基本运算电路实验报告
运算电路实验报告

运算电路实验报告运算电路实验报告引言:运算电路是现代电子技术领域中的一项重要研究内容,它在各种电子设备中起着至关重要的作用。
本实验旨在通过实际操作,深入了解运算电路的原理和应用,并通过实验结果验证理论知识的正确性。
一、实验目的本实验的主要目的是熟悉运算电路的基本原理和性能特点,掌握运算放大器的基本参数测量方法,并通过实验验证运算电路的理论知识。
二、实验仪器和材料1. 运算放大器实验箱2. 电压源3. 电阻箱4. 示波器5. 多用电表6. 连接线等三、实验步骤1. 搭建基本的运算放大器电路,包括输入电阻、反馈电阻和输入信号源。
2. 调节电压源,使其输出为期望的输入电压。
3. 使用示波器观察输出信号,并记录相关数据。
4. 更换不同数值的电阻,观察输出信号的变化,并记录相关数据。
5. 根据实验数据,计算并分析运算放大器的放大倍数、输入电阻和输出电阻等参数。
四、实验结果与分析在实验中,我们搭建了基本的运算放大器电路,并通过调节电压源和改变电阻的数值,观察了输出信号的变化。
根据实验数据,我们计算出了运算放大器的放大倍数、输入电阻和输出电阻等参数。
通过实验数据的分析,我们发现运算放大器具有很高的放大倍数,能够将微弱的输入信号放大到较大的幅值。
同时,运算放大器的输入电阻很大,输出电阻很小,能够有效地隔离输入和输出电路,提高整个电路的稳定性和可靠性。
此外,我们还观察到当改变电阻的数值时,输出信号的幅值也会发生相应的变化。
这说明电阻在运算放大器电路中起到了重要的作用,可以通过调节电阻的数值来改变输出信号的幅值。
五、实验总结通过本次实验,我们对运算电路的原理和应用有了更深入的了解。
我们通过实际操作,深入体验了运算放大器的性能特点,并通过实验结果验证了理论知识的正确性。
在实验过程中,我们遇到了一些困难和问题,但通过不断的思考和探索,最终成功地完成了实验任务。
通过实验,我们不仅巩固了理论知识,还提高了实际操作的能力和解决问题的能力。
电路基本定理 实验报告

系别 班级 学号 姓名 实验课程 电工电子技术 实验日期 指导老师 林烨
实验项目名称 电路基本定理
实验目的/仪器10%
实验内容与步骤40%
实验数据图表40%
结论10%
总分
一、实验目的:
1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。
2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出的电压的测试方法。
3、熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验仪器:
模拟电路实验箱 万用表 示波器 函数信号发生器
三、实验内容与步骤: 实验电路图:
R1220Ω
R2680Ω
R3470Ω
Rg 560Ω
Us112V
Us25V
GND
O
d a
b c
f e
I1
I2
I3
步骤一:验证KCL 定律
绝对误差
相对误差
步骤二:验证KVL 定律
写出本电路的三个网孔的KVL 公式,并验证是否成立。
四、思考题
造成实验数据误差的原因有那些?
标称值实测值-=∆x %
100⨯-=标称值标称值实测值r。
基础电路实验报告

一、实验目的1. 熟悉常用电子元件(电阻、电容、电感)的特性和测量方法。
2. 掌握基本电路分析方法,如串联、并联电路的等效电阻、电压、电流的计算。
3. 培养动手能力和实验技能,提高对电路实验数据的处理和分析能力。
二、实验器材1. 实验电路板:1块2. 电阻:10kΩ、1kΩ、100Ω各1个3. 电容:0.1μF、10μF各1个4. 电感:100μH、10μH各1个5. 信号发生器:1台6. 示波器:1台7. 直流稳压电源:1台8. 万用表:1台9. 连接线:若干三、实验原理1. 串联电路:串联电路中,电流相等,电压分配与电阻成正比。
2. 并联电路:并联电路中,电压相等,电流分配与电阻成反比。
3. 电阻的串联和并联:串联电路的等效电阻等于各电阻之和;并联电路的等效电阻的倒数等于各电阻倒数之和。
四、实验内容1. 测量电阻、电容、电感的参数(1)将电阻、电容、电感分别接入电路,使用万用表测量其电阻、电容、电感值。
(2)将测量结果与元件标签上的标称值进行比较,分析误差产生的原因。
2. 分析串联电路(1)搭建串联电路,包括电阻、电容、电感。
(2)使用示波器观察电路中的电压、电流波形,分析电压、电流的分布情况。
(3)计算等效电阻,验证串联电路的电压、电流分配规律。
3. 分析并联电路(1)搭建并联电路,包括电阻、电容、电感。
(2)使用示波器观察电路中的电压、电流波形,分析电压、电流的分布情况。
(3)计算等效电阻,验证并联电路的电压、电流分配规律。
4. 电阻的串联和并联(1)搭建串联电路,包括电阻、电容、电感。
(2)使用示波器观察电路中的电压、电流波形,分析电压、电流的分布情况。
(3)计算等效电阻,验证串联电路的电压、电流分配规律。
五、实验步骤1. 测量电阻、电容、电感的参数(1)将电阻、电容、电感分别接入电路,使用万用表测量其电阻、电容、电感值。
(2)记录测量结果,与元件标签上的标称值进行比较。
2. 分析串联电路(1)搭建串联电路,包括电阻、电容、电感。
基本运算电路 实验报告

基本运算电路实验报告基本运算电路实验报告引言:基本运算电路是电子电路中最基础的一种电路,它能够对输入信号进行加法、减法、乘法和除法等数学运算。
本实验旨在通过搭建基本运算电路并进行实验验证,加深对基本运算电路的理解和掌握。
一、实验目的本实验的主要目的是:1. 了解基本运算电路的工作原理;2. 学习基本运算电路的搭建方法;3. 掌握基本运算电路的实验操作;4. 验证基本运算电路的运算功能。
二、实验器材和材料1. 实验板;2. 集成运算放大器(Op-Amp);3. 电阻、电容、二极管等元器件;4. 示波器、函数发生器等实验设备。
三、实验步骤1. 搭建加法器电路首先,根据加法器电路的原理图,使用实验板和元器件搭建加法器电路。
将电源连接到实验板上,并将函数发生器的输出信号接入到加法器的输入端。
然后,使用示波器观察加法器的输出信号,并记录实验数据。
2. 搭建减法器电路接下来,根据减法器电路的原理图,使用实验板和元器件搭建减法器电路。
同样地,将电源连接到实验板上,并将函数发生器的输出信号接入到减法器的输入端。
使用示波器观察减法器的输出信号,并记录实验数据。
3. 搭建乘法器电路然后,根据乘法器电路的原理图,使用实验板和元器件搭建乘法器电路。
将电源连接到实验板上,并将函数发生器的输出信号接入到乘法器的输入端。
使用示波器观察乘法器的输出信号,并记录实验数据。
4. 搭建除法器电路最后,根据除法器电路的原理图,使用实验板和元器件搭建除法器电路。
将电源连接到实验板上,并将函数发生器的输出信号接入到除法器的输入端。
使用示波器观察除法器的输出信号,并记录实验数据。
四、实验结果与分析根据实验数据,我们可以得出以下结论:1. 加法器能够对输入信号进行加法运算,输出结果为输入信号的和;2. 减法器能够对输入信号进行减法运算,输出结果为输入信号的差;3. 乘法器能够对输入信号进行乘法运算,输出结果为输入信号的积;4. 除法器能够对输入信号进行除法运算,输出结果为输入信号的商。
基本逻辑门电路实验报告

基本逻辑门电路实验报告实验报告:基本逻辑门电路摘要:本实验旨在加深学生对于基本逻辑门电路的理解,并且实际操作电路完成基本的逻辑运算。
在实验中,我们探究了与门、或门、非门和异或门的工作原理,以及如何利用这些门实现一些简单的逻辑运算。
通过该实验,我们更深入的了解了基本逻辑门电路及其在计算机中的应用。
前言:数字逻辑电路是现代电子科技中的最基本、最基础的部分之一,是微电子工程所需要掌握的重要课程。
它是现代信息技术的核心,无论是计算机系统、通讯系统还是控制系统都离不开数字逻辑电路。
因此,对于数字逻辑电路的学习是我们深入学习计算机的必要前提。
材料及设备:1. 实验箱2. 电源3. 集成电路 7400(与门)、7402(或门)、7404(非门)、7486(异或门)4. 七段码数码管实验步骤:1. 确定各种门的输入输出端口2. 用实际物料组装好多个电路(与门、或门、非门、异或门)并完成接线3. 测试电路供电情况,并查看是否有异常现象4. 对于每一个电路,接入输入端口并测试输出的波形5. 利用实际电路完成几个简单的逻辑运算,并通过七段码数码管显示结果实验结果及分析:通过实验,我们了解到与门是实现逻辑与运算的一种基本电路,或门是实现逻辑或运算的一种基本电路,非门是实现逻辑非运算的一种基本电路,而异或门则可以实现异或功能。
同时,我们还探究了异或门的特殊性质,即异或门可以用于加法器电路的设计。
此外,我们发现,几种电路的运算皆相当简单,但其效果却十分明显。
结论:通过本实验,我们更加深入地了解了基本逻辑门电路及其在计算机中的应用,掌握了数字逻辑电路的基本操作方法。
以后,我们将继续加深对数字逻辑电路的理解与应用,并将其应用到更深入、更广泛的领域之中。
基本门电路实验报告

基本门电路实验报告基本门电路实验报告引言在现代科技高速发展的时代,电子技术的应用已经渗透到我们生活的方方面面。
而电子技术的基础就是电路。
电路是电子设备中最基本的组成部分,通过不同的电子元件和连接方式,可以实现各种不同的功能。
本次实验旨在通过搭建和测试基本门电路,加深对电子电路原理的理解。
一、实验目的本次实验的主要目的是通过搭建和测试基本门电路,掌握基本门电路的工作原理和特性。
具体目标如下:1. 理解基本门电路的定义和功能;2. 掌握基本门电路的逻辑运算规则;3. 学会使用逻辑门芯片搭建基本门电路;4. 测试基本门电路的输出结果。
二、实验器材和材料1. 逻辑门芯片:本次实验使用的逻辑门芯片为74LS00,它是一种四个二输入与非门的集成电路。
2. 连接线:用于连接逻辑门芯片和其他电子元件。
3. 电源:用于为电路提供工作电压。
4. 示波器:用于观察和测量电路的输入和输出信号。
三、实验步骤1. 准备工作:将逻辑门芯片、连接线和电源准备齐全,并将逻辑门芯片插入实验板中。
2. 搭建电路:根据逻辑门芯片的引脚图,使用连接线将逻辑门芯片与其他电子元件连接起来。
根据实验要求,可以选择搭建与门、或门、非门等基本门电路。
3. 接通电源:将电源接入电路,确保逻辑门芯片正常工作。
4. 测试电路:使用示波器观察和测量电路的输入和输出信号。
通过改变输入信号的状态,观察输出信号的变化情况。
5. 记录实验结果:将实验过程中的数据和观察结果记录下来,包括输入信号的状态、输出信号的状态以及观察到的现象。
四、实验结果与分析在本次实验中,我们搭建了与门、或门和非门电路,并测试了它们的输入输出情况。
通过观察示波器的波形图和记录的数据,我们得出以下结论:1. 与门电路:当两个输入信号都为高电平时,输出信号为高电平;否则,输出信号为低电平。
2. 或门电路:当两个输入信号中至少有一个为高电平时,输出信号为高电平;否则,输出信号为低电平。
3. 非门电路:当输入信号为高电平时,输出信号为低电平;当输入信号为低电平时,输出信号为高电平。
实验课4-电路基础实验报告

图 6 改变 Ri 的阻值,记录对应的 I1(实验 5-2)
图 7 改变 R 的阻值,记录对应的 U2(实验 5-2) 4. 数据记录与处理
实验 5-1:测试电压控制电压源和电压控制电流源特性
给定值
U1(V) 0
vcvs 测量值 U2(V) 0
表 5-1
0.5Biblioteka 11.0068 2.0106
6
1.5 3.0124
表 5-6
给定值 测量值
计算值
Ri(kΩ) I1(mA) I2(mA)
α
3 0.4876 1.0092 2.0697
2.5 0.5808 1.2093 2.0821
2 0.7197 1.5120 2.1009
1.5 0.9414 2.0087 2.1337
1 1.3671 3.0076 2.2000
5 9.0300 6.0200 1.5109 1.0073
表 5-3
给定值 测量值
计算值
R(i kΩ) 1 I1(mA) 1.3647 U2(V) -1.4940 rm(Ω) -1.0947
2 0.7153 -0.7475 -1.0450
3 0.4866 -0.5001 -1.0277
表 5-4
给定值 测量值
2 4.0144
2.5 5.0170
计算值 μ / vccs 测量值 Is(mA) 0
计算值 gm(s) /
2.0136 0.5035 1.0070
2.0106 1.0068 1.0068
表 5-2
2.0083 1.5097 1.0065
2.0072 2.0130 1.0065
2.0068 2.5162 1.0065
基本运算电路实验报告

基本运算电路实验报告一、实验目的:1.电子仪器仪表的熟练使用;学会合理选用示波器的直流、交流耦合方式观察不同波形的方法。
2.集成运算放大器的基本应用电路原理;3.集成运算放大器基本参数含义与应用要点。
4.简单电子电路的设计、安装、调试与参数测量。
二、实验原理:1.反相比例运算(图1)V0=-R f V1/R1其中输入电阻R≈R1根据增益,确定R f和R1的比值,得出一般取R f几十千欧到几百千欧图23.三、实验仪器集成运算放大器LM324 1片电位器1KΩ1只电阻100kΩ2只;10kΩ3只;Ω1只;9kΩ1只μF 1只四、实验内容(1)设计并安装反相比例运算电路,要求输入阻抗R i=10 kΩ, 闭环电压增益|A vf|=10(2)在该放大器输入端加入f=1kHZ的正弦电压,峰峰值自定,测量放大器的输出电压值;改变v I峰峰值大小,再测v O,研究v I和v O的反相比例关系,填入自拟表格中。
在反相比例电路的基础上,在R fμF的电容,构成积分运算电路。
输入端加入f=500HZ、幅值为1V的正方波,用双踪示波器同时观察、记录v I和v O的波形,标出幅值和周期。
图3所示电路可分别实现加法和减法运算。
当开关置于A点时为加法运算;开关置于B 点时为减法运算。
将开关置于A点,接入f=1kHZ的正弦波,调节电位器R P,测量v i1和v i2的大小,然后再测v O的大小。
改变R P,改变v i2的值,分别记录相应的v i1、v i2和v O的数值,填入自拟表格中(此时R’=R f//R1//R2)。
研究加法运算关系。
将实验原理图3中电路的开关置于B点,R’=R f,输入信号同上,分别测量v i1、v i2和v O数值。
调节R P,改变v i2的大小,再测v O,填入自拟表格中。
研究减法运算关系。
五、实验数据处理及分析:序号 V i1/mv V i2/mv测量值Vo/v 理论值V/v 百分误差1 480 131 02 480 145 0.3%3 480 168 0.6%序号 V i1/mv V i2/mv测量值Vo/v 理论值V/v 百分误差1 480 168 0.6%2 480 177 0.7%3 480 189 2.7% 3.反相比例积分电路结果分析:在反相比例加减法实验中所得结果在误差允许范围内与理论值相同,可以认为结果正确,反相比例积分电路图形基本正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本运算电路实验报告
实验报告
课程名称:电路与模拟电子技术实验 指导老师: 成绩: 实验名称: 基本运算电路设计 实验类型: 同组学生姓名: 实验目的:
1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。
2、了解集成运算放大器在实际应用中应考虑的一些问题。
实验要求:
1、实现两个信号的反向加法运算
2、用减法器实现两信号的减法运算
3、用积分电路将方波转化为三角波
4、实现同相比例运算(选做)
5、实现积分运算(选做) 双运算放大器LM358
三、 实验须知:
1.在理想条件下,集成运放参数有哪些特征?
答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。
2.通用型集成运放的输入级电路,为啥
均以差分放大电路为基础? 答:(1)能对差模输入信号放大 (2)对共模输入信号抑制
(3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。
3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信息? 答:运算放大器的电压传输特性是指输出电压和输入电压之比。
4.何谓集成运放的输出失调电压?怎么解决输出失调? 答:失调电压是直流(缓变)电压,会叠加到交流电压上,使得交流电的零线偏移(正负电压不对称),但是由于交
流电可以通过“隔直流”电容(又叫耦合电容)输出,因此任何漂移的直流缓变分量都不能通过,所以可以使输出的交流信号不受失调电压的任何影响。
5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算?
答:反相加法运算电路,反相减法运算电路,积分运算电路。
都为负反馈形式。
专业: 姓名:
日期:
地点:紫金港 东三--
四、实验步骤:
1.实现两个信号的反相加法运算
实验电路:
R′= Rl//R2//RF 电阻R'的作用:作为平衡电阻,以消除平均偏置电流及其漂移造成的运算误差
输入信号v s1v s1输出电压v o
0.1V,1kHz 0 1.01V
0.1V 0.1V 2.03V
2.减法器(差分放大电路)
实验电路:
R1=R2、R F=R3
输入信号v s1v s1输出电压v o
0.1V,1kHz 0 1.02V
0 0.1V 1.03V
0.1V 0.1V 0.12mV
共模抑制比850
3.用积分电路转换方波为三角波
实验电路:
电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。
在t<<τ2(τ2=R2C)的条件下,若v S为常数,则v O与t 将近似成线性关系。
因此,当v S为方波信号并满足T p<<τ2时(T p为方波半个周期时间),则v O将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。
根据电路参数求出τ2,确定三种情况下的方波信号频率,在坐标系中画出输入和输出波形。
v S方波周期v S幅值(峰峰值) v o波形v o周期v o幅值(峰峰值) T=0.1R2C 未测
T=R2C 1.000 如下图1ms 6.64V
T=10R2C 1.000 如下图10ms 10.60V
T=100R2C 1.000 如下图100ms 11.00V
①T=0.1R2C=0.1ms
未测
②T=R2C=1ms
③T=10R2C=10ms
④T=100R2C=100ms
1、什么是集成运算放大器的电压传输特性?输入方式的改变将如何影响电压传输
特性?
输出电压和输入电压之比为运算放大器的电压传输特性。
理想运放开环输入的线形范围(输出输入成比例)很小,所以运放线形应用都在负反馈的情况下,常见电路为电压并联负反馈(反向比例放大器)和电压串联负反馈(同向比例放大器)。
开环工作和正反馈工作都是非线形应用,如各种比较电路,这是电路输出状态只有正、负两种状态。
2、集成运算放大器的输入输出成线性关系,输出电压将会无限增大,这话对吗?
为什么?
不会。
运放的输入输出电压的线性关系只是在某一个电压范围才有效,超过这个范围就不是线性关系了,当输入电压再增大时候,输出就是一个出现失真的现象,也是通常所说的限幅。
(后附仿真实验)
仿真实验
1
两种情况下仿真电路分别为:
①v s1=0.1V,v s1=0,由探针的显示的参数V(rms)为输出电压,大小为1.00V
V1
V4
1kHz
0°
②v s1
V1
V4
1kHz
0°
2
R3
V1②v s1=0V ,v s1=0.1V
V1
15 V V41kHz 0°
③v s1=0.1V ,
v s1=0.1V
R3
V1
V41kHz 0°
3
U1A
LM358AD
3
2
4
8
1
R1
10kΩ
R2100kΩ
R3
10kΩ
C10.01µF
V1
15 V V2
15 V
XSC1
Tektronix
1234
T
G
P XFG1
①T=0.1R 2C ,方波频率为10KHz
②T=R 2C ,方波频率为1KHz
③T=10R 2C ,方波频率为0.1KHz。