集成运放组成的基本运算电路-实验报告

合集下载

集成运放组成的基本运算电路 实验报告

集成运放组成的基本运算电路 实验报告

实验报告课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 基本运算电路设计 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1.掌握集成运放组成的比例、加法和积分等基本运算电路的设计。

2.掌握基本运算电路的调试方法。

3.学习集成运算放大器的实际应用。

二、实验内容和原理1.实现反相加法运算电路2.实现反相减法运算电路3.用积分电路将方波转换为三角波4.同相比例运算电路的电压传输特性(选做)5.查看积分电路的输出轨迹(选做)三、主要仪器设备HY3003D-3型可调式直流稳压稳流电源 示波器、信号发生器、万用表 实验箱LM358运放模块四、操作方法和实验步骤1.两个信号的反相加法运算1) 按设计的运算电路进行连接。

2) 静态测试:将输入接地,测试直流输出电压。

保证零输入时电路为零输出。

3) 调出0.2V 三角波和0.5V 方波,送示波器验证。

4) V S1输入0.2V 三角波,V S2输入0.5V 方波,用示波器双踪观察输入和输出波形,确认电路功能正确。

记录示波器波形(坐标对齐,注明幅值)。

2. 减法器(差分放大电路)减法器电路,为了消除输入偏置电流以及输入共模成分的影响,要求R1=R2、RF=R3。

专业: 姓名:学号: 日期: 地点:学生序号61) 按设计的运算电路进行连接。

2) 静态测试:输入接地,保证零输入时为零输出。

3) V S1和V S2输入正弦波(频率和幅值),用示波器观察输入和输出波形,确认电路功能正确。

4) 用示波器测量输入和输出信号幅值,记到表格中。

3.用积分电路转换方波为三角波电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。

集成运放组成的基本运算电路实验报告

集成运放组成的基本运算电路实验报告

.课程名称: 电路与电子技术实验 指导老师: 成绩: 实验名称: 集成运放组成的基本运算电路实验 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1. 研究集成运放组成的比例、加法和积分等基本运算电路的功能;2. 掌握集成运算放大电路的三种输入方式。

3. 了解集成运算放大器在实际应用时应考虑的一些问题;4. 理解在放大电路中引入负反馈的方法和负反馈对放大电路各项性能指标的影响;5. 学会用集成运算放大器实现波形变换二、实验内容和原理1. 实现两个信号的反相加法运算2. 输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值3. 实现单一信号同相比例运算(选做)4. 输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值,测量闭环传输特性:Vo = f (Vs)5. 实现两个信号的减法(差分)运算6. 输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值7. 实现积分运算(选做)8. 设置输出初态电压等于零;输入接固定直流电压,断开K 2,进入积分;用示波器观察输出变化(如何设定X 轴,Y 轴和触发方式)9. 波形转换—方波转换成三角波10. 设:Tp 为方波半个周期时间;τ=R 2C11. 在T p<<τ、T p ≈τ 、T p>>τ三种情况下加入方波信号,用示波器观察输出和输入波形,记录线性情况和幅度的变化。

三、主要仪器设备1. 集成运算电路实验板;通用运算放大器μA741、电阻电容等元器件;2. MS8200G 型数字多用表;XJ4318型双踪示波器;XJ1631数字函数信号发生器;DF2172B 型交流电压表;HY3003D-3型可调式直流稳压稳流电源 。

实验名称:姓名:学号:装订线四、实验内容、数据记录及处理分析1.读取几个元器件的标称,并用万用表测量其真实值2.实现两个信号的反相加法运算实验仿真电路图如下⎪⎪⎭⎫⎝⎛+-=22f11fSSOvRRvRRv实验名称: 姓名: 学号:装订 线实验数据记录测量输入和输出信号的幅值,并用示波器观察输入和输出信号波形,将实验结果记录在下述表格中:Time0s0.2ms 0.4ms 0.6ms 0.8ms 1.0ms 1.2ms 1.4ms 1.6ms 1.8ms 2.0msV(Vo)-2.0V0V2.0VSEL>>V(Vs2)-100mV0V100mVV(Vs1)-100mV0V100mV实验名称:姓名:学号:装订线根据公式,由两个Vs,计算Vo得到Vo=—(10*72.12mV+10*72.12mV)= 1.4424V 与实验所得数据1.7V相差不大,可以接受,会产生此误差,可能因为电阻等元件存在误差,也可能运算放大器本身在无信号输入时就已经有输出。

实验18 集成运算放大器的基本运算电路

实验18   集成运算放大器的基本运算电路
实验18 集成运算放大器的基本应用 一模拟运算电路一
一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路 的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。
二、实验设备与器件 1 、 数 电 , 模 电 实 验 箱 THDM-1(±15V, ±5V 直 流 电 源 , 电 位 器 1K,10K) 2、函数信号发生器 3. GOS-6021双踪示波器 4、万用表(GDM-8245) 5、集成运算放大器uA741×1 6、电阻器、电容器若干。
2013年8月20日11时26 分
图18-4(a)
6
3、反相加法运算电路
1)按图18-3连接实验电路。 2)输入信号采用直流信号,图18-7所示电路为简易直流信号源。实验时要注意 选择合适的直流信号幅度以确保集成运放工作在线性区。用万用表直流电压档测 量输入电压Ui1、Ui2及对应的输出电压Uo,记入表18-4。
• 1、反相比例运算电路 (直流放大) 1)按图18-2连接实验 电路,接通±15V电源 (用实验箱上的), • 2)调节W1使输入 Ui=0.5V、-0.5V、2V , 测量相应的Uo,记入 表18-2。
2013年8月20日11时26 分
Ui/V Uo/V(实测值) Uo/V(计算值)
0.5
-0.5
2013年8月20日11时26 分 华南理工大学广州汽车学院 电工电子实验中心 制作
注意:本实验做完不拆线,把黄 色线改接一下、并把R3改为 100K就可以做减法运算实验
14
R2
减法运算电路接线图
先用万用表把R1、R2、 R3和RF测选出来,插到 实验箱上
RF
R3 R1 Ui2
返回
Uo Ui1

基本运算电路实验报告

基本运算电路实验报告

基本运算电路实验报告一、实验目的:1.电子仪器仪表的熟练使用;学会合理选用示波器的直流、交流耦合方式观察不同波形的方法。

2.集成运算放大器的基本应用电路原理;3.集成运算放大器基本参数含义与应用要点。

4.简单电子电路的设计、安装、调试与参数测量。

二、实验原理:1.反相比例运算(图1)V0=-R f V1/R1其中输入电阻R≈R1根据增益,确定R f和R1的比值,得出一般取R f几十千欧到几百千欧图23.三、实验仪器集成运算放大器LM324 1片电位器1KΩ1只电阻100kΩ2只;10kΩ3只;Ω1只;9kΩ1只μF 1只四、实验内容(1)设计并安装反相比例运算电路,要求输入阻抗R i=10 kΩ, 闭环电压增益|A vf|=10(2)在该放大器输入端加入f=1kHZ的正弦电压,峰峰值自定,测量放大器的输出电压值;改变v I峰峰值大小,再测v O,研究v I和v O的反相比例关系,填入自拟表格中。

在反相比例电路的基础上,在R fμF的电容,构成积分运算电路。

输入端加入f=500HZ、幅值为1V的正方波,用双踪示波器同时观察、记录v I和v O的波形,标出幅值和周期。

图3所示电路可分别实现加法和减法运算。

当开关置于A点时为加法运算;开关置于B 点时为减法运算。

将开关置于A点,接入f=1kHZ的正弦波,调节电位器R P,测量v i1和v i2的大小,然后再测v O的大小。

改变R P,改变v i2的值,分别记录相应的v i1、v i2和v O的数值,填入自拟表格中(此时R’=R f//R1//R2)。

研究加法运算关系。

将实验原理图3中电路的开关置于B点,R’=R f,输入信号同上,分别测量v i1、v i2和v O数值。

调节R P,改变v i2的大小,再测v O,填入自拟表格中。

研究减法运算关系。

五、实验数据处理及分析:序号 V i1/mv V i2/mv测量值Vo/v 理论值V/v 百分误差1 480 131 02 480 145 0.3%3 480 168 0.6%序号 V i1/mv V i2/mv测量值Vo/v 理论值V/v 百分误差1 480 168 0.6%2 480 177 0.7%3 480 189 2.7% 3.反相比例积分电路结果分析:在反相比例加减法实验中所得结果在误差允许范围内与理论值相同,可以认为结果正确,反相比例积分电路图形基本正确。

集成运算放大器基本运算电路实验

集成运算放大器基本运算电路实验

集成运算放大器基本运算电路实验
本课程旨在使学生能够掌握集成放大器的基本运算电路,能够使用特定的集成放大器验证放大器电路性能。

学习本课程的学生应该具备一定的电路理论和综合分析的能力,具备专业数学的基本知识,以及计算机编程的基本能力,具备一定的专业实验分析的能力。

一、实验目的
1.了解集成放大器的基本运算原理;
2.掌握集成放大器的基本电路;
3.熟悉集成放大器的测试参数及其误差规定;
4.设计集成放大器的实验系统;
5.对热插拔模块和IC仪器的使用。

二、实验准备
1.实验仪器:示波器、可编程示波器、数字万用表、函数发生器
2.实验调试电路:集成放大器的基本运算电路
3.实验材料:电路元件,热插拔模块等
三、实验内容
1.认识集成放大器及其基本运算电路;
2.构建集成放大器的基本运算电路;
3.测试集成放大器的功能;
4.绘制集成放大器的特性曲线;
5.分析集成放大器的工作特性。

四、实验步骤
1.准备实验电路:根据实验要求绘制集成放大器的基本运算电路,上电后检查工作是否正常;
2.测量基本电路参数:利用数字万用表测量输入电平、输出电平、电压偏置等常规参数;
3.测试电路实验:利用示波器测量输出波形、相位延时、线性度等实验参数;
4.结果分析:按要求分析实验参数,与理论曲线对比,讨论集成放大器的特性及其工作特性;
5.实验报告:根据实验结果,编制实验报告,检验实验结果是否符合要求。

实验四 集成运放组成的基本运算电路

实验四 集成运放组成的基本运算电路

实验四 集成运放组成的基本运算电路一. 实验目的1.掌握集成运算放大器的正确使用方法。

2.了解集成运算放大器在信号放大和模拟运算方面的应用。

二. 实验设备实验箱 1个实验电路板 1个数字万用表 1个三. 简述运算放大器是具有两个输入端和一个输出端的高增益、高输入阻抗的多级直接耦合电压放大器。

只要在集成运放的外部配以适当的电阻和电容等器件就可构成比例、加减、积分、微分等模拟运算电路。

在这些应用电路中,引入了深度负反馈,集成运放工作在线性放大区,属于运算放大器的线性应用范畴,因此分析时可将集成运放视为理想运放,运用虚断和虚短的原则。

虚断:即认为流入运放两个净输入端的电流近似为零。

虚短:即认为运放两个净输入端的电位近似相等(u +≈ u -)。

从而可方便地得出输入与输出之间的运算表达式。

使用集成运算放大器时,首先应根据运放的型号查阅参数表,了解其性能、指标等,然后根据管脚图连接外部接线(包括电源、调零电路、消振电路、外接反馈电阻等等)。

四. 设计实验要求1. 设计由双列直插通用集成运放μA741构成的基本运算电路,要求实现:反相比例运算,反相加法运算,同相比例运算,电压跟随器,差动运算(减法运算)等5种运算。

每一运算电路需要设计两种典型的输入信号。

2. 自己设计选择电路参数和放大倍数,画出电路图并标出各电阻的阻值(μA741的最大输出电流小于10mA ,因此阻值选取不能小于1KΩ)。

3. 自拟实验步骤。

4. 电源电压一律取12V ±。

本实验用直流信号源,自己选择输入信号源的取值,已知信号源(5i u V ≤)。

5. 设计举例:反相比例运算电路的设计反相比例放大器的运算功能为:1R R u u A F i o uf -==; 设,10-=uf A 负反馈电阻Ω=K R F 100;可以计算出110R K =Ω,平衡电阻100//109.1R K '=≈Ω。

max =9o u V,max max 90.910o i uf u u V A ∴≤==,即输入信号的设计值小于0.9V ±。

实验13 集成运放组成的基本运算电路

实验13 集成运放组成的基本运算电路

实验13 集成运放组成的基本运算电路一、实验目的:1.掌握集成运放组成的比例、加法和积分等基本运算电路的功能。

2.了解集成运算放大器在实际应用时应考虑的一些问题。

3.掌握在放大电路中引入负反馈的方法。

二、实验内容1.实现两个信号的反相加法运算。

2.实现同相比例运算。

3.用减法器实现两信号的减法运算。

4.实现积分运算。

5.用积分电路将方波转换为三角波。

三、实验准备1.复习教材中有关集成运放的线性应用部分。

2.拟定实验任务所要求的各个运算电路,列出各电路的运算表达式。

3.拟定每项实验任务的测试步骤,选定输入测试信号υS 的类型(直流或交流)、幅度和频率范围。

4.拟定实验中所需仪器和元件。

5.在图9.30所示积分运算电路中,当选择υI =0.2V 时,若用示波器观察υO (t )的变化轨迹,并假定扫速开关置于“1s/div ”,Y 轴灵敏度开关置于“2V/div ”,光点一开始位于屏幕左上角,当开关S 2由闭合转为打开后,电容即被充电。

试分析并画出υO 随时间变化的轨迹。

四、实验原理与说明由集成运放、电阻和电容等器件可构成比例、加减、积分、微分等模拟运算电路。

在这些应用中,须确保集成运放工作在线性放大区,分析时可将其视为理想器件,从而得出输入输出间的运算表达式。

下面介绍几种常用的运算电路:1.反相加法运算电路如图9.27所示,其输入与输出之间的函数关系为:)(2211I f I fO v R R v R R v +-=图9.27 反相加法运算电路 通过该电路可实现信号υI1和υI2的反相加法运算。

为了消除运放输入偏置电流及其漂移造成的运算误差,须在运放同相端接入平衡电阻R 3,其阻值应与运放反相端的外接等效电阻相等,即要求R 3= R l ∥R 2∥R f 。

实验时应注意:(1)为了提高运算精度,首先应对输出直流电位进行调零,即保证在零输入时运放输出为零。

(2)输入信号采用交流或直流均可,但在选取信号的频率和幅度时,应考虑运放的频率响应和输出幅度的限制。

集成运放的线性运算电路实验报告

集成运放的线性运算电路实验报告

实验一 集成运放的线性运算电路实验报告一、实验目的1.掌握运放运算电路的测量分析方法。

2.巩固集成运放几种典型运算电路的用法,掌握电路元、器件选择技巧。

二、实验仪器与设备1.模拟电路实验箱:包括本实验所需元器件; 2.双踪示波器1台; 3.万用电表1台。

三、实验原理1.反相求和运算电路图1-1为典型的反相求和运算电路,输出U o 与输入U I 有如下关系U O =−(R F R 1U I1+R F R 2U I2+R FR 3U I3)若设R 1=R 2=R 3=R F ,上式可简化为U O =−(U I1+U I2+U I3)图1-1 反相求和运算电路2.差分比例运算电路图1-2为差分比例运算电路,输出U o 与输入U I 有如下关系U O =−R FR(U I1−U I ′) 电路的输入电阻为R i ≈2R图1-2 差分比例运算电路四、实验内容与步骤1.反相求和运算电路实验(1)按照图1-1连接电路;(2)调节实验箱上的可调电阻器,在0~1.5V范围内分别为U I1、U I2、U I3选择一组给定值;(3)测量输入电压U I1、U I2、U I3和输出电压U o,将测量结果填入下表中;2.差动比例运算电路实验(1)按图1-2连接电路电路,接通电源;(2)按下表在输入端加上直流电压,测量对应的输出电压,填入表中,并与计算值比四、预习要求1.复习第1单元有关内容;2.下载或绘制实验记录表;3.预习双踪示波器的使用方法五、实验报告要求1.填写实验表格;2.进行实验小结;3.上传实验报告。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 基本运算电路设计 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得
一、实验目的和要求
1.掌握集成运放组成的比例、加法和积分等基本运算电路的设计。

2.掌握基本运算电路的调试方法。

3.学习集成运算放大器的实际应用。

二、实验内容和原理
1.实现反相加法运算电路
2.实现反相减法运算电路
3.用积分电路将方波转换为三角波
4.同相比例运算电路的电压传输特性(选做)
5.查看积分电路的输出轨迹(选做)
三、主要仪器设备
HY3003D-3型可调式直流稳压稳流电源 示波器、信号发生器、万用表 实验箱LM358运放模块
四、操作方法和实验步骤
1.两个信号的反相加法运算
1) 按设计的运算电路进行连接。

2) 静态测试:将输入接地,测试直流输出电压。

保证零输入时电路为零输出。

3) 调出0.2V 三角波和0.5V 方波,送示波器验证。

4) V S1输入0.2V 三角波,V S2输入0.5V 方波,用示波器双踪观察输入和输出波形,确认电路功能正确。

记录示波器波形(坐标对齐,注明幅值)。

2. 减法器(差分放大电路)
减法器电路,为了消除输入偏置电流以及输入共模成分的影响,要求R1=R2、RF=R3。

专业: 姓名:
学号: 日期: 地点:
学生序号6
1) 按设计的运算电路进行连接。

2) 静态测试:输入接地,保证零输入时为零输出。

3) V S1和V S2输入正弦波(频率和幅值),用示波器观察输入和输出波形,确认电路功能正确。

4) 用示波器测量输入和输出信号幅值,记到表格中。

3.用积分电路转换方波为三角波
电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。

在t<<τ2(τ2=R2C)的条件下,若V S为常数,则V O与t将近似成线性关系。

因此,当V S为方波信号并满足T P<<τ2时(T P为方波半个周期时间),则V O将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。

1) 连接积分电路,加入方波信号(幅度?)。

2) 选择频率,使T P <<τ2,用示波器观察输出和输入波形,记录线性情况和幅度。

3) 改变方波频率,使T P ≈τ2,观察并记录输出波形的线性情况和幅度的变化。

4) 改变方波频率,使T P >>τ2,观察并记录输出波形的线性情况和幅度的变化。

4.同相比例运算电压传输特性
同相比例运算电路同反相加法运算电路,其特点是输入电阻比较大,电阻R’的接入同样是为了消除平均偏置电流的影响,故要求R’=R1//R F。

1) 连接同相比例运算电路。

2) 静态测试:输入接地,保证零输入时为零输出。

3) 加入正弦波,用示波器观察输入和输出波形,验证电路功能。

4) 用示波器测出电压传输特性:示波器选择XY显示模式,选择适合的按钮设置。

5) 适当增大输入信号,使示波器显示整个电压传输特性曲线(即包含线性放大区和饱和区)。

五、实验数据记录和处理
1.两个信号的反相加法运算
使用信号发生器作为输入,频道1输入0.2V三角波,频道2输入0.5V方波,示波器显示如下:双踪示波显示三角波和方波方波和输出信号
三角波和输出信号用math按钮直接叠加两个信号
2.减法器(差分放大电路)
频道1输入峰峰值0.4V正弦波,频道2输入峰峰值1V正弦波,频率都是1kHz,两个信号互为反相双踪示波器显示输入波形 V PP=0.4V正弦波和输出信号。

相关文档
最新文档