尺规作图:画等角、垂线及平行线
如何画出平行线和垂直线

如何画出平行线和垂直线?
画出平行线和垂直线是数学中基本的几何作图技巧,它们有着特定的构造方法。
下面将介绍如何画出平行线和垂直线的步骤。
一、平行线的画法:
1. 给定一条直线l和一点P,在点P处作一条不与直线l相交的直线m。
2. 使用直尺在直线l上任选一点A,然后将直尺放在点A上,调整直尺的位置,使之与直线m相交于点B。
3. 在点B处作一条与直线l平行的直线n。
4. 直线n与直线l就是平行线。
二、垂直线的画法:
1. 给定一条直线l和一点P,在点P处作一条不与直线l相交的直线m。
2. 使用直尺在直线l上任选一点A,并将直尺放在点A上。
3. 使用量角器,在直线m上在点P处作一个角,使之与直尺上的直线l相交于点B。
4. 在点B处作一条与直线l垂直的直线n。
5. 直线n与直线l就是垂直线。
需要注意的是,为了画出准确的平行线和垂直线,需要使用准确的工具(如直尺、量角器)和仔细的操作。
另外,还可以利用已知的平行线或垂直线来画出新的平行线或垂直线。
例如,已知两条平行线l和m,可以通过作一条与l垂直的直线来得到与m平行的线。
熟练掌握画平行线和垂直线的方法,可以更好地解决与几何相关的问题。
画平行线和垂直线是几何学中重要的基本技巧,也是学习更高级几何学和应用数学的基础。
通过实际操作和练习,可以提高准确性和效率。
最新中考数学尺规作图专题复习(含答案)教学文稿

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
五种基本的尺规作图

在建筑设计中,尺规作图被广泛 应用于绘制平面图、立面图和剖 面图等,以确保建筑的准确性和
美观性。
机械工程
在机械制图中,尺规作图是绘制精 确零件图和装配图的重要工具,有 助于提高机械制造的精度和效率。
艺术设计
在美术、设计等艺术领域,尺规作 图也被用于创作具有几何美感的作 品,展现出独特的艺术魅力。
技巧分享
分享一些在尺规作图中常用的技巧和注意事项,如如何准确确定切点、如何绘制 垂直直线等,以提高作图的准确性和效率。同时,也可以介绍一些在实际应用中 可能会遇到的特殊情况和处理方法。
06 综合应用与拓展
五种基本尺规作图的综合应用
作一条已知线段的垂直平分线
利用直尺和圆规,可以准确作出已 知线段的垂直平分线,这在几何作 图中非常有用。
技巧分享
在绘制大圆时,可以将圆规两脚间距离调整得稍大一些,以提高绘制效率;在绘制小圆时 ,则需要更加精细地调整圆规两脚间距离,以确保绘制出的圆足够准确。
注意事项
在实例演示和技巧分享中,要强调保持圆规两脚间距离不变的重要性,以及注意调整圆规 两脚间距离的方法。同时,还可以分享一些在绘制过程中可能遇到的问题和解决方法,例 如如何避免圆规针尖滑动导致绘制出的圆不准确等问题。
五种基本的尺规作图
目 录
• 五种基本尺规作图概述 • 直线与角平分线作图 • 垂直平分线与平行线作图 • 圆的作图 • 圆弧连接与切线作图 • 综合应用与拓展
01 五种基本尺规作图概述
定义与分类
定义
尺规作图是指使用无刻度的直尺和圆 规进行作图的方法,是几何学中的基 本作图技能之一。
分类
五种基本的尺规作图包括作一条线段 等于已知线段、作一个角等于已知角 、作已知角的平分线、作线段的垂直 平分线以及作已知线段的中点。
初中几何尺规作图总结归纳

初中几何尺规作图总结归纳在初中数学学习中,几何部分是一个复杂而又有趣的内容。
其中,几何尺规作图是一个重要的知识点,通过使用尺规和直尺进行各种图形的构建和分析。
在本文中,我将对初中几何尺规作图进行总结和归纳,从理论到实践,为大家提供一个全面的了解。
理论基础几何尺规作图的基础是尺规和直尺。
在进行尺规作图时,我们需要使用一支尺子和一根没有刻度的直尺。
尺规的长度一般为15cm或30cm,在作图时要注意尺规的摆放和固定,以确保精确度和准确性。
作图步骤尺规作图的步骤一般分为三个部分:已知条件、构图、证明。
已知条件:根据题目给出的已知条件,我们首先要明确图形的特征和要求。
这是解决问题的起点,只有明确了已知条件,我们才能正确地进行后续的构图和证明。
构图:根据已知条件,我们需要使用尺规和直尺进行图形的构建。
构图时,要注意使用正确的工具和技巧,例如画垂线、平行线等。
同时,要保持手的稳定和准确的测量,以确保最终的作图结果正确无误。
证明:在完成构图后,我们需要对所得图形进行证明。
证明的过程中,需要运用尺规作图的基本原理和性质,进行推理和论证。
通过合理的推导过程,我们可以得出图形的性质和结论,进一步巩固和应用几何知识。
基本作图方法1. 作点:通过特定的条件,我们可以通过尺规作图的方式,在平面上标出一个点。
常见的作点方法有:作单位线段、作等分线段、作垂直平分线等。
2. 作线段:通过已知条件,我们可以使用尺规和直尺作出特定长度的线段。
作线段的方法包括:作单位线段的倍数、作等线段、作半线段等。
3. 作角:在几何尺规作图中,我们可以通过作线段和作弧的方式来构建特定的角度。
常见的作角方法有:作等角、作垂直角、作等分角等。
4. 作垂线和平行线:作垂线和平行线是几何尺规作图中常用的方法之一。
通过作垂线和平行线,我们可以解决很多与角度和线段有关的问题。
几何尺规作图的应用几何尺规作图在实际生活中有着广泛的应用。
例如,在建筑设计中,我们可以通过几何尺规作图来绘制房屋的平面图和立体图。
平行线的性质及尺规作图(基础)知识讲解

平行线的性质及尺规作图(基础)知识讲解【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、尺规作图1. 定义:尺规作图是指用没有刻度的直尺和圆规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.八种基本作图(有些今后学到):(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.(6)已知一角、一边做等腰三角形.(7)已知两角、一边做三角形.(8)已知一角、两边做三角形.【典型例题】类型一、平行线的性质1.已知:如图,AB∥DC,点E是BC上一点,∠1=∠2,∠3=∠4.求证:AE⊥DE.【思路点拨】过E作EF∥AB,再由条件AB∥DC,可得EF∥AB∥CD,根据平行线的性质可得∠1=∠5,∠4=∠6,然后可得∠5+∠6=∠BEF+∠FEC=90°,进而得到结论.【答案与解析】证明:过E作EF∥AB,∵AB∥DC,∴EF∥AB∥CD,∴∠1=∠5,∠4=∠6,∵∠1=∠2,∠3=∠4,∴∠5+∠6=∠BEF+∠FEC=90°,∴AE⊥DE.【总结升华】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.举一反三:【变式】如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .【答案】140°.【解析】如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为140°.类型二、两平行线间的距离2.如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( ) .A.S1>S2 B.S1=S2 C.S1<S2 D.不确定【答案】B【解析】因为l1∥l2,所以C、D两点到l2的距离相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.【总结升华】三角形等面积问题常与平行线间距离处处相等相结合.举一反三:【变式】如图,在两个一大一小的正方形拼成的图形中,小正方形的面积是10平方厘米,阴影部分的面积为平方厘米.【答案】5 (提示:连接BF,则BF∥AC)类型三、尺规作图3.已知:∠AOB.利用尺规作:∠A′O′B′,使∠A′O′B′=2∠AOB.【思路点拨】先作一个角等于∠AOB,在这个角的外部再作一个角等于∠AOB,那么图中最大的角就是所求的角.【答案与解析】作法一:如图(1)所示,(1)以点O圆心,任意长为半径画弧,交OA于点A′,交OB于点C;(2)以点C为圆心,以CA′的长为半径画弧,•交前面的弧于点B′;(3)过点B′作射线O B′,则∠A′O′B′就是所求作的角.作法二:如图(2)所示,(1)画射线O′A′;(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;(3)以点O′为圆心,以OC的长为半径画弧,交O′A•′于点E;(4)以点E为圆心,以CD的长为半径画弧,交前面的弧于点F,再以点F为圆心,•以CD 的长为半径画弧,交前面的弧于点B′;(5)画射线O′B′,则∠A′O′B′就是所求作的角.【总结升华】本题考查作一个倍数角等于已知角,需注意作第二个角的时候应在第一个角的外部.•作法一在已知角的基础上作图较为简便一些.类型四、平行的性质与判定综合应用4.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180° B.270° C.360° D.540°【答案】C【解析】过点C作CD∥AB,∵ CD∥AB,∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补)又∵ EF∥AB∴ EF∥CD.(平行公理的推论)∴∠DCE+∠CEF=180°(两直线平行,同旁内角互补)又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°【总结升华】这是平行线性质与平行公理的推论的综合应用,利用“两直线平行,同旁内角互补,”可以得到∠BAC +∠ACE+∠CEF=360°.举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【答案】平行。
《用尺规作角》平行线与相交线

相交线的性质
相交线有两个重要的性质,即垂直和平行。垂直是指两条直线相交成90度的角,平行是指两条直线在同一平面上 且不相交。
相交线的尺规作图方法
使用直尺和圆规,先确定两个点,然 后连接这两个点,得到一条直线。
VS
如果需要作另一条与这条直线相交的 直线,只需要在直线上任取一点,然 后使用圆规和直尺分别在这两条直线 上找出距离相等的两个点,连接这两 个点,即可得到与原直线相交的直线 。
电路设计
在电路设计中,平行线和相交线是描述电路 元件和信号传输的基础。例如,导线和元件 之间通常是平行线连接,而信号的传输则是 在导线和元件之间按照特定的时序进行相交
线连接。
05
总结与展望
Chapter
总结平行线和相交线的尺规作图方法及其应用
平行线的尺规作图方法 准备工具:直尺、圆规、铅笔、橡皮 确定已知直线和任意一点,作为画平行线的基准
对于平行线和相交线的判定方法和技巧,也需要不断探索 和创新,以解决更为复杂和实际的几何问题。
随着科技的不断进步和创新,平行线和相交线的应用前景 也越来越广阔。
在人工智能、机器学习、图像处理等领域中,平行线和相 交线也扮演着重要的角色,对于提高算法的精度和效率具 有重要作用。
THANKS
感谢观看
平行线的性质
平行线具有传递性、同位角相等、内错角相等、同旁内角互补等性质。
平行线的尺规作图方法
确定已知直线
首先确定一条已知直线,作为基 础直线。
01
02
确定距离
在垂线上确定与已知直线距离相 等的两点,这个距离就是平行线 的宽度。
03 04
找到已知直线的垂线
(完整版)中考数学尺规作图专题复习(含答案)

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
尺规作图与平行线

铁路是
交通运输 建设的重点,便于国计民生,成为国民经济
发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 路建成通车。 1888年,宫廷专用铁路落成。 至胥各庄铁 开平
3.发展
(1)原因:
①甲午战争以后列强激烈争夺在华铁路的 ②修路成为中国人 (2)成果:1909年 权收归国有。 4.制约因素 政潮迭起,军阀混战,社会经济凋敝,铁路建设始终未入 修筑权 。
尺规作图与平行线
基本作图归纳:
1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作角的平分线;
4、作线段的中垂线;
5、过直线上一点作直线的垂线;
过直线外一点作直线的垂线.
典型例题: 例1:如图,有一破残的轮片,现要制作一 个与原轮片同样大小的圆形零件,请你 根据所学的有关知识,设计一种方案,确 定这个圆形零件的半径.
4.已知△ABC(如图),∠B=∠C=30°。请设计 三种不同的分法,将△ABC分割成四个三角形, 使得其中两个是全等三角形,而另外两个是相 似但不全等的直角三角形.请画出分割线段, 标出能够说明分法的所得三角形的顶点和内角 度数(或记号),并在各种分法的空格线上填空。 分法二:分割后所得的四个三角形中 △_____≌△____,Rt△_____∽ Rt△______
★★★ 典题精讲
例4 如图,已知:∠ADE=∠B, FG⊥AB, ∠EDC=∠GFB, 求证:CD⊥AB
4.已知△ABC(如图),∠B=∠C=30°。请设计 三种不同的分法,将△ABC分割成四个三角形, 使得其中两个是全等三角形,而另外两个是相 似但不全等的直角三角形.请画出分割线段, 标出能够说明分法的所得三角形的顶点和内角 度数(或记号),并在各种分法的空格线上填空。 分法一:分割后所得的四个三角形中 △_____≌△____,Rt△_____∽ Rt△______
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
2、设计一个漂亮的图案。
①过P作PQ⊥a于Q,
a
活动1:你有多少种画平行线的方法?
方法2:根据“同一平面内,垂直同一直线的两条直 线互相平行”.
P
如,过P点作直线a的平行线。
解:作法, ①过P作PQ⊥a于Q,
a
Q
②过P作直线b⊥PQ于P,
活动1:你有多少种画平行线的方法?
方法2:根据“同一平面内,垂直同一直线的两条直 线互相平行”.
方法1:运用平行线的判定定理1.
如,过P点作直线a的平行线。
P
解:作法, ①过P直线b与a相交,
a
1
②以P为顶点,作∠1的同位角∠2,
且∠2=∠1的同位角,
活动1:你有多少种画平行线的方法? b
方法1:运用平行线的判定定理1.
如,过P点作直线a的平行线。
P
解:作法, ①过P直线b与a相交,
a
1
②以P为顶点,作∠1的同位角∠2,
A’
复习2:过一点画已知直线的垂线;
P a
a P
复习2:过一点画已知直线的垂线;
P a
a P
复习2:过一点画已知直线的垂线;
P a
a P
复习2:过一点画已知直线的垂线;
P a
a P
复习2:过一点画已知直线的垂线;
P a
a P
复习2:过一点画已知直线的垂线;
P a
a P
活动1:你有多少种画平行线的方法? b
5 教学活动
教学内容:(P32-33)
1、运用平行线判定方法来画平行线; 2、运用平移的方法来设计美丽的图案.
复习1:画一个等于已知角的角?
B
O
A O’
A’
复习1:画一个等于已知角的角?
B
O
A O’
A’
复习1:画一个等于已知角的角?
B
O
A O’
A’
复习1:画一个等于已知角的角?
B
B’
O
A O’
活动1:你有多少种画平行线的方法?
方法2:根据“同一平面内,垂直同一直线的两条直 线互相平行”.
P
如,过P点作直线a的平行线。
解:作法,
①过P作PQ⊥a于Q,
a
活动1:你有多少种画平行线的方法?
方法2:根据“同一平面内,垂直同一直线的两条直 线互相平行”.
P
如,过P点作直线a的平行线。
解:作法,
P
解:作法, ①过P直线b与a相交,
a
1
②以P为顶点,作∠1的同位角∠2,
且∠2=∠1的同位角,
活动1:你有多少种画平行线的方法? b
方法1:运用平行线的判定定理1.
2
如,过P点作直线a的平行线。
P
c
解:作法, ①过P直线b与a相交,
a
1
②以P为顶点,作∠1的同位角∠2,且∠2=∠1的同位角,源自图中直线c∥a,就是所求。
P
如,过P点作直线a的平行线。
解:作法, ①过P作PQ⊥a于Q,
a
Q
②过P作直线b⊥PQ于P,
活动1:你有多少种画平行线的方法?
方法2:根据“同一平面内,垂直同一直线的两条直
线互相平行”.
如,过P点作直线a的平行线。
P
b
解:作法, ①过P作PQ⊥a于Q,
a
Q
②过P作直线b⊥PQ于P,
图中直线b∥a,就是所求。
且∠2=∠1的同位角,
活动1:你有多少种画平行线的方法? b
方法1:运用平行线的判定定理1.
如,过P点作直线a的平行线。
P
解:作法, ①过P直线b与a相交,
a
1
②以P为顶点,作∠1的同位角∠2,
且∠2=∠1的同位角,
活动1:你有多少种画平行线的方法? b
方法1:运用平行线的判定定理1.
如,过P点作直线a的平行线。
自学:(P32)张明和王玲的作法。 你还有其他方法吗?动手试一试,与同学们交流。
活动2:设计美丽的图案 图中的每一匹马是怎样得到的? 整幅图画是怎样得到的? 你还能用平移设计一些图案吗?
归纳小结
通过本节课的学习,你学会了哪几种画平行线的 方法?
【布置作业】
1、利用尺规作图,用至少两种方法画已 知直线的平行线。