组合逻辑电路的设计实验报告
实验报告组合逻辑电(3篇)

第1篇一、实验目的1. 理解组合逻辑电路的基本概念和组成原理;2. 掌握组合逻辑电路的设计方法;3. 学会使用逻辑门电路实现组合逻辑电路;4. 培养动手能力和分析问题、解决问题的能力。
二、实验原理组合逻辑电路是一种在任意时刻,其输出仅与该时刻的输入有关的逻辑电路。
其基本组成单元是逻辑门,包括与门、或门、非门、异或门等。
通过这些逻辑门可以实现各种组合逻辑功能。
三、实验器材1. 74LS00芯片(四路2输入与非门);2. 74LS20芯片(四路2输入或门);3. 74LS86芯片(四路2输入异或门);4. 74LS32芯片(四路2输入或非门);5. 逻辑电平转换器;6. 电源;7. 连接线;8. 实验板。
四、实验步骤1. 设计组合逻辑电路根据实验要求,设计一个组合逻辑电路,例如:设计一个3位奇偶校验电路。
2. 画出逻辑电路图根据设计要求,画出组合逻辑电路的逻辑图,并标注各个逻辑门的输入输出端口。
3. 搭建实验电路根据逻辑电路图,搭建实验电路。
将各个逻辑门按照电路图连接,并确保连接正确。
4. 测试电路功能使用逻辑电平转换器产生不同的输入信号,观察输出信号是否符合预期。
五、实验数据及分析1. 设计的3位奇偶校验电路逻辑图如下:```+--------+ +--------+ +--------+| | | | | || A1 |---| A2 |---| A3 || | | | | |+--------+ +--------+ +--------+| | || | || | |+-------+-------+||v+--------+| || F || |+--------+```2. 实验电路搭建及测试根据逻辑电路图,搭建实验电路,并使用逻辑电平转换器产生不同的输入信号(A1、A2、A3),观察输出信号F是否符合预期。
(1)当A1=0,A2=0,A3=0时,F=0,符合预期;(2)当A1=0,A2=0,A3=1时,F=1,符合预期;(3)当A1=0,A2=1,A3=0时,F=1,符合预期;(4)当A1=0,A2=1,A3=1时,F=0,符合预期;(5)当A1=1,A2=0,A3=0时,F=1,符合预期;(6)当A1=1,A2=0,A3=1时,F=0,符合预期;(7)当A1=1,A2=1,A3=0时,F=0,符合预期;(8)当A1=1,A2=1,A3=1时,F=1,符合预期。
组合逻辑电路实验报告

组合逻辑电路实验报告引言组合逻辑电路是由与门、或门和非门等基本逻辑门组成的电路,它的输出仅仅依赖于当前的输入。
在本实验中,我们将学习如何设计和实现组合逻辑电路,并通过实验验证其功能和性能。
实验目的本实验的目的是让我们熟悉组合逻辑电路的设计和实现过程,掌握基本的逻辑门和组合逻辑电路的基本原理,并能够通过实验验证其功能和性能。
实验器材与预置系统本实验使用以下器材和预置系统:•模型计算机实验箱•功能切换开关•LED指示灯•逻辑门芯片实验内容1. 初级组合逻辑电路设计首先,我们将设计一个简单的初级组合逻辑电路。
根据实验要求,该电路需要实现一个2输入1输出的逻辑功能。
1.1 逻辑设计根据逻辑功能的要求,我们可以先用真值表来表示逻辑关系,然后根据真值表来进行逻辑设计。
假设我们需要实现的逻辑功能是“与门”(AND gate),其真值表如下:输入A输入B输出000010100111根据真值表,我们可以得到逻辑方程为:输出 = 输入A AND 输入B。
1.2 逻辑电路设计根据逻辑方程,我们可以得到逻辑电路的设计图如下:+--------------+------ A ---| || AND Gate |--- Output------ B ---| |+--------------+在这个设计图中,A和B为输入引脚,Output为输出引脚,AND Gate表示与门。
1.3 实验验证在实验过程中,我们可以通过观察LED指示灯的亮灭来验证逻辑电路是否正确实现了目标功能。
通过设置不同的输入A 和B,我们可以观察输出是否符合预期结果。
2. 高级组合逻辑电路设计接下来,我们将设计一个更复杂的高级组合逻辑电路。
这个电路由多个逻辑门连接而成,实现多个输入和多个输出的逻辑功能。
2.1 逻辑设计根据实验要求,我们可以先确定需要实现的逻辑功能,并用真值表来表示逻辑关系。
假设我们需要实现的逻辑功能是“四位全加器”(4-bit full adder),其真值表如下:输入A输入B输入C输出S进位输出Cout0000000110010100110110010101011100111111根据真值表,我们可以得到逻辑方程为:输出S = 输入A XOR 输入B XOR 输入C 进位输出Cout = (输入A AND 输入B) OR (输入C AND (输入A XOR 输入B))2.2 逻辑电路设计根据逻辑方程,我们可以使用多个逻辑门来实现四位全加器电路。
msi组合逻辑电路的设计实验报告

msi组合逻辑电路的设计实验报告MSI组合逻辑电路的设计实验报告引言:在现代电子技术中,组合逻辑电路被广泛应用于各种数字系统中,如计算机、通信设备等。
MSI(Medium Scale Integration)组合逻辑电路是一种集成度适中的电路,具有较高的可靠性和性能。
本实验旨在通过设计和实现MSI组合逻辑电路,加深对数字电路设计原理的理解,并掌握实际电路的搭建和测试技巧。
实验目的:1. 理解MSI组合逻辑电路的基本原理和设计方法;2. 学会使用逻辑门、多路选择器、译码器等基本元件进行电路设计;3. 掌握数字电路的搭建和测试技巧;4. 分析电路的功能和性能,并提出改进方案。
实验内容:本实验分为两个部分,分别是设计一个4位全加器和一个4位比较器。
1. 4位全加器设计:全加器是一种常见的组合逻辑电路,用于实现两个二进制数的加法运算。
通过使用逻辑门和多路选择器,可以设计一个4位全加器电路。
首先,根据全加器的真值表,使用逻辑门设计出每一位的和与进位输出。
然后,使用多路选择器将每一位的进位输出与前一位的进位输入相连接,形成级联的全加器电路。
接下来,根据设计的电路原理图,使用数字电路实验箱搭建电路,并连接输入输出信号。
对电路进行测试,验证其功能和性能。
2. 4位比较器设计:比较器是一种用于比较两个二进制数大小的组合逻辑电路。
通过使用译码器和逻辑门,可以设计一个4位比较器电路。
首先,根据比较器的真值表,使用译码器将两个4位二进制数进行解码,得到各位的比较结果。
然后,使用逻辑门将各位的比较结果进行逻辑运算,得到最终的比较结果。
接下来,根据设计的电路原理图,使用数字电路实验箱搭建电路,并连接输入输出信号。
对电路进行测试,验证其功能和性能。
实验结果与分析:通过实验,我们成功设计并实现了4位全加器和4位比较器电路。
经过测试,电路在各种输入情况下均能正常工作,输出结果与预期一致。
然而,我们也发现了一些问题。
首先,电路的延迟时间较长,导致输出信号的响应稍有延迟。
组合逻辑电路设计实验报告

组合逻辑电路设计实验报告1.实验题目组合电路逻辑设计一:①用卡诺图设计8421码转换为格雷码的转换电路。
②用74LS197产生连续的8421码,并接入转换电路。
③记录输入输出所有信号的波形。
组合电路逻辑设计二:①用卡诺图设计BCD码转换为显示七段码的转换电路。
②用74LS197产生连续的8421码,并接入转换电路。
③把转换后的七段码送入共阴极数码管,记录显示的效果。
2.实验目的(1)学习熟练运用卡诺图由真值表化简得出表达式(2)熟悉了解74LS197元件的性质及其使用3.程序设计格雷码转化:真值表如下:卡诺图:1010100D D D D D D G ⊕=+=2121211D D D D D D G ⊕=+=3232322D D D D D D G ⊕=+= 33D G =电路原理图如下:七段码显示:真值表如下:卡诺图:2031020231a D D D D D D D D D D S ⊕++=+++=10210102b D D D D D D D D S ⊕+=++= 201c D D D S ++=2020101213d D D D D D D D D D D S ++++= 2001e D D D D S +=2021013f D D D D D D D S +++= 2101213g D D D D D D D S +++=01213g D D D D D S +⊕+=电路原理图如下:4.程序运行与测试格雷码转化:逻辑分析仪显示波形:七段数码管显示:5.实验总结与心得相关知识:异步二进制加法计数器满足二进制加法原则:逢二进一(1+1=10,即Q由1→0时有进位。
)组成二进制加法计数器时,各触发器应当满足:①每输入一个计数脉冲,触发器应当翻转一次;②当低位触发器由1变为0时,应输出一个进位信号加到相邻高位触发器的计数输入端。
集成4位二进制异步加法计数器:74LS197MR是异步清零端;PL是计数和置数控制端;CLK1和CLK2是两组时钟脉冲输入端。
组合逻辑电路分析与设计实验报告

组合逻辑电路分析与设计实验报告一、实验目的:1. 掌握逻辑设计基本方法2. 能够自己设计简单逻辑电路,并能用VHDL描述3. 理解输出波形和逻辑电路功能之间的关系二、实验设备与器材:1. 实验箱一套(含数字信号发生器、逻辑分析仪等测量设备)2. 电缆若干三、实验原理:组合逻辑电路是指由与或非门等基本逻辑门或它们的数字组合所构成的电路。
对于组合逻辑电路而言,不需要任何时钟信号控制,它的输出不仅能直接受到输入信号的影响,同时还与其输入信号的时序有关,输入信号的任何改变都可能导致输出信号的变化,因此组合逻辑电路的输出总是与它的输入存在着一个确定的逻辑关系。
本实验通过学习与实践,让学生从具体的组合逻辑电路出发,逐步掌握数字逻辑电路设计技术,了解逻辑电路的设计过程,掌握用组合逻辑门件构成数字系统的方法,提高学生设计和分析组合逻辑电路的能力。
四、实验内容及步骤:本实验的基本内容是设计一个可以进行任意二进制数求和的组合逻辑电路,并用VHDL 语言描述该电路。
其主要步骤如下:1. 设计电路的逻辑功能,确定电路所需基本逻辑门电路元件的类型和数量。
2. 画出电路的逻辑图并进行逻辑延迟估算。
3. 利用VHDL语言描述电路功能,并利用仿真软件验证电路设计是否正确。
4. 利用实验箱中的数字信号发生器和逻辑分析仪验证电路设计是否正确。
五、实验结果与分析:我们首先设计了一个可以进行单位位的二进制数求和的电路,即输入两个1位二进制数和一个进位信号,输出一个1位二进制数和一个进位信号。
注意到,当输入的两个二进制数为同等真值时,输出的结果即为原始输入中的异或结果。
当输入的两个二进制数不同时,输出需要加上当前进行计算的进位,同时更新输出进位信号的取值。
我们继续将此电路扩展到多位数的情况。
假设输入两个n位的二进制数a和b,我们需要得到一个(n+1)位的二进制数c,使得c=a+b。
我们需要迭代地对每一位进行计算,并在计算每一位时将其前一位的进位值也列入计算中。
组合逻辑电路的设计实验报告

竭诚为您提供优质文档/双击可除组合逻辑电路的设计实验报告篇一:数电实验报告实验二组合逻辑电路的设计实验二组合逻辑电路的设计一、实验目的1.掌握组合逻辑电路的设计方法及功能测试方法。
2.熟悉组合电路的特点。
二、实验仪器及材料a)TDs-4数电实验箱、双踪示波器、数字万用表。
b)参考元件:74Ls86、74Ls00。
三、预习要求及思考题1.预习要求:1)所用中规模集成组件的功能、外部引线排列及使用方法。
2)组合逻辑电路的功能特点和结构特点.3)中规模集成组件一般分析及设计方法.4)用multisim软件对实验进行仿真并分析实验是否成功。
2.思考题在进行组合逻辑电路设计时,什么是最佳设计方案?四、实验原理1.本实验所用到的集成电路的引脚功能图见附录2.用集成电路进行组合逻辑电路设计的一般步骤是:1)根据设计要求,定义输入逻辑变量和输出逻辑变量,然后列出真值表;2)利用卡络图或公式法得出最简逻辑表达式,并根据设计要求所指定的门电路或选定的门电路,将最简逻辑表达式变换为与所指定门电路相应的形式;3)画出逻辑图;4)用逻辑门或组件构成实际电路,最后测试验证其逻辑功能。
五、实验内容1.用四2输入异或门(74Ls86)和四2输入与非门(74Ls00)设计一个一位全加器。
1)列出真值表,如下表2-1。
其中Ai、bi、ci分别为一个加数、另一个加数、低位向本位的进位;si、ci+1分别为本位和、本位向高位的进位。
2)由表2-1全加器真值表写出函数表达式。
3)将上面两逻辑表达式转换为能用四2输入异或门(74Ls86)和四2输入与非门(74Ls00)实现的表达式。
4)画出逻辑电路图如图2-1,并在图中标明芯片引脚号。
按图选择需要的集成块及门电路连线,将Ai、bi、ci接逻辑开关,输出si、ci+1接发光二极管。
改变输入信号的状态验证真值表。
2.在一个射击游戏中,每人可打三枪,一枪打鸟(A),一枪打鸡(b),一枪打兔子(c)。
组合逻辑电路的设计,电路由红绿蓝三盏灯组成实验报告

组合逻辑电路的设计,电路由红绿蓝三盏灯组成实验报告实验报告标题:组合逻辑电路的设计:红绿蓝三盏灯的组合实验目的:1. 理解组合逻辑电路的基本原理和设计方法;2. 实际操作设计一个由红绿蓝三盏灯组成的组合逻辑电路;3. 探索不同输入组合对输出结果的影响。
实验器材:1. 红绿蓝三盏灯2. 开关3. 电源供应器实验原理:组合逻辑电路是由逻辑门组成的电路,它的输出仅由输入的当前状态决定,与输入信号的变化历史无关。
组合逻辑电路的基本逻辑门有与门(AND)、或门(OR)、非门(NOT)等。
实验设计:根据红绿蓝三盏灯的组合,我们可以设计一个简单的组合逻辑电路。
假设我们用A、B、C分别表示红、绿、蓝灯的状态,0表示灭,1表示亮。
我们需要设计一个电路,使得当ABC分别为000、001、010、011、100、101、110、111八种组合时,红绿蓝三盏灯分别亮起的状态如下:000 -> 红灯亮,绿灯灭,蓝灯灭001 -> 红灯亮,绿灯灭,蓝灯亮010 -> 红灯亮,绿灯亮,蓝灯灭011 -> 红灯亮,绿灯亮,蓝灯亮100 -> 红灯灭,绿灯亮,蓝灯灭101 -> 红灯灭,绿灯亮,蓝灯亮110 -> 红灯灭,绿灯灭,蓝灯灭111 -> 红灯灭,绿灯灭,蓝灯亮基于上述要求,我们可以使用与门、或门和非门来设计该组合逻辑电路,具体设计如下图所示:+++++++A - AND ORB -C -++++++++-输出端D(红灯)+-输出端E(绿灯)+-输出端F(蓝灯)+输入端B+-输入端A实验步骤:1. 按照上述电路图,连接与门、或门、非门及红绿蓝灯;2. 将电源供应器的电源插头接通电源;3. 按照给定的输入组合(000、001、010、011、100、101、110、111)依次拨动开关;4. 观察红绿蓝三盏灯的亮灭情况,记录实验结果。
实验结果:根据实际的实验操作和观察,我们可以得到以下结果:输入组合红灯绿灯蓝灯-000 亮灭灭001 亮灭亮010 亮亮灭011 亮亮亮100 灭亮灭101 灭亮亮110 灭灭灭111 灭灭亮结论:通过实验结果可以验证组合逻辑电路的设计是正确的。
《组合逻辑电路的设计》的实验报告

实验五组合逻辑电路的设计一、实验目的学习组合逻辑电路的设计与测试方法。
二、实验用仪器、仪表数字电路实验箱、万用表、74LS00三、设计任务设计一个四人无弃权表决电路(多数赞成则提案通过),本设计要求采用4-2输入与非门实现。
设计步骤:(1)根据题意列出真值表如表1所示,再填入卡诺表2中。
表1表2(2)由卡诺图得出逻辑表达式,并演化成“与非”的形式① Z =ABC +BCD +ACD +ABD (8个与非门)=AB (C +D )+CD (A +B ) 或BD (A +C )+AC (B +D )=AB (BC +AD )+CD (BC +AD) 或BD (AD +BC )+AC (BC +AD )=(BC +AD )(AB +CD ) 或(BC +AD )(AC +BD ) =CD AB AD BC ••• 或BD AC AD BC •••② Z =ABC +BCD +ACD +ABD (8个与非门)=AB (C +D )+CD (A +B ) =AB (AC +BD )+CD (AC +BD)=(AC +BD )(AB +CD )=CD AB BD AC •••③ Z =ABC +BCD +ACD +ABD (8个与非门)=A (BC +BD )+C (AD +BD )=BD AD C BD BC A ••••• 或=A (BC +CD )+B (CD +AD )=AD CD B CD BC A ••••• 或=A (BC +CD )+D (AC +AD )=BC AC D BD BC A •••••或=B (AC +AD )+D (AC +BC )=BC AC D AD AC B •••••④ Z =ABC +BCD +ACD +ABD (13个与非门) =AB (C +D )+CD (A +B ) =B A CD DC AB ••+••=B A CD D C AB ••+•• =)()(B A CD D C AB •••••。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广西大学实验报告纸
_______________________________________________________________________________ 实验内容___________________________________________指导老师
【实验名称】
组合逻辑电路的设计
【实验目的】
学习组合逻辑电路的设计与测试方法。
【设计任务】
用四-二输入与非门设计一个4人无弃权表决电路(多数赞成则提案通过)。
要求:采用四-二输入与非门74LS00实现;使用的集成电路芯片种类尽可能的少。
【实验用仪器、仪表】
数字电路实验箱、万用表、74LS00。
【设计过程】
设输入为A、B、C、D,输出为L,根据要求列出真值表如下
真值表
根据真值表画卡若图如下
由卡若图得逻辑表达式
B
D
C
BD
AC CD AB BD AC CD AB BD AC CD AB BD AC CD BD AC AB D BCD C ACD B ABD A ABC ACD
BCD ABD ABC L ⋅⋅⋅=⋅⋅⋅=++=+++=⋅+⋅+⋅+⋅=+++=))(()()(
用四二输入与非门实现
A
B C
D
L
实验逻辑电路图
Y 实验线路图
【实验步骤】
1.打开数字电路实验箱,按下总电源开关按钮。
2.观察实验箱,看本实验所用的芯片、电压接口、接地接口的位置。
3.检查芯片是否正常。
芯片内的每个与非门都必须一个个地测试,以保证芯片
能正常工作。
4.检查所需导线是否正常。
将单根导线一端接发光二极管,另一端接高电平。
若发光二极管亮,说明导线是正常的;若发光二极管不亮时,说明导线不导通。
不导通的导线不应用于实验。
5.按实验线路图所示线路接线。
6.接好线后,按真值表的输入依次输入A、B、C、D四个信号,“1”代表输入高
电平,“0”代表输入低电平。
输出端接发光二极管,若输出端发光二极管亮则说明输出高电平,对应记录输出结果为“1”;发光二极管不亮则说明输出低电平,对应记录输出结果为“0”。
本实验有四个输入端则对应的组合情况有16种,将每种情况测得的实验结果记录在实验数据表格中。
测量结果见下表:
实验数据表格
【分析实验结果】
1.实验记录的数据表格得出的真值表与设计过程中的真值表完全一致,实验结
果与理论设计及其要求一致。
说明实验成功的用74LS00设计出了一个4人无弃权表决电路并实现其功能:多数赞成则提案通过。
2.由实验结果可知:只有A、B、C、D中三个或三个以上输入高电平“1”时,
发光二极管才发光,即输出“1”。
说明本设计符合理论设计要求。
【实验总结】
1.做实验设计时,应该按步骤设计:列真值表→根据真值画卡若图列出逻辑函
数表达式并化简→根据化简了的逻辑表达式画出逻辑电路图→选择适当的电路芯片合理布线设计实验线路。
2.实验设计选择电路芯片时,应该先了解芯片的构造,原理,主要用途。
熟悉
芯片各引脚对应的输入或输出内容。
本实验要求使用用74LS00芯片,74LS00芯片是由4个二输入与非门构成的。
3.通过设计了解到74LS00芯片是4个二输入的与非门的集成,以后的实验若要
用到与非门即可利用74LS00芯片实现。
4.做实验时需要用到很多的连接导线,在连接导线时一定要小心、耐心,根据
逻辑表达式可以直接接线,但是容易接错。
最快捷的接法是将芯片引脚对应逻辑电路图的输入输出端分别编号,接线时就可以直接按编号接。
5.我在设计实验时的实现方案中没有将逻辑表达式化到最简,形式非常复杂,
最后导致实验逻辑图也是非常复杂。
化简过程如下:
()()()()
⎪⎭
⎫ ⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅=⎪⎭⎫ ⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅+⎪⎭⎫ ⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅=⎪⎭⎫ ⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅=⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+=⋅⋅⋅=+++=CD A CD B BC A BD A CD A CD B BC A BD A CD A CD B BC A BD A CD A CD B BC A BD A ACD
BCD ABC ABD ACD BCD ABC ABD L
最后需要用到15个与非门,要4个74LS00芯片来实现。
本实验室的数字电路实验箱只提供2块74LS00芯片,做实验时上述方案根本无法实现。
后来在实验指导老师的耐心指导下,我改进了设计方案,即本实验报告的设计方案,改进后的方案只用8个与非门,2块74LS00芯片即可实现。
所以逻辑表达式的化简对于逻辑电路的设计非常重要。
设计逻辑表达式尽量化简到最简,使实验设计方案尽量最简。
若设计的电子产品用于现实生产则最简的设计方案使用的材料最少,生产成本也就最低,设计才有现实意义。
6. 通过本次实验可知,一个问题可以有很多种解决方案。
寻找问题的解决方法时需要我们不断思考,找到最佳的解决方案。