机器人传感器PPT课件
合集下载
机器人传感器教学课件

机器人传感器的前景
展望机器人传感器在未来的进一步应用和发展。
总结
对全文进行简洁明了的总结,并鼓励学习者继续深入研究机器人传感器。
第六章:加速度传感器
1
加速度传感器的定义
解释什么是加速度传感器以及它如何测量物体的加速度。
2
加速度传感器的类型
介绍不同种类的加速度传感器,如压电传感器和微机电系统传感器。
3
加速度传感器的应用
探索加速度传感器在运动测量、导航和医疗诊断中的实际应用。
第七章:总结与展望
机器人传感器的发展历程
追溯机器人传感器从诞生到现在的发展历程。
1 声音传感器的定义
解释声音传感器如何侦测和识别声音信号。
2 声音传感器的类型
介绍不同类型的声音传感器,例如麦克风传感器和声音压力级传感器。
3 声音传感器的应用
探索声音传感器在语音识别、环境监测和安全系统中的应用。
第四章:温度传感器
1
温度传感器的定义
解释温度传感器如何测量周围环境的温度。
2
温度传感器的类型
探索不同类型的温度传感器,例如热电阻和热电偶。
3
温度传感器的应用
介绍温度传感器在气象学、医疗设备和电子设备中的实际应用。
第五章:压力传感器
压力传感器的定义
详细解释压力传感器如何测量物 体器的应用
介绍不同种类的压力传感器,例 如压电式传感器和压阻式传感器。
探索压力传感器在汽车制造业、 医疗领域和液体流量监测中的实 际应用。
机器人传感器的作用
解释机器人传感器在现实世 界中的实际应用。
第二章:光电传感器
光电传感器的定义
详细解析光电传感器的工作原理 和功能。
光电传感器的类型
展望机器人传感器在未来的进一步应用和发展。
总结
对全文进行简洁明了的总结,并鼓励学习者继续深入研究机器人传感器。
第六章:加速度传感器
1
加速度传感器的定义
解释什么是加速度传感器以及它如何测量物体的加速度。
2
加速度传感器的类型
介绍不同种类的加速度传感器,如压电传感器和微机电系统传感器。
3
加速度传感器的应用
探索加速度传感器在运动测量、导航和医疗诊断中的实际应用。
第七章:总结与展望
机器人传感器的发展历程
追溯机器人传感器从诞生到现在的发展历程。
1 声音传感器的定义
解释声音传感器如何侦测和识别声音信号。
2 声音传感器的类型
介绍不同类型的声音传感器,例如麦克风传感器和声音压力级传感器。
3 声音传感器的应用
探索声音传感器在语音识别、环境监测和安全系统中的应用。
第四章:温度传感器
1
温度传感器的定义
解释温度传感器如何测量周围环境的温度。
2
温度传感器的类型
探索不同类型的温度传感器,例如热电阻和热电偶。
3
温度传感器的应用
介绍温度传感器在气象学、医疗设备和电子设备中的实际应用。
第五章:压力传感器
压力传感器的定义
详细解释压力传感器如何测量物 体器的应用
介绍不同种类的压力传感器,例 如压电式传感器和压阻式传感器。
探索压力传感器在汽车制造业、 医疗领域和液体流量监测中的实 际应用。
机器人传感器的作用
解释机器人传感器在现实世 界中的实际应用。
第二章:光电传感器
光电传感器的定义
详细解析光电传感器的工作原理 和功能。
光电传感器的类型
机器人技术基础课件第六章 机器人传感器

物理量
电量
目前,传感器转换后的信号大多为电信号。 因而从狭义上讲,传感器是把外界输入的非电信 号转换成电信号的装置。
6.1 机器人传感器概述
6.1.1 传感器的基本概念
2、传感器的组成
传感器一般由敏感元件、转换部分组成
基
被 测 量
敏 感 元 件
转 换 元 件
本 转 换 电
电 信 号
路
6.1 机器人传感器概述
6.2 内传感器
增量式编码器
6.2.1 位移(位置)传感器
(1)信号性质
输出信号为一串脉冲,每一个脉
冲对应一个分辨角,对脉冲进行计 数N,就是对 的累加,即,角位移 =N。
如: =0.352,脉冲N=1000,
则:
= 0.352×1000= 352
增量式编码器的信号性质
6.2 内传感器
增量式编码器
6.2 内传感器
6.2.1 位移(位置)传感器
2、光电编码器
光电编码器是角度(角速度)检测装置,通过光 电转换,将输出轴上的机械几何位移量转换成脉冲 数字量的传感器。具有体积小,精度高,工作可靠 等优点,应用广泛。
编码器
6.2 内传感器
6.2.1 位移(位置)传感器
2、光电编码器
轴式
套式
电信号
二进制编码
• 满足机器人控制的要求 • 满足机器人自身安全和机器人使用者的安全性要求
6.1 机器人传感器概述
6.1.4 机器人传感器的分类
1)按被测物理量分类 常见的被测物理量
机械量:长度,厚度,位移,速度,加速度, 旋转角,转数,质量,重量,力,力矩;
热工量:温度、热量、比热容、热流、 热 分布、压力(压强)、压差、真空度、流 量、流速、物位、 液位、界面、噪声
《移动机器人》课件-第3章 移动机器人传感器

统应用时,把传感器三轴分别减去误差值,即可消除零偏差误差。
• 随机噪声信号:随机噪声主要来源于MEMS传感器上的控制转换电路的
电路噪声、机械噪声和传感器工作时的环境噪声。随机噪声信号带来的
误差会严重影响传感器的测量精度。使用扩展卡尔曼滤波可以获得最优
状态估计,降低噪声的影响,从而提高传感器的测量精度。
路、通信和电源为一体的完整微型机电系统。
MEMS传感器主要优点:体积小、重量轻、功耗低、可靠性高、灵敏度高、
易于集成等,用MEMS工艺制造传感器、执行器或者微结构,具有微型化、
集成化、智能化、成本低、效能高、可大批量生产等特点,产能高,良品
率高。
如图是亚德诺半导体公司Analog Devices Inc.(简称ADI)推出一种经典
• 对移动机器人来说,内部传感器是用于测量移动机器人自身状态
的功能元件,并将所测得的信息作为反馈信息送至控制器,形成
闭环控制。内部传感器主要检测移动机器人的行程及速度、倾斜
角等。常用的移动机器人内部传感器包括:
• 编码器
• 陀螺仪
• 惯性测量单元IMU
移动机器人
4
3.2 内部传感器
• 3.2.1 编码器
主要由光栅盘和光电检测装置构成,分为增量式编码器、绝对式编码器。
移动机器人
7
3.2 内部传感器
• 3.2.1 编码器
2. 光学编码器
• 增量式编码器
增量式编码器可以记录编码器在一个绝对坐标系上的位置。
右图是光电式增量编码器的结构原理图。
结构中最大的圆盘上刻有分布均匀的辐射状窄缝,窄缝分
布的周期为节距。当圆盘随着被测轴转动时,检测窄缝不
难导致成本高昂,这使得早期的惯导系统造价高。
• 随机噪声信号:随机噪声主要来源于MEMS传感器上的控制转换电路的
电路噪声、机械噪声和传感器工作时的环境噪声。随机噪声信号带来的
误差会严重影响传感器的测量精度。使用扩展卡尔曼滤波可以获得最优
状态估计,降低噪声的影响,从而提高传感器的测量精度。
路、通信和电源为一体的完整微型机电系统。
MEMS传感器主要优点:体积小、重量轻、功耗低、可靠性高、灵敏度高、
易于集成等,用MEMS工艺制造传感器、执行器或者微结构,具有微型化、
集成化、智能化、成本低、效能高、可大批量生产等特点,产能高,良品
率高。
如图是亚德诺半导体公司Analog Devices Inc.(简称ADI)推出一种经典
• 对移动机器人来说,内部传感器是用于测量移动机器人自身状态
的功能元件,并将所测得的信息作为反馈信息送至控制器,形成
闭环控制。内部传感器主要检测移动机器人的行程及速度、倾斜
角等。常用的移动机器人内部传感器包括:
• 编码器
• 陀螺仪
• 惯性测量单元IMU
移动机器人
4
3.2 内部传感器
• 3.2.1 编码器
主要由光栅盘和光电检测装置构成,分为增量式编码器、绝对式编码器。
移动机器人
7
3.2 内部传感器
• 3.2.1 编码器
2. 光学编码器
• 增量式编码器
增量式编码器可以记录编码器在一个绝对坐标系上的位置。
右图是光电式增量编码器的结构原理图。
结构中最大的圆盘上刻有分布均匀的辐射状窄缝,窄缝分
布的周期为节距。当圆盘随着被测轴转动时,检测窄缝不
难导致成本高昂,这使得早期的惯导系统造价高。
工业机器人-智能传感与感知ppt课件

SRI腕力传感器应变片连接方式
外部传感器
(3)距离传感器
距离传感器可用于机器人导航和回避障碍物,也可用于机器人空间内的物体进行定 位及确定其一般形状特征。
1) 超声波测距法
超声波是频间隔推算 出距离。缺点:波束较宽,其分辨力受到严重的限制,主要用于导航和回避障碍物。
定义
种类
• 移动机器(AGV) • 点焊机器人 • 弧焊机器人 • 激光加工机器人 • 真空机器人-真空中使用(半导体工业) • 洁净机器人-洁净环境使用
种类
• 移动机器(AGV)-自动移载
KUKA
种类
• 移动机器(AGV)-自动移载
平移、自转-子母轮
种类
解决方案
四大家族
ABB
KUKA
FANUC
工业机器人
人机协作
感知能力
工业机器人
人机协作
ABB-YuMi人机协作机器人
YuMi是全球首款名副其 实的人机协作机器人, 既能与人类并肩执行相 同的作业任务,又可确 保其周边区域安全无虞。 无论是手表、平板电脑 还是其他各类产品,YuMi 都能轻松处理,甚至连 穿针引线也不在话下, YuMi将彻底改变我们对 装配自动化的固有思维。
2) 滑觉传感器有滚动式和球式,还有一种通过振动检测滑觉的 传感器。物体在传感器表面上滑动时,和滚轮或环相接触, 把滑动变成转动。
外部传感器
例如振动式滑觉传感器,表面伸出的触针能和物体接触,物 体滚动时,触针与物体接触而产生振动,这个振动由压电传感器 或磁场线圈结构的微小位移计检测。
外部传感器
(2)力觉传感器
原理:三角测量法、立体视觉法等等。
多传感器数据融合
多传感器数据融合算法简介
机器人传感器PPT课件

33
.》》
6.1.6 传感器的发展方向
1. 新型传感器的开发 鉴于传感器的工作机理是基于各种效应和定律,
由此启发人们进一步发现新现象、采用新原理、开 发新材料、采用新工艺,并以此研制出具有新原理 的新型物性型传感器,这是发展高性能、多功能、 低成本和小型化传感器的重要途径。总之,传感器 正经历着从以结构型为主转向以物性型为主的过程。
W
2
❖ 3.莫尔条纹具有平均光栅误差的作用。
41
.》》
1). 光栅位移传感器
通过光电元件,可将莫尔条纹移动时光强的变化转换为近 似正弦变化的电信号,如图所示。
U
Um
U0
o
W/2
W
3W/2 2W
x
其电压为: UU0Umsin 2 W x
42
.》》
1). 光栅位移传感器
将此电压信号放大、整形变换为方波,经微分转换为 脉冲信号,再经辨向电路和可逆计数器计数,则可用数字 形式显示出位移量,位移量等于脉冲与栅距乘积。测量分 辨率等于栅距。
旋转角、偏转角、角振动等 速度、振动、流量、动量等
转速、角振动等 振动、冲击、质量等
角振动、扭矩、转动惯量等
力 压力 时间 频率
温度 光
重量、应力、力矩等 周期、记数、统计分布等 热容量、气体速度、涡流等 光通量与密度、光谱分布等
13
.》》
电容法测位移
14
.》》
电感法测厚度
15
.》》
霍尔法计数
45
.》》
2)、感应同步器
2.感应同步器的工作原理 ❖ 在滑尺的绕组中,施加频率为f(一般为2~10kHz)的交
变电流时,定尺绕组感应出频率为f的感应电动势。感应电动 势的大小与滑尺和定尺的相对位置有关。 ❖ 设正弦绕组供电电压为Us,余弦绕组供电电压为Uc,移动 距离为x,节距为T,则正弦绕组单独供电时,在定尺上感应 电势为
机器人传感器PPT课件

1.导电橡胶;2.金属; 12.衬底; 13.引线
05:20
第11页/共30页
人工皮肤触觉传感器的研究重点
1. 选择更为合适的敏感材料,现有的材料主要有 导电橡胶、压电材料、光纤等;
2. 将集成电路工艺应用到传感器的设计和制造中, 使传感器和处理电路一体化,得到大规模或超 大规模阵列式触觉传感器。
05:20
第28页/共30页
小结
• 概念:机器人传感器 • 问题1:简要说明机器人传感器研究历史
05:20
第29页/共30页
谢谢您的观看!
05:20
第30页/共30页
目录
• 概述 • 触觉传感器 • 接近觉传感器 • 视觉传感器 • 听觉、嗅觉、味觉及其他传感器 小结
05:20
第1页/共30页
概述
• 机器人与传感器 • 机器人传感器分类
05:20
第2页/共30页
机器人与传感器
• 机器人及机器人传感器的定义 • 机器人的发展历史
05:20
第3页/共30页
机器人及机器人传感器的定义
图像处理
景像描述
05:听觉:具有接近人耳的功能还相差很远; • 嗅觉:主要检测空气中的化学成分、浓度、等功能,主要采用气体传感器及射线传感器等。 • 味觉:对液体进行化学成分的分析。衫的味觉方法有pH计、化学分析器等。 • 其他传感器:如纯工程学的传感器,象磁传感器、安全用传感器和电波传感器等
PVF2 阵 列 式触觉传 感器
05:20
第12页/共30页
触觉传感器的工作重点
• 触觉传感器的工作重点集中在阵列式触觉传感器信号的处理上,目的是辨识接触 物体的形状。
• 这种信号的处理涉及到信号处理、图像处理、计算机图形学、人工智能、模式识 别等学科,是一门比较复杂、比较困难的技术,还很不成熟,有等于进一步研究 和发展。
机器人传感器教学课件

。
人机交互传感器
如语音识别、手势识别等,实 现人与机器人的自然交流。
环境感知传感器
如温度、湿度、光线等传感器 ,用于感知环境变化并作出相 应调整。
导航定位传感器
如激光雷达、GPS等,实现机 器人的自主导航和定位。
农业机器人传感器的应用案例
总结词
农业机器人传感器在现代化农业生产 中发挥着重要作用,提高农作物的产 量和质量。
THANKS
感谢观看
泛应用。
姿态传感器
总结词
用于检测机器人的姿态和方向变化,保 持稳定性和平衡。
VS
详细描述
姿态传感器通常采用陀螺仪或加速度计等 惯性传感器,能够检测机器人的姿态和方 向变化,并通过反馈控制算法调整机器人 的运动状态,保持稳定性和平衡。姿态传 感器在机器人移动、操作和定位等领域具 有广泛应用。
力矩传感器
触觉传感器工作原理及应用场景
触觉传感器工作原理
触觉传感器是用于检测机器人与外部物体的 接触和压力的传感器。其工作原理通常是通 过测量电阻、电容或压电效应等方式,将接 触和压力转换为电信号,进而传输给机器人 控制器进行处理。
触觉传感器的应用场景
触觉传感器广泛应用于机器人抓取、操作和 识别物体等任务。例如,在装配线上,机器 人使用触觉传感器检测零件是否正确安装; 在医疗领域,触觉传感器帮助机器人进行微
用于检测机器人的位置和运动 状态,确保精确的定位和轨迹
跟踪。
力和扭矩传感器
用于检测机器人在执行任务时 受到的力和扭矩,实现精确的
力控制。
视觉传感器
通过图像处理和识别技术,实 现工件检测、识别和分类等功
能。
服务机器人传感器的应用案例
总结词
服务机器人传感器主要用于人 机交互、环境感知和导航定位 等方面,提高服务质量和效率
人机交互传感器
如语音识别、手势识别等,实 现人与机器人的自然交流。
环境感知传感器
如温度、湿度、光线等传感器 ,用于感知环境变化并作出相 应调整。
导航定位传感器
如激光雷达、GPS等,实现机 器人的自主导航和定位。
农业机器人传感器的应用案例
总结词
农业机器人传感器在现代化农业生产 中发挥着重要作用,提高农作物的产 量和质量。
THANKS
感谢观看
泛应用。
姿态传感器
总结词
用于检测机器人的姿态和方向变化,保 持稳定性和平衡。
VS
详细描述
姿态传感器通常采用陀螺仪或加速度计等 惯性传感器,能够检测机器人的姿态和方 向变化,并通过反馈控制算法调整机器人 的运动状态,保持稳定性和平衡。姿态传 感器在机器人移动、操作和定位等领域具 有广泛应用。
力矩传感器
触觉传感器工作原理及应用场景
触觉传感器工作原理
触觉传感器是用于检测机器人与外部物体的 接触和压力的传感器。其工作原理通常是通 过测量电阻、电容或压电效应等方式,将接 触和压力转换为电信号,进而传输给机器人 控制器进行处理。
触觉传感器的应用场景
触觉传感器广泛应用于机器人抓取、操作和 识别物体等任务。例如,在装配线上,机器 人使用触觉传感器检测零件是否正确安装; 在医疗领域,触觉传感器帮助机器人进行微
用于检测机器人的位置和运动 状态,确保精确的定位和轨迹
跟踪。
力和扭矩传感器
用于检测机器人在执行任务时 受到的力和扭矩,实现精确的
力控制。
视觉传感器
通过图像处理和识别技术,实 现工件检测、识别和分类等功
能。
服务机器人传感器的应用案例
总结词
服务机器人传感器主要用于人 机交互、环境感知和导航定位 等方面,提高服务质量和效率
工业机器人的传感器ppt课件

3
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
5.2 工业机器人内部传感器 1 概述
内部传感器中,位置传感器和速度传感器,是当今 机器人反馈控制中不可缺少的元件。 现已有多种传感器大量生产,但倾斜角传感器、方 位角传感器及振动传感器等用作机器人内部传感器的 时间不长,其性能尚需进一步改进。
工业机器人的感觉系统包括:
◦ 传感器; ◦ 通过传感器获得数据的处理。
2、工业机器人常用传感器的分类
机器人传感器按用途可分为内部传感器和外部传感 器。
内部传感器装在操作机上,包括位移、速度、加速 度传感器,是为了检测机器人操作机内部状态,在伺 服控制系统中作为反馈信号。
外部传感器,如视觉、触觉、力觉距离等传感器, 是为了检测作业对象及环境与机器人的联系。
17
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
◦ 光纤传感器
这种传感器包括由一束光纤构成的光缆和一个可变形的反 射表面。光通过光纤束投射到可变形的反射材料上, 反射光按相反方向通过光纤束返回。如果反射表面是 平的,则通过每条光纤所返回的光的强度是相同的。 如果反射表面因与物体接触受力而变形,则反射的光 强度不同。用高速光扫描技术进行处理,即可得到反 射表面的受力情况。
关于编码器 编码器输出表示位移增量的编码器脉冲信号,并带有符 号。 据检测原理,编码器可分为:光学式、磁式、感应式和 电容式。 根据其刻度方法及信号输出形式,分为增量式编码器和 绝对式编码器。 作为机器人位移传感器,光电编码器应用最为广泛。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
5.2 工业机器人内部传感器 1 概述
内部传感器中,位置传感器和速度传感器,是当今 机器人反馈控制中不可缺少的元件。 现已有多种传感器大量生产,但倾斜角传感器、方 位角传感器及振动传感器等用作机器人内部传感器的 时间不长,其性能尚需进一步改进。
工业机器人的感觉系统包括:
◦ 传感器; ◦ 通过传感器获得数据的处理。
2、工业机器人常用传感器的分类
机器人传感器按用途可分为内部传感器和外部传感 器。
内部传感器装在操作机上,包括位移、速度、加速 度传感器,是为了检测机器人操作机内部状态,在伺 服控制系统中作为反馈信号。
外部传感器,如视觉、触觉、力觉距离等传感器, 是为了检测作业对象及环境与机器人的联系。
17
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
◦ 光纤传感器
这种传感器包括由一束光纤构成的光缆和一个可变形的反 射表面。光通过光纤束投射到可变形的反射材料上, 反射光按相反方向通过光纤束返回。如果反射表面是 平的,则通过每条光纤所返回的光的强度是相同的。 如果反射表面因与物体接触受力而变形,则反射的光 强度不同。用高速光扫描技术进行处理,即可得到反 射表面的受力情况。
关于编码器 编码器输出表示位移增量的编码器脉冲信号,并带有符 号。 据检测原理,编码器可分为:光学式、磁式、感应式和 电容式。 根据其刻度方法及信号输出形式,分为增量式编码器和 绝对式编码器。 作为机器人位移传感器,光电编码器应用最为广泛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
.》》
霍尔法测转速
17
.》》
半导体法测压力
18
.》》
6.1.4 传感器的数学模型
从系统角度看,一种传感器就是一种系统。 而一个系统总可以用一个数学方程式或函数 来描述。即用某种方程式或函数表征传感器 的输出和输入的关系和特性,从而,用这种 关系指导对传感器的设计、制造、校正和使 用。 通常从传感器的静态输入-输出关系和动 态输入-输出关系两方面建立数学模型。
19
.》》
1.静态模型 静态模型是指在输入信号不随时间变化的 情况下,描述传感器的输出与输入量的一种函 数关系。
如果不考虑蠕动效应和迟滞特性,传感 器的静态模型一般可用多项式来表示:
y a 0 a 1 x a 2 x 2 a n x n ( 1 1 )
20
.》》
2.动态模型
动态模型是指传感器在准动态信号或动态 信号作用下,描述其输出和输入信号的一种 数学关系。
第六章 机器人传感器
.》
6.1 传感器概述
❖6.1.1 传感器的定义 ❖6.1.2 传感器的组成 ❖6.1.3 传感器的分类 ❖6.1.4 传感器的数学模型 ❖6.1.5 传感器的基本特征 ❖6.1.6 传感器的发展方向
2
.》》
6.1.1 传感器的定义
将被测非电量信号转换为与之有确定对 应关系电量输出的器件或装置叫做传感 器,也叫变换器、换能器或探测器。
3
.》》
6.1.2 传感器的组成
被测
敏感 非电量 元件
有用
有用
非电量
传感 元件
电量
信号调节 转换电路
电量
辅助电路
4
.》》
6.1.2 传感器的组成
5
.》》
6.1.2 传感器的组成
6
.》》
敏感元件:直接感受被测非电量并按一定 规律转换成与被测量有确定关系的其它量 的元件。
传感元件:又称变换器。能将敏感元件感 受到的非电量直接转换成电量的器件。
29
.》》
(2).灵敏度
传感器的灵敏度是指传感器在稳定标准条
件下,输出量的变化量与输入量的变化量之
10
.》》
6.1.3 传感器的分类
4. 按能量的关系分类:根据能量观点分类, 可将传感器分为有源传感器和无源传感器两 大类。 有源传感器是将非电能量转换为电能量, 称之为能量转换型传感器,也称换能器。 通常配合有电压测量电路和放大器。
如:压电式、热电式、电磁式等。
11
.》》
6.1.3 传感器的分类
无源传感器又称为能量控制型传感器。被测 非电量仅对传感器中的能量起控制或调节作用。 所以必须具有辅助能源(电能)。
如:电阻式、电容式和电感式等。
5. 其他:按用途、学科、功能和输出信号的 性质等进行分类。
12
.》》
基本量
线位移 位移
角位移
线速度 速度 角速度
加 线加速 速度 态模型通常采用微分方程和传递函数描 述。
21
.》》
3 .微分方程 大多数传感器都属模拟系统之列。描述模拟 系统的一般方法是采用微分方程。
在实际的模型建立过程中,一般采用线性 常系数微分方程来描述输出量 y和输入量 x 的关系。
22
.》》
其通式如下:
n
dy
dn1 y
dy
an dtn an1 dtn1 a1 dt a0y
dmx
dm1x
dx
bm dtm bm1 dtm1 b1 dt b0x
(12)
an,an-1…a0和bm,bm-1…b0 为传感器的结构 参数。除b0 0外,一般取b1,b2…bm为零.
23
.》》
4.传递函数
如果y(t)在t≤0时, y(t) =0,则y(t) 的拉氏变换 可定义为
Y syte sd t t ( 13 ) 0
上述的初始条件。
25
.》》
显然H(s)与输入量x(t)无关,只与系统结构参 数有关。因而H(s)可以简单而恰当地描述传 感器输出与输入的关系。
对于多环节串、并联组成的传感器,若各环 节阻抗匹配适当,可忽略相互间的影响,传 感器的等效传递函数可按代数方式求得。
26
.》》
对于较为复杂的系统,可以将其看作是一些较 为简单系统的串联与并联。
1. 传感器的静特性 传感器的静态特性是指当被测量处于稳定状态下,
传感器的输入与输出值之间的关系。传感器静态特 性的主要技术指标有:线性度、灵敏度、迟滞和重 复性等。
(1).线性度 传感器的线性度是指传感器实际输出—输入特性
曲线与理论直线之间的最大偏差与输出满度值之比, 即
γL
Δmax1
yFS
0
0%
式中s=σ+jω,σ>0。
对微分方程两边取拉氏变换,则得
Y s a n s n a n 1 s n 1 a 0 X s b m s m b m 1 s m 1 b 0
24
.》》
定义输出y(t)的拉氏变换Y(S)和输入x(t)的拉
氏变换X(S)的比为该系统的传递函数H(S), 则
旋转角、偏转角、角振动等 速度、振动、流量、动量等
转速、角振动等 振动、冲击、质量等
角振动、扭矩、转动惯量等
力 压力 时间 频率
温度 光
重量、应力、力矩等 周期、记数、统计分布等 热容量、气体速度、涡流等 光通量与密度、光谱分布等
13
.》》
电容法测位移
14
.》》
电感法测厚度
15
.》》
霍尔法计数
7
.》》
应变片电阻改变
膜片形变(应变)
压力作用
压力传感器示例
8
.》》
9
.》》
6.1.3 传感器的分类
1.按工作机理分类:根据物理和化学 等学科的原理、规律和效应进行分类
2.按被测量分类:根据输入物理量的 性质进行分类。
3.按敏感材料分类:根据制造传感器 所使用的材料进行分类。可分为半 导体传感器、陶瓷传感器等。
若传感器由r个环节串联而成
x
H1s H2s
y Hns
则 H s H 1 : s H 2 s H r s ( 1 5 )
27
.》》
若传感器由p个环节并联而成
x
H1s
y
H2s
Hns
则 H s H : 1 s H 2 s H p s ( 1 6 )
28
.》》
6.1.5 传感器的基本特征
H sY X s sb a m n s sm n a b m n 1 1 s sn m 1 1 a b 0 0 ( 1 4 )
对 y(t) 进 行 拉 氏 变 换 的 初 始 条 件 是 t≤0 时 ,
y(t)=0。对于传感器被激励之前所有的储能元
件如质量块、弹性元件、电气元件等均符合