八年级数学上册--平面内点的坐标第1课时 平面直角坐标系及点的坐标 教案(沪科版)

合集下载

上海科学技术出版社初中八年级数学上册全套教案

上海科学技术出版社初中八年级数学上册全套教案

平面内点的坐标【课时安排】2课时【第一课时】【教学目标】1.通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系原点、横轴和纵轴等,会由坐标描点,由点写出坐标;让学生体会到平面上的点与有序实数对之间的对应关系;2.经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想;3.培养学生自主探究与合作交流的学习习惯。

【教学重点】正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点。

【教学难点】各象限内坐标的符号及各坐标轴上点坐标的特点,平面上的点与有序实数对之间的对应关系。

【教学过程】一、设置问题情境:(一)回顾一下数轴的概念,及实数与数轴有怎样的关系?(学生回答)(二)情境:(多媒体显示)如图所示请指出数轴上A、B两点所表示的数;直线表示一条笔直公路,向东为正方向,原点为学校位置,A、B是位于公路旁两学生家的位置,你能说出它们的位置吗?这说明了什么?引申:确定一个点在直线上的位置,只需要一个数据,这个实数可称为点在数轴上的坐标。

怎样确定平面上一个点的位置呢?二、观察交流,构建新知。

观察、交流、思考:(1)确定平面上一点的位置需要什么条件?(2)既然确定平面上一点的位置需要两个数,那么能否用两条数轴建立模型来表示平面上任一点的位置呢?教师在学生回答的基础上,边操作边讲出:为了确定平面上一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫x 轴或横轴,取向右为正方向,垂直的数轴叫y轴或纵轴,取向上为正方向,两轴交点O为原点,这样就建立了平面直角坐标系。

这个平面叫做坐标平面。

有了坐标平面,平面内的点就可以用一个有序实数对来表示。

引导观察:如图中点P可以这样表示:由P向x轴作垂线,垂足M在x 轴上的坐标是-2,点P向y轴作垂线,垂足N在y轴的坐标是3,于是就说点P的横坐标是-2,纵坐标3,把横坐标写在纵坐标前面记作(-2,3),即P点坐标(-2,3)。

沪科版八年级上册 数学 教案 11.1 平面内点的坐标

沪科版八年级上册 数学 教案 11.1 平面内点的坐标

11.1 平面内点的坐标(1)教学目标:1、通过实际问题及对小学内容“确定位置”的回顾抽象出平面直角坐标系及其相关概念,让学生认识平面直角坐标系、原点、坐标轴、象限及各象限点的坐标符号特点;会由坐标描点,由点求坐标;让学生体会到平面内的点与有序实数对是一一对应的。

2、经历动手画平面直角坐标系、由点求坐标和由坐标描点的过程,发展学生观察、分析、抽象、概括的能力,进一步渗透数形结合的思想。

3、让学生在探究过程中,体会到能够为一些简单的实际问题建立平面直角坐标系,感受数学来源于生活并服务于生活。

教学重点:平面直角坐标系的建立及相关概念。

教学难点:平面内的点与有序实数对的一一对应关系,以及在平面直角坐标系中会由点求坐标和由坐标描点。

教学过程:一、创设情境,引入新知复习七上学习的数轴的概念及数轴的三要素:原点、正方向和单位长度,通过数轴,将直线上的点和实数建立了一一对应的关系,数轴上的每一个点都可以用唯一一个实数来表示,请问,平面上的任意点P能用一个实数表示吗?又该如何描述平面上的点P的位置呢?其实生活中也经常遇到确定位置的问题,到电影院看电影,只告诉你3排,你能找到座位吗?再加上6号呢?3排6号这两个数据可以描述一个座位。

展示学生熟悉的小学五年级下册课本中“确定位置”的内容,4列3排可以用数对(4,3)表示。

问题:展示一实校中山校区部分建筑的平面图,你能用数据描述各个位置吗?引出课题——11.1 平面内点的坐标。

二、合作交流,探索新知(一)数学中,为了确定平面内一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫x轴或横轴,取向右为正方向;垂直的数轴叫做y轴或者纵轴,取向上为正方向;两轴交点O为原点。

这样就建立了平面直角坐标系。

这个平面叫做坐标平面。

练习:1.辨识坐标系2.在一实校初中校区平面图中选择适当的原点建立平面直角坐标系(二)有了平面直角坐标系,平面内的点就可以用一对实数来表示了。

新版沪科版八年级数学上册第11章《平面直角坐标系》教案

新版沪科版八年级数学上册第11章《平面直角坐标系》教案

第十一章平面直角坐标系11.1平面内点的坐标第1课时平面直角坐标系◇教学目标◇【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念;2.理解坐标平面内的点与有序实数对的一一对应关系;3.能在方格纸中建立平面直角坐标系来描述点的位置.【过程与方法】1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识.【情感、态度与价值观】让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.◇教学重难点◇【教学重点】理解平面直角坐标系的有关知识;在给定的平面直角坐标系中,会根据点的位置写出它的坐标.【教学难点】坐标轴上的数字与坐标系中的坐标之间的关系.◇教学过程◇一、情境导入假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(如图),回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?二、合作探究1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.在了解有关平面直角坐标系的知识后,再返回刚才讨论的问题.结论:如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,则“碑林”的位置是(3,1),“大成殿”的位置是(-2,-2).问题:在(3)的条件下,你能把其他景点的位置表示出来吗?结论:能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,-5),科技大学的位置是(-5,-7).2.例题讲解典例写出图中多边形ABCDEF各顶点的坐标.此图中各顶点的坐标是否永远不变?你能举个例子吗?[解析]多边形ABCDEF各顶点的坐标分别为A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).不是.当坐标轴的位置发生变动时,各点的坐标相应地变化.若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,如图,则六个顶点的坐标分别为A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).再思考这个结论是否是永恒的.结论:不是.还能再改变坐标轴的位置,得出不同的坐标.继续进行坐标轴的变换,总结一下共有多少种不同的变换方式.3.想一想在上例中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段测定位置有什么特点?(3)坐标轴上点的坐标有什么特点?【归纳总结】(1)坐标轴上的点的坐标中至少有一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.(2)x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限.(3)各个象限内的点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).变式训练如图,确定点A,B,C,D,E,F,G的坐标.[解析]点A(-1,-1),点B(0,-3),点C(2,-5),点D(4,-1),点E(3,2),点F(-2,3),点G(2,-2).三、板书设计平面直角坐标系1.平面直角坐标系:横轴、纵轴、横坐标、纵坐标、原点.2.象限的划分.◇教学反思◇学生在实际生活中经常遇到物体位置的问题,可能想不到这些问题与数学的联系,老师在这节课上应引导学生建立平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力,增强学生学习数学的兴趣.。

沪科版八年级上册 数学 教案 11.1 平面内点的坐标

沪科版八年级上册 数学 教案 11.1 平面内点的坐标

平面直角坐标系复习课(一课时)学习目标:1、理解平面直角坐标系的意义,熟练掌握各象限内点的坐标特征,掌握一些特殊点的坐标求法。

2.能建立适当的平面直角坐标系,确定点的坐标。

3.进一步体会数形结合的数学思想。

教学过程一.知识梳理1.平面直角坐标系的意义及坐标平面的构成(1)平面内两条互相______并且原点______的______,组成平面直角坐标系。

其中,水平的数轴称为______或______,习惯上取______为正方向;竖直的数轴称为______或______,取______方向为正方向;两坐标轴的交点叫做平面直角坐标系的______。

直角坐标系所在的______叫做坐标平面。

(2)建立了平面直角坐标系以后,坐标平面就被分成了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,如图所示,分别叫做______、______、______、______。

注意:的点不属于任何象限。

坐标平面内,一般位置的点的的坐标的符号特征:(请用“+”、“-”、“0”分别填写)点的位置点的横坐标符号点的纵坐标符号在第一象限在第二象限在第三象限在第四象限在x轴的正半轴上在x轴的负半轴上在y轴的正半轴上在y轴的负半轴上在原点2.特殊位置的点的坐标特点:(1)第一、三象限夹角平分线上的点:横纵坐标。

第二、四象限夹角平分线上的点:横纵坐标。

(2)与x轴平行(或与y轴垂直)的直线上的点:坐标都相同。

与y 轴平行(或与x轴垂直)的直线上的点:坐标都相同。

3.对称点的坐标(1)关于x轴对称的点:横坐标,纵坐标。

(2)关于y轴对称的点:纵坐标、横坐标4.点到坐标轴的距离(1). 点( x, y )到x 轴的距离是(2). 点( x, y )到y 轴的距离是(3)点( x, y )到原点的距离是二.巩固练习1.若点A的坐标是(-3, 5),则它到x轴的距离是,到y轴的距离是.如何建立适当的坐标系?基本原则:(1)让尽可能多的点在坐标轴上或在第一象限(2)能使相关运算较为简单2.矩形ABCD的长为4,宽为3,建立适当的直角坐标系,并写出各点的坐标.3.已知,△ABC 三个顶点的坐标分别是A(1,4)、B(-4,0)、C(2,0).△ABC的面积是___.议一议已知:如图A(-1,3),B(-2,0),C(2,2),求△ABC的面积小结与收获作业。

八年级数学上册 11.1 平面上的点坐标(1)教案 沪科版(2021学年)

八年级数学上册 11.1 平面上的点坐标(1)教案 沪科版(2021学年)

安徽省固镇县八年级数学上册11.1 平面上的点坐标(1)教案(新版)沪科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(安徽省固镇县八年级数学上册11.1 平面上的点坐标(1)教案(新版)沪科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为安徽省固镇县八年级数学上册11.1 平面上的点坐标(1)教案(新版)沪科版的全部内容。

平面上的点的坐标教学目标知识与能力:理解和掌握平面直角坐标系的有关知识,领会其特征.过程与方法:经历现实生活中有关有序实数对的例子,让学生充分体会平面直角坐标系是构建有序实数对的平台.情感态度价值观:认识直角坐标的作用,体现现实生活中的坐标的应用价值,激发学习的兴趣。

重难点重点:认识直角坐标系,感受有序实数对的应用.各象限内的点的坐标特征。

难点:对有序实数对的理解。

教学过一、引入人类在许多活动中,常常需要确定物体的位置。

例如,动物学家为了掌握大熊猫在野外的活动情况,便在它们的身上安装发射器,通过GPS来确定其位置。

本章我们将学习平面上确定点的位置的方法和坐标系中图形的平移。

二、学习目标1。

掌握平面直角坐标系的相关概念。

2。

会利用点的坐标描出点的位置.3.会根据点的位置写出点的坐标。

4,掌握平面直角坐标系中各象限内的点的坐标的特征.5,理解平面直角坐标系中点与有序实数对一一对应关系。

三、自学提纲1,阅读第2页的问题,解决以下问题:讨论补充记录程教学过若吴小明的位置可表示为第5行第2列,用(5,2)来表示,怎样描述王健的位置?在你的班级里有类似的描述吗?若××同学的位置是第二行第五列,用(2,5)表示,谁的位置是(5,2)呢?它们是同一个人吗?2,阅读第2页下面的内容,解决以下问题:(1)什么叫做平面直角坐标系?什么是横轴(x轴)?什么是纵轴(y轴)?什么是坐标原点?(2)平面坐标系中的点P,从P点向x,y轴分别作垂线,垂足分别M,N对应的数分别是-2和3,则P点的坐标怎样表示?由此你能得到怎样确定平面内一个点的坐标吗?(3)在表示点的坐标时,要注意哪些问题?例如用什么括号?大括号?中括号?小括号?两个数之间用什么标点符号隔开?3,阅读第3~4页观察,解决以下问题:(1)。

八年级数学上册--平面内点的坐标第1课时 平面直角坐标系及点的坐标 学案(沪科版)

八年级数学上册--平面内点的坐标第1课时 平面直角坐标系及点的坐标 学案(沪科版)

八年级数学上册--平面内点的坐标第1课时平面直角坐标系及点的坐标学案(沪科版)一、教学内容本节主要学习平面上点坐标的有关概念,能从平面直角坐标系中写出点的坐标,及能根据坐标确定坐标中点的位置。

二、教学目标1、通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系原点、横轴和纵轴等,会由坐标描点,由点写出坐标;让学生体会到平面上的点与有序实数对之间的对应关系;2、经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想;3、培养学生自主探究与合作交流的学习习惯。

三、教学重点正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点。

四、教学难点各象限内坐标的符号及各坐标轴上点坐标的特点,平面上的点与有序实数对之间的对应关系。

五、教学关键:充分体会有序实数对在实际中的应用六、教学准备:多媒体教学课件、三角尺七、教学方法:探讨、合作八、教学过程:(一)设置问题情境:1、回顾一下数轴的概念,及实数与数轴有怎样的关系?(学生回答)2、情境:(多媒体显示)(1)如图所示请指出数轴上A、B两点所表示的数;直线表一条笔直公路,向东为正方向,原点为学校位置,A、B是位于公路旁两学生家的位置,你能说出它们的位置吗?这说明了什么?引申:确定一个点在直线上的位置,只需要一个数据,这个实数可称为点在数轴上的坐标。

怎样确定平面上一个点的位置呢?(2)上电影院看电影,电影票上至少要有几个数据才能确定你的位置?(3)在教室里,怎样确定一个同学的位置?(二)观察交流,构建新知观察、交流、思考,回答教科书第2页的两个问题。

思考:1、确定平面上一点的位置需要什么条件?2、既然确定平面上一点的位置需要两个数,那么能否用两条数轴建立模型来表示平面上任一点的位置呢?教师在学生回答的基础上,边操作边讲出:为了确定平面上一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫x轴或横轴,取向右为正方向,垂直的数轴叫y轴或纵轴,取向上为正方向,两轴交点O为原点,这样就建立了平面直角坐标系。

沪科版(2012)初中数学八年级上册 11.1 平面上点的坐标 教案.doc

沪科版(2012)初中数学八年级上册 11.1 平面上点的坐标  教案.doc

平面上点的坐标第1课时教学目标:1、让学生在实际情境中感受确定物体位置的多种方法,并能有语言正确表述物体的位置;2、了解平面直角坐标系的有关概念,并能正确画出平面直角坐标系,在给定的直角坐标系中,会根据点的坐标描出点的位置,由点的位置写出它的坐标,并能够为一些简单的实际问题建立直角坐标系;3、经历画坐标系、描点、连线、看图以及由点找坐标系等过程,发展学生的数形结合的思想和运用数学解决简单的实际问题的能力。

教学重难点:重点:认识直角坐标系,感受有序实数对的应用。

难点:对有序实数对的理解。

教学过程:一:问题情境导入1、同学们,你是如何向你的朋友或家人描述你所坐的位置的呢?请同学们现在来描述一下你所坐的位置。

(让同学们交流。

)2、小游戏下面请一同学描述某一同学的位置,请这一位置的同学立即站起来。

(游戏开始,然后导入新课。

)二:温故而知新同学们,数轴上的点和什么是一一对应关系?给你一点,你能在数轴上找到这个数吗?给你一个数,你能在数轴上找到表示这个数的点吗?画一数轴看看还会吗?(让学生做一做)三:探究新知1、同学们,请你们在白纸上画一个点,你如何确定这个点的位置呢?2、请同学们看一看课本第3页的问题2,让你们来描述一下各旅游景点的位置。

(为学生思考确定平面上的点的位置提供思路。

)3、类似的,你能想办法确定平面上点的位置吗?(自己先思考解决的办法,然后和同伴进行交流。

)(在学生思考交流后引入平面直角坐标系。

)4、请同学们思考,如何来确定这个点的位置呢?数据上点的位置可用一实数表示,那么平面上的点的位置如何表示呢?(引入有序数对。

)(找学生到黑板来进行演示,教师给予指导。

)四:做一做1、让学生拿出方格纸本子,建立一个平面直角坐标系,在坐标系上描出课本第5页上的观察第1题的各点,并完成真空,然后交流。

2、让学生完成课本第5页上的观察2题。

五:观察发现1、同学们观察你所画的平面直角坐标系,你发现x轴与y轴把平面分成了几部分?(教师把各部分的名称告诉同学们。

沪科2011课标版初中数学八年级上册第十一章11.1平面内点的坐标优秀教学案例

沪科2011课标版初中数学八年级上册第十一章11.1平面内点的坐标优秀教学案例
2.通过解决实际问题,让学生体验到数学在生活中的重要作用,提高学生运用数学知识解决问题的能力。
3.培养学生积极、乐观的学习态度,勇于面对挑战,克服困难的信心,培养学生的创新精神和综合素质。
在教学过程中,我将以生动形象的语言、贴近生活的实例、有趣的教学活动,引导学生积极参与,激发学生的学习兴趣。同时,注重因材施教,关注学生的个体差异,给予每个学生充分的表现机会,培养学生的自信心和自尊心。通过师生互动、生生互动,营造轻松、愉快、充满活力的课堂氛围,使学生在愉快的氛围中掌握知识,提高能力,培养情感。
(四)反思与评价
1.引导学生进行自我反思,回顾学习过程,总结学习方法和经验,提高学生的自主学习能力和反思能力。
2.设计评价量表或问题,让学生对自己的学习过程进行评价,如对坐标系的理解程度、解决问题的能力等,培养学生客观评价自己的能力。
3.教师对学生的学习过程和结果进行综合评价,关注学生的个体差异,给予鼓励和指导,促进学生的全面发展。
沪科2011课标版初中数学八年级上册第十一章11.1平面内点的坐标优秀教学案例
一、案例背景
沪科2011课标版初中数学八年级上册第十一章11.1平面内点的坐标,是学生在学习了平面几何、代数基础知识后,对坐标系知识的深入理解和应用。该章节内容涉及平面直角坐标系的建立、点的坐标的概念及其表示方法,以及坐标轴上点的坐标特点等,对于培养学生的空间想象力、逻辑思维能力和解决问题的能力具有重要意义。
(三)学生小组讨论
1.教师提出探究问题:“如何用坐标表示一个几何图形的位置?”让学生分组进行讨论和交流。
2.学生通过画图、讨论等方式,探讨不同几何图形的坐标表示方法,如线段、三角形、矩形等。
3.各小组汇报讨论成果,教师给予点评和指导,引导学生深入理解坐标系在几何图形中的应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册--平面内点的坐标第1课时平面直角坐标系及点的坐标教案(沪科版)
学习目标:
1.认识平面直角坐标系、原点、横轴、纵轴和象限;会由点写出坐标,由坐标描点.
2.能正确画出平面直角坐标系,经历由点写出坐标,由坐标描点,体会数形结合的数学思想.学习重点:正确认识直角坐标系,会准确地由点写出坐标,由坐标描点.
学习难点:平面内点的坐标的有序性.
☆自主学习☆
一、链接:
1.什么叫数轴?它有哪三要素?实数与数轴有怎样的关系?
2.请你试着画一条数轴,并把下列各数在数轴上表示出来.
﹣4,0.3,2,π,0,﹣0.3…(表示2,π的点可以近似标出)
二、导读:认真阅读课本,解答下面的问题:
1.你的班级里面的座位,如果以前后为排数,左右为列数,那么你的座位是在第排第列;那么教室中吴小明的座位是在第排第列;王健的座位是在第排第列.
思考:确定一个点在直线上的位置,只需一个数据,确定平面内一个点的位置需要什么条件?2.平面直角坐标系的概念:在平面内画的数轴,水平的数轴叫或 ,取向为正方向;垂直的数轴叫或 ,取向为正方向;两轴交点O为。

这样,就建立了平面直角坐标系,这个平面叫做.3.如何确定坐标平面内一个点的横坐标和纵坐标?
(3,2)与(2,3)是同一个点吗?为什么?
☆合作探究☆
1.新知尝试:写出图1中各点的坐标.
A( , ),B( , ),
C( , ),D( , ),
E( , ), F( , ),
G( , ),H( , ),
2.在自己画出的平面直角坐标系中描出下列各点:
A(4,1);B(-2,3);C(-4,-1);D(3,-2);
E(4,0);F(-4,0);G(0,3);H(0,-3);
3.x轴和y轴吧坐标平面分成四个部分,分别叫做
第一、二、三、四象限,各象限内的点的坐标符号
有什么特点?坐标轴上的点呢?
图2
☆归纳反思☆
通过本节课的学习,我有以下收获:
______________________________________________________________ ______________________________________________________________
☆达标检测☆
1.P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度, 那么点P的坐标是()
A.(4,2) B.(-2,-4) C.(-4,-2) D.(2,4)
2.在平面直角坐标系中,已知点P(2,﹣3),则点P在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.如图3,在平面直角坐标系内,长方形ABOC长为3,
宽为2,则点A的坐标为.
图3
4.若点P(x-1,3-2x)在第一象限,则x的取值范围是.
5.已知a<b<0.那么点P(a-b,﹣b)在第几象限?
6.已知点A(-4,a),点B(3,a),那么过点A、B的直线与坐标轴有怎样的位置关系?。

相关文档
最新文档