是等于360度。

即∠D + ∠E + ∠F = 360°,其中∠D、∠E、∠F为三角形各外角度数。

(3)边长关系:在三角形ABC中,若边长满足a+b>c,a+c>b,b+c>a,则该三条边可以构成一个三角形。

3. 三角形的分类(1)按照边长分类:- 等边三角形:三边长度相等的三角形,内角也相等,每个内角都为60度。

- 等腰三角形:两边长度相等的三角形,内角均不相等。

- 普通三角形:三边长度各不相等的三角形,内角均不相等。

(2)按照角度分类:- 直角三角形:一个内角为90度的三角形。

直角三角形中的两条边相互垂直,分别称为直角边和斜边。

- 钝角三角形:一个内角大于90度的三角形。

钝角三角形的其他两个内角均为锐角。

- 锐角三角形:三个内角都小于90度的三角形。

4. 三角形的重要定理(1)勾股定理:直角三角形中,直角边的平方等于两条斜边的平方之和。

即a² + b² = c²,其中a、b分别为直角边的长度,c为斜边的长度。

(2)正弦定理:在任意三角形ABC中,三条边的比值与对应的正弦值相等。

即a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应的内角。

初中三角形知识点总结

初中三角形知识点总结

初中三角形知识点总结初中三角形知识点总结「篇一」1.知识概念1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

7.多边形的内角:多边形相邻两边组成的角叫做它的内角。

8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

11.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

12.公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

多边形内角和公式:n边形的内角和等于(n-2)·180°多边形的外角和:多边形的内角和为360°。

多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

(2)n边形共有条对角线。

初中三角形知识点总结「篇二」初中三角形数学知识点总结三角形的一个外角大于任何一个和它不相邻的内角。

接下来为大家整合的是上海初中数学三角形知识点总结。

三角形知识点三角形两边的和大于第三边推论三角形两边的差小于第三边三角形内角和定理三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角的和推论3 三角形的一个外角大于任何一个和它不相邻的内角中考知识点总结:三角形的一个外角等于和它不相邻的两个内角的和。

七年级数学三角形的知识点

七年级数学三角形的知识点

七年级数学三角形的知识点数学是一门重要的学科,而三角形则是数学中比较基础的图形之一。

在七年级数学学习中,要熟悉掌握三角形的相关知识点。

下面,将从三角形的定义、分类、性质、判定以及常用公式等方面介绍七年级数学三角形的知识点。

一、三角形的定义三角形是由三条线段组成的图形,其中任意两条线段之和大于第三条线段。

三个角的顶点称为三角形的顶点,由三角形的三个顶点所组成的角称为三角形的角。

二、三角形的分类1.按角度分类①锐角三角形:三个角的大小均小于90度②直角三角形:一个角的大小为90度③钝角三角形:一个角的大小大于90度2.按边分类①等边三角形:三条边的长度均相等②等腰三角形:两条边的长度相等③普通三角形:边长和角度均不相等三、三角形的性质1.三角形内角和定理。

三角形内部的所有角的度数之和为180度。

2.三角形外角定理。

以三角形的一个角为顶点,作它的一条边的反向延长线,使其与另一条边相交,被延长线所夹的角叫做三角形的外角。

三角形的每个外角的度数等于没有这个角的三角形的两个内角的度数之和。

3.三角形的边长关系。

在任意三角形中,最长的那一边对应的角度最大;反之,最短的那一边对应的角度最小;如果两边长相等,那么对应的角度也相等。

四、三角形的判定1.三边判定法。

三角形的三边长度已知,可以利用三边关系来确定是否能够构成三角形。

2.两边及夹角判定法。

如果两条边及夹角的大小已知,那么可以利用正弦定理、余弦定理等公式来确定是否能够构成三角形。

3.两角及夹边判定法。

如果两个角度及夹边的大小已知,那么可以利用正弦定理、余弦定理等公式来确定是否能够构成三角形。

五、三角形的常用公式1.海伦公式。

海伦公式是计算三角形面积的一种公式,它的形式为:S=sqrt[p(p-a)(p-b)(p-c)],其中a、b、c分别为三角形的三边长,p=(a+b+c)/2。

2.正弦定理。

对于任意三角形ABC,它的三边长度为a、b和c,且对应的角分别为A、B和C,则下式成立:a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆半径)。

初三数学几何知识点归纳

初三数学几何知识点归纳

初三数学几何知识点归纳一、三角形1. 三角形的基本概念- 三角形由不在同一直线上的三条线段首尾顺次相接所组成。

- 三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。

例如,若三角形三边为a、b、c,则a + b>c,a - b<c。

2. 三角形的分类- 按角分类:- 锐角三角形:三个角都是锐角的三角形。

- 直角三角形:有一个角是直角的三角形,直角三角形中斜边最长,两直角边的平方和等于斜边的平方(勾股定理a^2+b^2=c^2,其中c为斜边,a、b为两直角边)。

- 钝角三角形:有一个角是钝角的三角形。

- 按边分类:- 不等边三角形:三边都不相等的三角形。

- 等腰三角形:有两边相等的三角形,相等的两边叫做腰,另一边叫做底边;两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

等腰三角形两底角相等(等边对等角),等腰三角形三线合一(底边上的高、底边上的中线、顶角平分线互相重合)。

- 等边三角形:三边都相等的三角形,等边三角形三个角都是60^∘,等边三角形是特殊的等腰三角形。

3. 三角形的内角和与外角- 三角形内角和定理:三角形三个内角的和等于180^∘。

- 三角形的外角:三角形的一边与另一边的延长线组成的角。

三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。

二、四边形1. 平行四边形- 定义:两组对边分别平行的四边形叫做平行四边形。

- 性质:- 平行四边形的对边平行且相等。

- 平行四边形的对角相等,邻角互补。

- 平行四边形的对角线互相平分。

- 判定:- 两组对边分别平行的四边形是平行四边形。

- 两组对边分别相等的四边形是平行四边形。

- 一组对边平行且相等的四边形是平行四边形。

- 两组对角分别相等的四边形是平行四边形。

- 对角线互相平分的四边形是平行四边形。

2. 矩形- 定义:有一个角是直角的平行四边形叫做矩形。

- 性质:- 矩形具有平行四边形的所有性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学三角形的知识点大全
①直角三角形的两个锐角互为余角;
②直角三角形斜边上的中线等于斜边的一半;
③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);
④直角三角形中30度
角所对的直角边等于斜边的一半;
直角三角形的判定:
①有两个角互余的三角形是直角三角形;
②如果三角形的三边长a、b 、c有下面关系a +b =c
,那么这个三角形是直角三角形(勾股定理的逆定理)。

以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。

初中数学等腰三角形的性质定理公式
下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。

等腰三角形的性质:
①等腰三角形的两个底角相等;
②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)
上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。

初中数学三角形定理公式
对于三角形定理公式的学习,我们做下面的内容讲解学习哦。

三角形
三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;
三角形的内角和定理:三角形的三个内角的和等于180度;
三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的’和;
三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;
三角形的三条角平分线交于一点(内心);
三角形的三边的垂直平分线交于一点(外心);
三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;
以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。

相关文档
最新文档