《平面直角坐标系》教案
《平面直角坐标系》优秀教案(精选12篇)

《平面直角坐标系》优秀教案《平面直角坐标系》优秀教案(精选12篇)教案是教师为顺利而有效地开展教学活动, 根据课程标准, 教学大纲和教科书要求及学生的实际情况, 以课时或课题为单位, 对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编为大家整理的《平面直角坐标系》优秀教案, 仅供参考, 欢迎大家阅读。
《平面直角坐标系》优秀教案篇1教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书, 七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。
平面直角坐标系是图形与数量之间的桥梁, 有了它我们便可以把几何问题转化为代数问题, 也可以把代数问题转化为几何问题。
本章内容从数的角度刻画了第五章有关平移的内容, 对学生以后的学习起到铺垫作用, 6.1.2节平面坐标系主要是介绍如何建立平面坐标系, 如何确定点的坐标和由点的坐标寻找点的位置, 以及平面坐标系中特殊部位点的坐标特征, 根据学生的接受能力, 我把本内容分为2课时, 这是第一课时, 主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。
2、教学目标根据新课标要求, 数学的教学不仅要传授知识, 更要注重学生在学习中所表现出来的情感态度, 帮助学生认识自我、建立信心。
知识能力:①认识平面直角坐标系, 了解点与坐标的对应系;②在给定的直角坐标系中, 能由点的位置写出点坐标。
数学思考:①通过寻找确定位置, 发展初步的空间观念;②通过学习用坐标的位置, 渗透数形结合思想解决问题:通过运用确定点坐标, 发展学生的应用意识。
情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标, 培养学生合作交流与探索精神;②通过介绍数学家的故事, 渗透理想和情感的教育。
3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误, 确定本节重难点为:重点: 认识平面坐标系难点: 根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征, 以及他们现有知识水平, 通过科学家发现点的坐标形成的经过启迪学生思维, 通过小组合作与交流及尝试练习, 促进学生共同进步, 并用肯定和激励的言语鼓舞、激励学生。
浙教版数学八年级上册《4.2 平面直角坐标系》教案

浙教版数学八年级上册《4.2 平面直角坐标系》教案一. 教材分析《4.2 平面直角坐标系》是浙教版数学八年级上册的一个重要内容。
本节内容主要让学生了解平面直角坐标系的定义、各象限内点的坐标特征及坐标轴上的点的坐标特征。
通过学习,学生能熟练运用平面直角坐标系解决一些实际问题。
二. 学情分析八年级的学生已经掌握了实数、一次函数和二次函数等基础知识,对数学图形有一定的认识。
但部分学生在坐标与图形的对应关系方面可能还存在一定的困难。
因此,在教学过程中,需要关注这部分学生的学习需求,通过直观的教学手段,帮助他们更好地理解平面直角坐标系。
三. 教学目标1.知识与技能:让学生掌握平面直角坐标系的定义,了解各象限内点的坐标特征及坐标轴上的点的坐标特征。
2.过程与方法:通过观察、实践,培养学生运用坐标系解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识,使学生在解决实际问题中体会数学的重要性。
四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标特征及坐标轴上的点的坐标特征。
2.难点:坐标与图形之间的对应关系,以及运用坐标系解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,让学生感受坐标系的存在和作用。
2.直观演示法:利用教具和多媒体手段,直观展示坐标系的特点和规律。
3.合作学习法:引导学生分组讨论,共同探究坐标系的性质,提高学生的合作能力。
六. 教学准备1.教具:平面直角坐标系模型、多媒体设备。
2.学具:练习本、笔。
七. 教学过程1.导入(5分钟)利用生活中熟悉的场景,如商场购物、电影院等,引导学生思考如何用数学工具表示这些场景中的位置。
通过分析,引入平面直角坐标系的概念。
2.呈现(10分钟)展示平面直角坐标系模型,让学生直观地了解坐标系的组成。
同时,讲解坐标轴上的点的坐标特征,如原点、正方向等。
3.操练(10分钟)让学生在练习本上绘制一个简单的平面直角坐标系,并标注出各象限内的点。
北师大版八年级数学上册:3.2《平面直角坐标系》教案1

北师大版八年级数学上册:3.2《平面直角坐标系》教案1一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。
本节内容是在学生已经掌握了坐标系的基本概念的基础上进行讲解的,通过本节内容的学习,使学生能够熟练地建立平面直角坐标系,能够准确地确定点在坐标系中的位置,并能够利用坐标系解决一些实际问题。
二. 学情分析学生在学习本节内容之前,已经掌握了坐标系的基本概念,对于如何建立坐标系,如何确定点在坐标系中的位置有一定的了解。
但是,对于如何利用坐标系解决实际问题,部分学生可能会感到困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。
三. 教学目标1.让学生掌握平面直角坐标系的建立方法。
2.让学生能够准确地确定点在坐标系中的位置。
3.培养学生利用坐标系解决实际问题的能力。
四. 教学重难点1.重点:平面直角坐标系的建立方法,点在坐标系中的表示方法。
2.难点:如何利用坐标系解决实际问题。
五. 教学方法采用问题驱动法,引导学生通过观察、思考、探究,发现平面直角坐标系的建立方法,以及如何确定点在坐标系中的位置。
同时,通过实例讲解,让学生学会如何利用坐标系解决实际问题。
六. 教学准备1.准备平面直角坐标系的图片,用于讲解。
2.准备一些实际问题,用于练习。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如地图上的路线、飞机的飞行轨迹等,引导学生思考这些实例与坐标系之间的关系。
2.呈现(10分钟)讲解平面直角坐标系的定义,以及如何建立坐标系。
通过展示图片,让学生直观地理解坐标系的建立过程。
同时,讲解如何用坐标表示点在坐标系中的位置。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,尝试利用坐标系解决实际问题。
教师巡回指导,解答学生的问题。
4.巩固(5分钟)挑选几组学生的实例,让学生上台演示如何利用坐标系解决问题。
其他学生观看并给予评价。
5.拓展(5分钟)讲解坐标系在实际生活中的应用,如航天、地理信息系统等。
3.2平面直角坐标系(第1课时)教案

课题:平面直角坐标系●教学目标:知识与技能目标:1.使学生逐步理解平面直角坐标系的有关概念,并会正确地画出平面直角坐标系;2.理解平面内点的坐标的意义,会根据平面内已知点的位置写出它对应的坐标.过程与方法目标:1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识;2.通过直角坐标系的教学,向学生渗透数形结合的思想方法.情感态度与价值观目标:1.通过直角坐标系的教学,使学生进一步明确数学理论来源于实践,反过来又能指导实践进一步发展的辩证唯物主义思想.●重点:1.使学生能在平面直角坐标系中,已知点的坐标,能确定这一点的位置;2.已知点的位置,能写出与它对应的坐标.难点:已知点的位置,能写出与它对应的坐标.●教学流程:一、情境引入数轴上的点与实数之间有什么关系?1、数轴上的点A表示数1.反过来,数1就是点A的位置.我们说点1是点A在数轴上的坐标.2、同理可知,点B→-3;点C →2.5;点D →0.数轴上的点与实数之间存在着一一对应的关系.目的:通过回顾数轴上的点与实数之间的关系为新课学习做铺垫.二、自主探究探究1:如图是某市的旅游示意图,在科技大学的小亮如何向来访的朋友介绍该市的几个风景点的位置呢?(1)小红在旅游示意图上画上了方格,标上数字,并用(0,0)表示科技大学的位置,用(5,7)表示中心广场的位置,那么钟楼的位置如何表示?(2,5)表示哪个地点的位置?(5,2)呢?解:钟楼的位置用(3,8)表示,(2,5)表示大成殿的位置,(5,2)表示影月湖的位置.(2)如果小亮和他的朋友在中心广场,并以中心广场为“原点”,做了如图所示的标记,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?解: “碑林”的位置用(3,1)表示,大成殿的位置用(-3,-2)表示.概念引入:像这样,平面上两条互相垂直且有公共原点的数轴组成了平面直角坐标系。
点的坐标:平面上任意一点P,过P分别向x轴和y轴作垂线,垂足在x轴上y轴上对应的数a,b,分别叫做点P的横坐标纵坐标。
新人教版七年级下册第七章《平面直角坐标系》全章教案(共6份)

7.1.1有序数对问题与情境游戏“找朋友”问题:(1)只给一个数据如“第3列”你能确定好朋友的位置吗?(2)给两个数据如“第3列第2排”你能确定好朋友的位置吗?为什么?(3)你认为需要几个数据能确定一个位置?1. 【提出问题】请在教室找到如下表用数对表示的同学位置:发现:在教室里排数与列数的先后顺序没有约定的情况下,不能确定参加数学问题讨论的同学假设约定“列数在前,排数在后”,你能找到参加数学问题讨论的同学的座位吗?情景引入合作探究二次备课思考:(1) ( 2, 4)和(4, 2)在同一个位置吗?(2) 如果约定“排数在前,列数在后”,刚才那些同学对应的有序 数对会变化吗?2. 【师生归纳】有序数对:我们把有顺序的两个数 a 与b 组成的数对,叫做有序数对。
记作(a ,b )思考:在生活中还有用有序数对表示一个位置的例子吗?3. 【例题讲解】例1:如图,甲处表示 2街与5巷的十字路口,乙处表示5街5巷的十字路口,如果用(2,5 )表示甲处的位置,那么(2,5 ) T (3,5 ) 7( 4,5 )T ( 5,5 )T ( 5,4 )T ( 5,3 )T ( 5,2 )表示从甲处到乙 处的一种路线,请你用有序数对写出几种从甲处到乙处的路线。
例2 :请同学们说出以下各个地点所表示的有序数对。
—1 逼 族(6 T 8 11____d斟9-------d呻(&5)办___ 1 服(:学忙(:挣閒]7^I 23 弓5£ T &? I U例3: 图中五角星五个顶点的位置如何表示?已知 A (0,0 ) B(2,1 )合 作 探 究甲乙5 4 3 21街例5:右图:若黑马的位置用(3, 7)表示,请你用有序数对表示 黑马可以走到的哪几个位置。
例6:如右图,方块中有 25个汉字,用(C,3)表示“天”那么按下 列要求排列会组成一句什么话,把它读出来。
(1) (A,5 ) (A,3) (C,4 ) (E,5 ) (B,1) (C,2) (B,4)(2) (B,4) (C,2) (D,4) (C,5) (A,1) (D,3) (E,1)例7:台风“麦莎” 2005年7月31日生成,8月6日凌晨3点40 分在玉环干江登陆即:东经 121.8度,北纬28.6度,你能找到具体 登落点吗?合 作探 究例4:“怪兽吃豆豆”是一种计算机游戏,图中的•标志表示“怪 兽”先后经过的几个位置,如果用 (1,2)表示“怪兽”经过的第 2个 位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个5 可 明 个 万 女 4 中 我 的 -一- 学 3 爱 英 天 帅 活 2 球 里 是 生 大 1小孩打习哥AB C D E7.1.2平面直角坐标系(第一课时)II1.在平面直角坐标系内,下列各点在第四象限的是 A.(2,1) B.(-2,1) C.(-3,-5) D.(3,-5)2.已知坐标平面内点 A(m,n)在第四象限,那么点B(n,m)在(3.设点M( a , b )为平面直角坐标系中的点当a>0,b<0时点M 位于第几象限? 当ab>0时,点M 位于第几象限?当a 为任意数时,且b<0时,点M 直角坐标系中的位置是什么?象限;点(-1.5,-1)1•点(3,-2 )在第C.第三象限D.第四象限0 --A.第一象限B.第二象限点的位胃在第PM 彖阳在正半轴上 衣r 轴匕金员拿抽上/ 纽在亟丰粧上 ' 住力半眦上7.1.2平面直角坐标系(第二课时)教学过程设计问题与情境二次备课【复习旧知】1•什么是平面直角坐标系?什么是横轴,纵轴,坐标原点?坐标平面被两条坐标轴分成了哪些象限?2. 平面直角坐标系内点与坐标之间有什么关系?3. 象限内的点和坐标轴上的点有什么特征?入■~~【提出问题】合作探探究一究如图,正方形ABCD勺边长6.(1 )如果以点A为原点,AB所在的直线为x轴建立平面直角坐标系,那么y轴在什么位置?写出正方形的顶点A B, C, D的坐标.(2)另建立一个平面直角坐标系,此时正方形的顶点A, B, C, D 的坐标又分别是什么?(3)以点A为原点,AB所在的直线为x轴建立平面直角坐标系中,点C到x轴、y轴的距离是多少?(4 )观察:点E和点C坐标之间有什么联系?点E和点D坐标之间呢?【师生归纳】设P点坐标为(a,b ),则点P到x轴的距离是____________________ ;点P到y平行于横轴的直线上的点的纵坐标相同;平行于纵轴的直线上的点的横坐标相同探究二:分别写出图中点A、B、C的坐标.观察图形,回答下列问题:合作探究7.2.1用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称教师继续出示问题:你认为利用平面直角坐标系描述地理位置时应注意哪些问题?(1)注意选择适当的位置为坐标原点,这里所说的适当,通常是比较明显的地点或是所要绘制的区域内较居中的位置.(2 )坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致.(3 )要注意标明适当的单位长度.(4)有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称. (同学可举例说明)尝试应用施的位置如何表示?1、如图,一艘船在A处遇险后向相距35 n mile 位于B处的救生船报警.补充提高(1)如何用方向和距离描述救生船相对于遇险船的位置?(2)救生船接到报警后准备前往救援,如何用方向和距离描述遇险船相对于救生船的位置?722用坐标表示平移第六章小结与复习3. 平面直角坐标系的有关概念。
3.2《平面直角坐标系》(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了平面直角坐标系的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对坐标系的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.2《平面直角坐标系》(教案)
一、教学内容
3.2《平面直角坐标系》:本节课我们将围绕以下内容展开:
1.平面直角坐标系的定义与性质;
2.坐标平面上的点与坐标表示方法;
3.坐标轴上点的坐标特点;
4.两个坐标轴将平面分为的四个象限及其特点;
5.各象限内点的坐标规律;
6.相邻象限内点的坐标关系;
7.平行于坐标轴的直线上的点的坐标规律;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平面直角坐标系的基本概念。平面直角坐标系是由两条互相垂直的数轴组成的,它可以准确地表示平面上的点。它是解析几何的基础,对于解决实际问题非常重要。
2.案例分析:接下来,我们来看一个具体的案例。通过地图上的坐标系,我们可以找到某个地点的精确位置,并计算两点之间的距离。
其次,在新课讲授环节,我发现学生在理解坐标系概念和坐标表示方法方面存在一定难度。在讲解过程中,我尽量使用简洁明了的语言和丰富的实例,帮助他们更好地理解。但我也意识到,对于这部分内容,可能需要更多的时间让学生去消化和吸收。在接下来的教学中,我会适当调整教学节奏,给学生更多思考和提问的机会。
再谈谈实践活动,学生们在分组讨论和实验操作环节表现出了很高的热情。他们通过实际操作,对坐标系有了更直观的认识。但同时,我也注意到部分学生在讨论过程中过于依赖同伴,缺乏独立思考。针对这一问题,我将在后续教学中加强对学生的引导,培养他们的自主学习能力。
浙教版数学八年级上册《4.2 平面直角坐标系》教案1

浙教版数学八年级上册《4.2 平面直角坐标系》教案1一. 教材分析《4.2 平面直角坐标系》是浙教版数学八年级上册的教学内容,本节课的主要内容是让学生掌握平面直角坐标系的定义、各象限内点的坐标的符号特征,以及坐标轴上点的坐标特点。
通过本节课的学习,为学生后续学习函数、几何等知识打下基础。
二. 学情分析学生在七年级已经学习了平面图形的坐标表示,对坐标的概念有一定的了解。
但他们对平面直角坐标系的理解还不够深入,对于坐标系中各象限内点的坐标符号特征以及坐标轴上点的坐标特点还需要进一步巩固。
三. 教学目标1.知识与技能:使学生掌握平面直角坐标系的定义,理解各象限内点的坐标符号特征,以及坐标轴上点的坐标特点。
2.过程与方法:通过观察、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标符号特征。
2.难点:坐标轴上点的坐标特点,以及坐标系在实际问题中的应用。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生主动探究、积极参与,提高他们的学习兴趣和动手能力。
六. 教学准备1.教具:黑板、粉笔、多媒体课件。
2.学具:练习本、尺子、圆规。
七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中常见的坐标系图片,如地图、股市走势图等,引导学生关注坐标系在实际生活中的应用。
提问:这些图片中的点是如何用坐标表示的?引发学生对坐标系的思考。
2.呈现(10分钟)讲解平面直角坐标系的定义,以及各象限内点的坐标符号特征。
通过示例,让学生直观地理解坐标轴上点的坐标特点。
3.操练(10分钟)让学生分组讨论,用坐标表示给定的点,并判断这些点位于哪个象限。
每组选出一个代表进行汇报,师生共同评价、纠正。
4.巩固(10分钟)出示一些坐标系题目,让学生独立完成,检查他们对平面直角坐标系的理解。
人教课标版高中数学选修4-4《平面直角坐标系》教案-新版

1.1平面直角坐标系一、教学目标 (一)核心素养通过这节课学习,能根据问题的几何特征选择建立适当的平面直角坐标系,在数学建模过程中体会坐标法的思想. (二)学习目标1.根据问题的几何特征建立适当的平面直角坐标系. 2.通过实例概括坐标伸缩变换公式.3.了解利用坐标伸缩变换公式研究平面图形伸缩变化情况,体会坐标法思想. (三)学习重点1.根据几何特征选择坐标系. 2.坐标法思想.3.平面直角坐标系中的伸缩变换. (四)学习难点1.适当直角坐标系的选择.2.对伸缩变换中点的对应关系的理解. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第2页至第7页,填空:设点),(y x P 是平面直角坐标系中的任意一点,在变换φ:的作用下,点),(y x P 对应到点),(y x P ''',称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.预习自测(1)如何由正弦曲线y =sin x 经伸缩变换得到y =12sin 12x 的图象() A .将横坐标压缩为原来的12,纵坐标也压缩为原来的12 B .将横坐标压缩为原来的12,纵坐标伸长为原来的2倍 C .将横坐标伸长为原来的2倍,纵坐标也伸长为原来的2倍 D .将横坐标伸长为原来的2倍,纵坐标压缩为原来的12【知识点】伸缩变换【解题过程】将正弦曲线y =sin x 的横坐标伸长为原来的2倍得到x y 21sin =,再由x y 21sin =的图像的横坐标不变,纵坐标压缩为原来的21即可得y =12sin 12x 的图像. 【思路点拨】可根据三角函数的知识求解 【答案】D(2)在平面直角坐标系中,B A ,两点分别在x 轴、y 轴上滑动,且|AB|=4,则AB 中点P 的轨迹方程为________. 【知识点】点轨迹方程【数学思想】函数与方程的思想【解题过程】422=+y .端点的坐标关系,最后代入整理即可. 【答案】422=+y x .(3)在平面直角坐标系中,方程142=+y x 对应的图形经过伸缩变换⎩⎨⎧='='y y xx 42后得到的图形对应的方程是()A .0142=-'+'y xB .01=-'+'y xC .014=-'+'y xD .0116=-'+'y x 【知识点】伸缩变换【解题过程】将⎩⎨⎧='='y y x x 42经过变形得⎪⎩⎪⎨⎧'='=y y x x 4121代入到方程142=+y x ,整理得01=-'+'y x【思路点拨】通过对伸缩变换公式的变形为⎪⎪⎩⎪⎪⎨⎧'=''=y y x x μλ11,在代入原图形对应的方程,从而得到变形后的图形对应的方程. 【答案】B(4)将圆122=+y x 上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C 对应的方程为________. 【知识点】伸缩变换 【数学思想】【解题思路】设),(11y x 为圆上任意一点,在已知变换下变为曲线C 上对应的点为),(y x ,依题意,得⎩⎨⎧==112y y x x ,而12121=+y x ,得1)2(22=+y x ,所以曲线C 的方程为1422=+y x .【思路点拨】将问题转化为伸缩变换问题,再由伸缩变换公式求解【答案】1422=+y x(二)课堂设计 1.知识回顾(1)平面直角坐标系的作用:使平面上的点与坐标(有序实数对)、曲线与方程建立了联系,从而实现了数与形的结合.(2)坐标法:根据几何对象的特征,选择适当的坐标系,建立它的方程,通过方程研究他的性质与其他几何图形的关系. 2.问题探究探究一结合实例,感受坐标法思想★例1某信息中心接到位于正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比它们晚4s.已知各观测点到中心的距离都是1020m.试确定巨响发生的位置.(假定声音传播的速度为340m/s ,各观测点均在同一平面上.) ●活动①实际问题抽象转化为数学问题我们将正东、正西、正北的三个观测点分别记为C B A ,,,爆炸点记为P .由于C B ,同时听到由点P 发出的响声,因此PC PB =,所以点P 在线段BC 的垂直平分线l 上,由于点A 听到的响声比C B ,晚s 4,所以AB PB PA <=⨯=-13603404,说明点P 在以点B A ,为焦点的双曲线Γ上,所以点P 在直线l 与双曲线Γ的交点.【知识点】平面直角坐标系,双曲线定义 【数学思想】数形结合,转化与化归 【解题过程】解:以信息中心为原点O ,正东、正北方向为x 轴、y 轴正向,建立直角坐标系. 设C B A ,,分别是东、西、北观测点,则)1020,0(),0,1020(),0,1020(C B A - 于是直线l 的方程为x y -=设双曲线Γ的方程是)0,0(12222>>=-b a by a x由已知得222234056801020,1020,680⨯=-===b c a ,于是双曲线Γ的方程是134056802222=⨯-y x将x y -=代入上述方程,解得5680,5680 =±=y x ,由已知,响声在双曲线Γ的左半支上,所以)5680,5680(-P ,10680=OP所以巨响发生在接报中心的西偏北 45距中心m 10680处. 【思路点拨】建立坐标系,把实际问题转化为数学问题. 【答案】巨响发生在接报中心的西偏北 45距中心m 10680处.同类训练 由甲导弹驱逐舰、乙导弹驱逐舰、丙综合补给舰组成的护航编队奔赴某海域执行护航任务,对商船进行护航.某日,甲舰在乙舰正东6 km 处,丙舰在乙舰北偏西30°,相距4 km.某时刻甲舰发现商船的某种求救信号.由于乙、丙两舰比甲舰距商船远,因此4 s 后乙、丙两舰才同时发现这一信号,此信号的传播速度为1 km/s.若甲舰赶赴救援,行进的方位角应是多少? 【知识点】平面直角坐标系的应用 【数学思想】坐标法思想【解题过程】设A ,B ,C ,P 分别表示甲舰、乙舰、丙舰和商船.如图所示,以直线AB 为x 轴,线段AB 的垂直平分线为y 轴建立直角坐标系,则A (3,0),B (-3,0),C (-5,23).∵|PB |=|PC |,∴点P 在线段BC 的垂直平分线上. k BC =-3,线段BC 的中点D (-4,3), ∴直线PD 的方程为y -3=13(x +4).① 又|PB |-|P A |=4,∴点P 在以A ,B 为焦点的双曲线的右支上, 双曲线方程为x 24-y 25=1(x ≥2). ②联立①②,解得P 点坐标为(8,53), ∴k P A =538-3= 3.因此甲舰行进的方位角为北偏东30°.【思路点拨】本题的关键在于确定商船相对于甲舰的相对位置,因此不妨用点A 、B 、C 表示甲舰、乙舰、丙舰,建立适当坐标系,求出商船与甲舰的坐标,问题可解. 【答案】甲舰行进的方位角为北偏东30°.【设计意图】从生活实例到数学问题,体会坐标法的提炼、抽象过程. ●活动②归纳梳理、理解提升通过实例,合理建立坐标系是解决此类问题的关键,如果坐标系建立得合理,可以简化我们的计算,并且使问题的结论清晰明了、具体形象,那么利用坐标法解决问题的基本步骤是什么呢?坐标法解决几何问题的“三部曲”:第一步:建立适当的坐标系,用坐标和方程表示问题中涉与的几何元素,将几何问题转化为代数问题;第二步:通过代数运算,解决代数问题; 第三步:把代数运算结果“翻译”成几何结论.●活动③学以致用,理论实践例2 已知△ABC 的三边c b a ,,满足2225a c b =+ , BE,CF 分别为边AC,AB 上的中线, 建立适当的平面直角坐标系探究BE 与CF 的位置关系.A BCO y xF E【知识点】平面直角坐标系,轨迹方程 【数学思想】数形结合 【解题过程】解: 如图, 以△ABC 的顶点A 为原点O, 边AB 所在的直线为x 轴, 建立直角坐标系. 由已知, 点A,B,F 的坐标分别为)0,2()0,(),0,0(c F c B A ,设点C 的坐标为),(y x ,点E 的坐标为)2,2(yx .由2225a c b =+可得2225BC AB AC =+即[]22222)(5y c x c y x +-=++,整理得05222222=-++cx c y x因为),2(),2,2(y x cCF y c x BE --=-=所以0)5222(41222=-++-=•cx c y x CF BE由此,BE 与CF 相互垂直.【思路点拨】建立坐标系,把实际问题转化为数学问题. 【答案】BE 与CF 相互垂直.同类训练 已知正三角形ABC 的边长为a ,在平面上求一点P ,使|P A |2+|PB |2+|PC |2最小,并求出此最小值.【知识点】平面直角坐标系 【数学思想】数形结合思想【解题过程】 如右图,以BC 所在直线为x 轴,BC 的垂直平分线为y 轴建立直角坐标系,则A (0,23 a ),B (-2a ,0),C (2a ,0).设P (x ,y ),则|P A |2+|PB |2+|PC |2 =x 2+(y -23 a )2+(x +2a )2+y 2+(x -2a)2+y 2 =3x 2+3y 2-3ay +452a =3x 2+3(y -63a )2+a 2≥a 2,当且仅当x =0,y =63a 时,等号成立,∴所求最小值为a 2,此时P 点坐标为P (0,63a ),是正三角形AB C 的中心. 【思路点拨】建立适当的平面直角坐标系,把几何问题转化为代数问题,从而简化问题 【答案】所求最小值为a 2,此时P 点坐标为P (0,63a ),是正三角形AB C 的中心 【设计意图】通过把平面几何的问题转化为代数问题,认识坐标法思想的优势. 探究二探究平面直角坐标系中的伸缩变换 ●活动①温故知新、提炼概念在三角函数图像的学习中,我们研究过下面一些问题:你还能分析出由正弦曲线x y sin =怎样得到曲线x y 2sin =吗?在由正弦曲线x y sin =上任取一点),(y x P ,保持纵坐标y 不变,将横坐标x 缩为原来的21,就的到曲线x y 2sin =.从坐标系中的点的对应关系出发,你认为“保持纵坐标y 不变,将横坐标x 缩为原来的21”的实质是什么?(讨论)即,设),(y x P 为平面直角坐标系中任意一点,保持纵坐标y 不变,将横坐标x 缩为原来的21,得到点),(y x P ''',则⎪⎩⎪⎨⎧='='yy xx 21①我们把①式叫做平面直角坐标系中的一个坐标压缩变换.【设计意图】通过对三角函数图像的变换的回顾,为后面一般图形的伸缩变换表示做好铺垫. ●活动②温故知新、提炼概念那么如何由正弦曲线x y sin =怎样得到曲线x y sin 3=呢?在由正弦曲线x y sin =上任取一点),(y x P ,保持横坐标x 不变,将纵坐标y 伸长为原来的3倍,就的到曲线x y sin 3=.从坐标系中的点的对应关系出发,你认为“保持横坐标x 不变,将纵坐标y 伸长为原来的3倍”的实质是什么?(讨论)即,设),(y x P 为平面直角坐标系中任意一点,保持横坐标x 不变,将纵坐标y 伸长为原来的3倍,得到点),(y x P ''',则⎩⎨⎧='='y y x x 3②我们把②式叫做平面直角坐标系中的一个坐标伸长变换.【设计意图】通过对三角函数图像的变换的回顾,为后面一般图形的伸缩变换表示做好铺垫. ●活动③巩固理解、提炼概念同理,由正弦曲线x y sin =怎样得到曲线x y 2sin 3=呢?这个可以认为是是上述两个的“合成”,即先保持纵坐标y 不变,将横坐标x 缩为原来的21,再保持横坐标x 不变,将纵坐标y 伸长为原来的3倍,就可得曲线x y 2sin 3=.类比上述情况,即:设平面直角坐标系中任意一点),(y x P 经过上述变换后为点),(y x P ''',那么⎪⎩⎪⎨⎧='='yy x x 321③ 我们把③式叫做平面直角坐标系中的坐标伸缩变换. 一般地,设),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>•='>•=')0()0(:μμλλϕy y x x 的作用下,点),(y x P 对应点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.【设计意图】通过对前面的总结,发现一般情况,从而得出伸缩变换的概念. 活动④巩固基础,检查反馈例3 在同一平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎪⎩⎪⎨⎧='='yy xx 2131后的图形.⑴14922=+y x ;⑵1121822=-y x ⑶x y 22= 【知识点】伸缩变换.【数学思想】转化与化归的思想【解题过程】.⑴由伸缩变换⎪⎩⎪⎨⎧='='y y x x 2131得⎩⎨⎧'='=y y x x 23代入14922=+y x ,得到经过伸缩变换后的图形方程为122='+'y x同理可得⑵式经过伸缩变换后的图形方程为13222='-'y x⑶式经过伸缩变换后的图形方程为x y '='232 【思路点拨】通过对伸缩变换公式的变形为⎪⎪⎩⎪⎪⎨⎧'=''=y y x x μλ11,在代入原图形对应的方程,从而得到变形后的图形对应的方程.同类训练在平面直角坐标系中, 求方程032=+y x 所对应的图形经过伸缩变换⎩⎨⎧='='y y xx 32后的图形对应的方程为.【知识点】坐标的伸缩变换. 【数学思想】转化与化归思想【解题过程】由伸缩变换⎩⎨⎧='='y y x x 32得⎪⎩⎪⎨⎧'='=y y x x 321代入032=+y x ,得到经过伸缩变换后的图形方程为0='+'y x【思路点拨】伸缩变换公式的应用. 【答案】0='+'y x●活动⑤强化提升、灵活应用例4在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧='='yy x x 3后,曲线C 变为曲线9922='-'y x ,求曲线C 的方程.【知识点】伸缩变换逆向应用.【解题过程】将伸缩变换⎩⎨⎧='='y y x x 3代入曲线9922='-'y x 得到曲线C 对应的方程为122=-y x 【思路点拨】伸缩变换公式的应用. 【答案】122=-y x .同类训练在同一平面直角坐标系中,经过伸缩变换⎪⎩⎪⎨⎧='='y y x x 312后,曲线C 变为曲线1922='+'y x ,求曲线C 的方程. 【知识点】伸缩变换逆向应用.【解题过程】将伸缩变换⎪⎩⎪⎨⎧='='y y x x 312代入曲线1922='+'y x 得到曲线C 对应的方程为1422=+y x 【思路点拨】伸缩变换公式的应用. 【答案】1422=+y x . 3.课堂总结 知识梳理(1)坐标法解决几何问题的“三部曲”:第一步:建立适当的坐标系,用坐标和方程表示问题中涉与的几何元素,将几何问题转化为代数问题;第二步:通过代数运算,解决代数问题; 第三步:把代数运算结果“翻译”成几何结论.(2)建系时,根据几何特点选择适当的直角坐标系:第一:如果图形有对称中心,可以选对称中心为坐标原点;第二:如果图形有对称轴,可以选择对称轴为坐标轴;第三:使图形上的特殊点尽可能多的在坐标轴上.(3)一般地,设),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>•='>•=')0()0(:μμλλϕy y x x 的作用下,点),(y x P 对应点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 重难点归纳(1)坐标法是在坐标系的基础上,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法.它是解析几何中最基本的研究方法.(2)在坐标伸缩变换的作用下,可以实现平面图形的伸缩.因此,平面图形的伸缩变换可以用坐标伸缩变换来表示. (三)课后作业 基础型自主突破1.已知f 1(x )=cos x ,f 2(x )=cos ωx (ω>0),f 2(x )的图象可以看作是把f 1(x )的图象在其所在的坐标系中的横坐标压缩到原来的31倍(纵坐标不变)而得到的,则ω为( )A.21B.2C.3D.31 【知识点】三角函数图像,伸缩变换公式.【解题过程】:∵1,3,x x y y ⎧'=⎪⎨⎪'=⎩∴3,.x x y y '=⎧⎨'=⎩将其代入y =cos x ,得到y '=cos3x ',即f 2(x )=cos3x . 【思路点拨】函数y =cos ωx ,x ∈R (其中ω>0,ω≠1)的图象,可以看作把余弦曲线上所有点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的ω1倍(纵坐标不变)而得到.应用时谨防出错. 【答案】C2.曲线122=+y x 经过φ: ⎩⎨⎧='='yy xx 43变换后得到的新曲线的方程是().A .14322='+'y xB .191622='+'y xC .116922='+'y x D .116922='+'y x【知识点】伸缩变换公式与应用.【解题过程】曲线122=+y x 经过φ: ⎩⎨⎧='='y y x x 43变换后,即⎪⎩⎪⎨⎧'='=y y x x 4131代入到圆的方程,可得116922='+'y x 即所求新曲线的方程为116922='+'y x . 【思路点拨】将y x ,表示出来,代入到原方程即可得到新曲线的方程. 【答案】D .3.将一个圆作伸缩变换后所得到的图形不可能是() A.椭圆 B.比原来大的圆 C.比原来小的圆 D.双曲线【知识点】伸缩变换的应用.【解题过程】由伸缩变换的公式可知不可能得到的图形是双曲线,只能是圆或者椭圆. 【思路点拨】将伸缩变换的公式进行变形可得. 【答案】D4. 将点(2,3)变成点(3,2)的伸缩变换是()A .2332x'x y'y ⎧=⎪⎪⎨⎪=⎪⎩B .3223x'x y'y ⎧=⎪⎪⎨⎪=⎪⎩C .x'y y'x =⎧⎨=⎩D .11x'x y'y =+⎧⎨=-⎩【知识点】伸缩变换公式与应用.【解题过程】设此变换为,,x'x y'y λμ=⎧⎨=⎩则3,22,3x'x y'y λμ⎧==⎪⎪⎨⎪==⎪⎩所以所求变换为3,22,3x'x y'y ⎧=⎪⎪⎨⎪=⎪⎩【思路点拨】将伸缩变换公式进行变形得到. 【答案】B .5.已知函数=)(x f 22(1)1(1)1,x x -++++则)(x f 的最小值为__________. 【知识点】平面直角坐标系的应用. 【数学思想】数形结合的思想【解题过程】f (x )可看作是平面直角坐标系下x 轴上一点(x,0)到两定点(-1,1)和(1,1)的距离之和,结合图形可得,f (x )的最小值为2.【思路点拨】利用代数式的几何意义来处理. 【答案】22.6.在同一平面直角坐标系中,经过伸缩变换5,3x x y y '=⎧⎨'=⎩后,曲线C 变为曲线322='+'y x ,则曲线C 的方程为________. 【知识点】伸缩变换公式应用.【解题过程】将伸缩变换5,3x x y y '=⎧⎨'=⎩代入322='+'y x ,得392522=+y x .【思路点拨】灵活应用伸缩变换公式. 【答案】392522=+y x . 能力型师生共研7.设曲线C 对应的方程为)0,0(12222>>=-b a b y a x ,曲线C 经过伸缩变换⎩⎨⎧>•='>•=')0()0(:μμλλϕy y x x 后得到曲线C ',则曲线C '为() A .双曲线B .椭圆C .抛物线D .随μλ,的系数不同曲线也不同【知识点】双曲线,伸缩变换.【解题过程】将变换,,x'x y'y λμ=⎧⎨=⎩转化为⎪⎪⎩⎪⎪⎨⎧'='=y y x x μλ11代入双曲线方程得)0,0(1222222>>='-'b a b y a x μλ,所以曲线C '为双曲线.【思路点拨】伸缩变换公式的应用以与双曲线定义. 【答案】A .8.在同一平面直角坐标系中,将曲线01283622=+--x y x 变成曲线03422=+'-'-'x y x ,求满足条件的伸缩变换.【知识点】伸缩变换公式应用.【解题过程】解:x 2-36y 2-8x +12=0可化为24()2x --9y 2=1.① x ′2-y ′2-4x ′+3=0可化为(x ′-2)2-y ′2=1.②比较①②,可得42,23,x x y y -⎧'-=⎪⎨⎪'=⎩即,23.xx y y ⎧'=⎪⎨⎪'=⎩ 所以将曲线x 2-36y 2-8x +12=0上所有点的横坐标变为原来的12,纵坐标变为原来的3倍,就可得到曲线x ′2-y ′2-4x ′+3=0的图象. 【思路点拨】灵活应用伸缩变换公式.【答案】,23.xx y y ⎧'=⎪⎨⎪'=⎩.探究型多维突破9.△ABC 的顶点A 固定,点A 的对边BC 的长是2a ,边BC 上的高的长是b ,边BC 沿一条直线移动,求△ABC 外心的轨迹方程. 【知识点】平面直角坐标系的应用,轨迹方程. 【数学思想】数形结合【解题过程】解:以边BC 所在的定直线为x 轴,过A 作x 轴的垂线为y 轴,建立直角坐标系,则点A 的坐标为(0,b ). 设△ABC 的外心为M (x ,y ).取BC 的中点N ,则MN ⊥BC ,即MN 是BC 的垂直平分线. ∵|BC |=2a ,∴|BN |=a ,|MN |=|y |. 又M 是△ABC 的外心,∴|MA |=|MB |. 又|MA |=x 2+y -b2,|MB |=|MN |2+|BN |2=y 2+a 2,∴x 2+y -b2=y 2+a 2,化简,得所求的轨迹方程为x 2-2by +b 2-a 2=0.【思路点拨】选择恰当的坐标系,坐标系如果选择得恰当,可使解题过程简化,减少计算量. 【答案】02222=-+-a b by x .自助餐1.将正弦曲线y =sin x 作如下变换:⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,得到的曲线方程为( ).A .y ′=3sin 12x ′B .y ′=13sin 2x ′ C .y ′=12sin 2x ′ D .y ′=3sin 2x ′ 【知识点】三角函数图形、伸缩变换. 【解题过程】将⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,转化为⎪⎩⎪⎨⎧'='=y y x x 312代入y =sin x 可得【思路点拨】将伸缩变换公式进行变形后再应用. 【答案】D2.将曲线F (x ,y )=0上的点的横坐标伸长到原来的2倍,纵坐标缩短到原来的13,得到的曲线方程为( )A .F ⎝ ⎛⎭⎪⎫x 2,3y =0B .F ⎝ ⎛⎭⎪⎫2x ,y 3=0 C .F ⎝ ⎛⎭⎪⎫3x ,y 2=0 D .F ⎝ ⎛⎭⎪⎫x 3,2y =0【知识点】伸缩变换.【解题过程】设(x ,y )经过伸缩变换变为(x ′,y ′), ∴⎩⎪⎨⎪⎧x ′=2x ,y ′=13y ,则⎩⎪⎨⎪⎧x =12x ′,y =3y ′,代入F (x ,y )=0得F ⎝ ⎛⎭⎪⎫12x ′,3y ′=0..【思路点拨】正确使用伸缩变换公式. 【答案】A3.双曲线C:16422=-y x 经过⎩⎨⎧='='yy x x 23:ϕ变换后所得曲线C '的焦点坐标为________.【知识点】双曲线的性质、伸缩变换.【解题过程】 将变换⎩⎨⎧='='y y x x 23ϕ变形为⎪⎩⎪⎨⎧'='=y y x x 231代入曲线C 中得:116922=-y x ,所有焦点坐标为)0,5(或)0,5(-.【思路点拨】先将曲线C '的方程求解,在根据双曲线的性质求焦点坐标. 【答案】)0,5(或)0,5(-.4.在同一平面直角坐标系中,曲线369422=+y x 经过伸缩变换ϕ后变成曲线1222='+'y x ,则伸缩变换ϕ为________. 【知识点】伸缩变换公式.【解题过程】将369422=+y x 变形为14922=+y x 与1222='+'y x 比较可得⎪⎪⎩⎪⎪⎨⎧='='yy x x 2231. 【思路点拨】对伸缩变换公式进行适当的变形.【答案】⎪⎪⎩⎪⎪⎨⎧='='y y x x 2231. 5.如图所示,A ,B ,C 是三个观察站,A 在B 的正东,两地相距6 km ,C 在B 的北偏西30°,两地相距4 km ,在某一时刻,A 观察站发现某种信号,并知道该信号的传播速度为1 km/s,4 s 后B ,C 两个观察站同时发现这种信号,在以过A ,B 两点的直线为x 轴,以AB 的垂直平分线为y 轴建立的平面直角坐标系中,指出发出这种信号的P 的坐标.【知识点】双曲线的定义、直角坐标系. 【数学思想】坐标法思想.【解题过程】解:设点P 的坐标为(x ,y ),则A (3,0),B (-3,0),C (-5,23). 因为|PB |=|PC |,所以点P 在BC 的中垂线上. 因为k BC =-3,BC 的中点D (-4,3),所以直线PD的方程为y-3=13(x+4).①又因为|PB|-|P A|=4,所以点P必在以A,B为焦点的双曲线的右支上,双曲线方程为x24-y25=1(x≥2).②联立①②,解得x=8或x=-3211(舍去),所以y=5 3.所以点P的坐标为(8,53).【思路点拨】根据实际问题建立合适的直角坐标系,转为数学问题.【答案】(8,53).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章平面直角坐标系
7.1.2平面直角坐标系
一、教学目标
1.核心素养
通过学习平面直角坐标系,培养抽象数学问题的能力和数形结合的能力2.学习目标
(1)7.1.2.1 认识平面直角坐标系,了解点与坐标的对应关系.
(2)7.1.2.2在给定的直角坐标系中,能根据坐标描出点的位置,能由点的位置写出点的坐标.
(2)7.1.2.3对给定的图形,会选择合适的直角坐标系,写出它的顶点坐标,体会点在几何中的应用.
3.学习重点
掌握平面直角坐标系的概念和点的坐标.
4.学习难点
根据点的位置写出点的坐标,根据点的坐标写出点的位置.
二、教学设计
(一)课前设计
1.预习任务
阅读教材P66-68,理解平面直角系的概念,明确各个象限的特点.
2.预习自测
1.在平面直角坐标系中,描出以下各点:A(1,3),B(-2,-3),C(-2,3),D(3,-2).
【知识点:点的坐标】
【解析】
2. P(-3,4)到x轴的距离为,到y轴的距离为.
【知识点:点的坐标】
【解析】根据点坐标的定义,由题意可知P(-3,4)表示为到x轴的距离为4,到y轴的距离为3
3.点P(a,b)在第四象限,则a 0,b 0.
【知识点:点的坐标】
【解析】根据平面直角坐标系的特点可得,a>0,b<0。
(二)课堂设计
1.知识回顾
(1)数轴的三要素
(2)数轴上点与实数的关系
2.问题探究
问题探究一平面直角坐标系的概念重点、难点知识★
●活动一回顾数轴及其点的表示
在前面,我们已经学习了数轴,数轴上是如何表示数的呢?它与数有着怎样的关系?
数轴上的点对应着所有的实数,它与数是一一对应关系
●活动二结合旧知,探求平面直角坐标系的概念
类似于利用数轴确定直线上点的位置,能找到一种方法来确定平面内点的位置吗?
我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系,水平的数轴称为x轴或者横轴,一般取向右为正方向;竖直的数轴称为轴或轴,一般取向上为正方向;两坐标轴的交点为平面直角坐标系的.坐标平面内的点分别向横轴和纵轴做垂线,垂足在横轴上的坐标是这个点的坐标,垂足在纵轴上的坐标是这个点的坐标.
对于平面内任意一点,都有唯一的一对和它对应;反之,任意一对有序数对,在坐标平面内都有的一点和它对应.也就是说,坐标平面内的点与
有序数对是对应的.
坐标平面被两条坐标轴分成四个部分,每个部分称为,坐标轴上的点不属于象限.
问题探究二坐标平面内点的坐标特征.重点、难点知识★▲
●活动一结合概念,探索性质
思考:请画出平面直角坐标系,观察坐标平面内的点有哪些符号特征呢?点的坐标与点到坐标轴的距离之间有什么关系呢?与坐标轴平行的线上的点的坐
标又有什么特征呢?
原点的坐标为;x轴上的点的坐标特征为;y轴上的点的坐标特征为.
根据点所在的位置,用“+”,“-”填表.
点的位置横坐标符号纵坐标符号
第一象限
第二象限
第三象限
第四象限
●活动二结合性质,思考特点
1.若点P(a,b)在x轴上方,则b 0;若P(a,b)在y轴左侧,则a 0
2.点P(a,b)到x轴的距离是,到y轴的距离是.
3.若点P(a,b)到两坐标轴的距离相等,则.
4.若点A(a,b)与点B(c,d)的连线与x轴平行,则;若点
A(a,b)与点B(c,d)的连线与y轴平行,则.
例题:
.在平面直角坐标系中,下面的点在第一象限的是().
A.(0,2)
B.(-1,3)
C.(0,0)
D.(4,3)
【知识点:点的坐标;数学思想:数形结合】
解:D .因为在第一象限的横纵坐标都大于0.
.若点A到x轴的距离是2,到y轴的距离是3,且A点在第三象限,那么A
点坐标( )
A.(-2,-3)
B.(-2,-5)
C.(-2,5)
D.(2,-5)
【知识点:点的坐标;数学思想:数形结合】
解:B.
问题探究三 点的坐标在几何中的应用 重点、难点知识★▲
●活动一 初步运用,转换关系 点的坐标与几何图形有何关系呢?几何图形是由许多的线段组成,你能将点的坐标转化为线段的长吗?
已知点A (2,3) 到x 轴的距离是 ,点B (-1,0),C (3,0),则 BC = ,则△ABC 的面积为 .
【知识点:点的坐标、两点之间的距离、三角形面积公式;数学思想:数形结合,转化思想】
详解:如图,h=AD=3,BC=4,6432
121=⨯⨯=⋅=∆BC AD S ABC
点拨:明确A 的纵坐标的值就是A 点到x 轴的距离,即△ABC 的高,BC 距离是两
点横坐标的和,即是底边的长,再根据底边高⨯⨯=∆2
1ABC S 得出结果. 一个长方形在平面直角坐标系中四个顶点的坐标为(-1,-1),(-1,2),(3,-1),(3,2),则这个长方形的周长为 ,面积为 .
【知识点:坐标与图形的性质,长方形周长、面积公式;数学思想:数形结合】 详解:画出图形,A (-1,2),B (-1,-1),C (3,-1),D (3,2),AB=DC=3,AD=BC=4,1)43(2)(2=+⨯=+=BC AB C ABCD ,143=⨯=⋅=BC AB S ABCD
点拨:1.点到x轴的距离是这个点的纵坐标的绝对值;点到y轴的距离是这个点的横坐标的绝对值.
2.当两个点纵坐标相等时,两个点之间的距离等于两点的横坐标之差的绝对值;同理,当两个点横坐标相等时,两个点之间的距离等于两点的纵坐标之差的绝对值.
3.已知顶点坐标求图形面积,一般有三种方法:(1)直接法;(2)分割法;(3)补形法.
3.课堂总结
【知识梳理】
(1)平面直角坐标系概念
(2)平面内点的坐标特征
(3)点的位置确定点的坐标,点的坐标确定点的位置
【重难点突破】
(1)数轴上的点与实数是一一对应的,坐标平面内的点与有序数对是一一对应的.
(2)坐标轴上的点不属于任何一个象限,x轴上的点的纵坐标为0,y轴上的点的横坐标为0;反之纵坐标为0的点都在x轴上,横坐标为0的点都在y轴上.(3)与x轴平行的直线上的任意两个点的纵坐标相等,与y轴平行的直线上的任意两个点的横坐标相等.
(4)注意点的坐标与线段的长的相互转化.当两个点纵坐标相等时,两个点之间的距离等于两点的横坐标之差的绝对值;同理,当两个点横坐标相等时,两个点之间的距离等于两点的纵坐标之差的绝对值.
(5)运用平面内的点的坐标特征解决问题时要注意数形结合,不宜死记硬背.
4.随堂检测
1.在平面直角坐标系中,点P (-2,3)在( )
A.第一象限
B. 第二象限
C. 第三象限
D. 第四象限
【知识点:坐标确定位置】
【解析】在平面直角坐标系中,第一象限a>0,b>0,第二象限a<0,b>0,第三象限a<0,b<0,第四象限a>0,b<0,故选B 。
2.点P (6,-2)到x 轴的距离为( )
A.6
B. -6
C. 2
D. -2
【知识点:点的坐标;数学思想:数形结合】
【解析】根据点坐标的表示意义可知点P (6,-2)表示为到x 轴的距离为6,到y 轴的距离为2
故选C
3.已知点M (a ,b ),且ab=0,则点M 一定在( )
A. x 轴上
B. y 轴上
C. 原点
D.两条坐标轴上
【知识点:点的坐标;数学思想:数形结合】
【解析】因为ab=0,所以a 、b 之间至少有一个为0,只有在数轴上的点满足条件,因此选D 。
4.点A (a a -+5,1)在x 轴上,则a =.
【知识点:点的坐标;数学思想:数形结合】
【解析】因为a 在x 轴上,所以纵坐标为0,即5-a =0,a =5。
5.点A (4,1-m )到两坐标轴的距离相等,则m =.
【知识点:点的坐标;数学思想:数形结合】
【解析】因为点A 到两坐标的距离相等,说明横纵坐标相等,所以4=m -1,m =5。