汽车各系统工作原理
车载信息系统的工作原理

车载信息系统的工作原理车载信息系统,也称为车载多媒体系统,是现代汽车中的一个重要组成部分。
它通过集成多种技术,提供音频、视频、导航、通信等功能,为驾驶员和乘客提供更加便捷、智能的驾驶体验。
车载信息系统的工作原理可以分为硬件和软件两个方面来解释。
1.硬件方面车载信息系统的硬件包括主处理器、内存、存储器、计算机娱乐系统等多种设备。
主处理器是车载信息系统的核心,它能够运行内置软件,并解决各种操作指令。
内存提供了必要的RAM和ROM内存,RAM主要用于运行应用程序和临时存储数据,ROM则主要存储车载信息系统的操作系统和应用程序。
存储器主要用来存储音乐、视频、图片等媒体文件。
计算机娱乐系统由多个部件组成,包括音响、触控屏幕、按钮、显示器等。
这些设备共同工作,完成车载信息系统的功能。
2.软件方面车载信息系统的软件包括操作系统、应用程序和驱动程序。
操作系统通常是专业设计的RTOS(Real Time Operating System),它能够在系统资源有限的情况下,高效地管理CPU、内存和硬件资源。
操作系统还提供了通信接口,支持通信功能,例如WiFi和蓝牙连接等。
应用程序是车载信息系统的核心元素,包括音乐播放器、视频播放器、GPS导航、在线广播、车辆控制等。
这些应用程序能够高效地协调、管理和利用系统内资源,最大化地提供服务和更好的用户体验。
驱动程序是将硬件连接到操作系统的桥梁。
它们直接与硬件进行交互,从而允许操作系统读取和写入信息。
例如,驱动程序可以连接到音箱,指示音响系统何时播放音频。
总之,车载信息系统是一个复杂的系统。
它通过硬件和软件的协作,可以给驾驶员和乘客提供先进的音频、视频、导航、通信等功能。
无论是深度融合还是多项集成,取决于制造商。
但其中,最重要的是为人们提供安全,舒适和愉悦的驾驶经历,这是车载信息系统的最终目标。
汽车工作原理

汽车工作原理汽车工作原理简述汽车作为一种交通工具,具有独特的工作原理。
它主要通过内燃机的工作来驱动轮胎转动,从而推动汽车前进。
下面我们来详细介绍汽车的工作原理。
1. 内燃机工作原理:汽车通常使用的是燃油内燃机,其工作原理是通过喷油器喷入混合气体(燃油和空气的混合物)到汽缸内,然后点火产生火花,使混合气体爆炸,产生的火焰驱动活塞运动,从而带动曲轴转动。
曲轴通过连杆将活塞运动转化为轮胎的旋转动力。
2. 传动系统:传动是指将发动机产生的动力传递到汽车轮胎上,实现车辆前进的过程。
传动系统一般由离合器、变速器和驱动轴组成。
离合器用于连接和断开发动机和变速器之间的传动;变速器用于改变发动机转速与行驶速度的比例;驱动轴则将变速器的输出动力传递到汽车的驱动轮上。
3. 制动系统:制动系统用于控制汽车运动过程中的速度和停车。
主要有两种制动系统:机械制动系统和液压制动系统。
机械制动系统通过人力或电动力量传递制动力,例如手刹和驻车制动;液压制动系统利用液压原理传递制动力,例如脚刹和盘刹。
4. 点火系统:点火系统用于在汽缸内产生火花,引燃混合气体。
它包括了点火线圈、点火塞、蓄电池和点火模块等部件。
点火塞通过电流产生火花,引燃混合气体使其爆炸。
点火系统的运作一般由发动机控制单元(ECU)进行控制。
5. 车辆电气系统:汽车还有一个重要的电气系统,包括蓄电池、发电机、线路和开关等。
蓄电池用于存储电能,发电机则负责向蓄电池充电。
电气系统提供电力给汽车的各个部件,例如起动机、灯光、报警器、音响等。
总结:汽车的工作原理主要包括内燃机的工作、传动系统的作用、制动系统的实现、点火系统的引燃和车辆电气系统的供电。
这些系统相互配合,使汽车能够正常运行和行驶。
汽车各系统工作原理共11页

发动机工作原理概述汽车的引擎是汽车的动力源泉,就像人的心脏一样重要。
所以,一部车引擎的特性可以作为决定整部车性能的重要指标。
也就是说,如果一部车的引擎非常出色,那么这部车的性能也一定很出色。
汽车的引擎是通过燃油和空气所形成的混合气体燃烧、爆炸来产生动力的。
这一切的物理、化学变化都是在燃烧室内进行的。
首先,起动机带动引擎的曲轴运动,而曲轴通过特有的曲柄连杆机构带动气缸内的活塞上下运动。
在活塞向下运动时,气缸内产生了真空效应,同时外界的新鲜空气通过空气过滤器被吸入到进气腔,并通过此时开启的进气门而被引入到气缸内。
在空气进入气缸的同时,燃油也通过喷油嘴以绝对雾化状态喷射到气缸的燃烧室内(目前多数喷射引擎都是将燃油喷射到进气门处,然后与空气一起进入到气缸内)并与空气形成混合气体。
在混合气体形成同时,汽缸的燃烧室内火花塞开始打火,形成高达几万伏特的高压电火花,迅速点燃混合气体,混合气体发生爆炸,推动活塞向下运动。
这时气缸的排气们开启,将燃烧后的废气引入到排气管内,通过消音器被排放到空气中。
在活塞运动到下止点后,一个完整的工作流程结束。
由于运动的特性及曲柄连杆机构的特性,活塞会再度向上运动,同时开始第二个工作流程。
通过上图我们不难了解整个运动的过程(由于是剖视图,气缸未标出,活塞位于气缸内,活塞到达运动的上止点时与缸盖之间的空间为燃烧室),正是因为引擎的多个气缸内的活塞有顺序的交替运汽车总体工作原理概述可以说,汽车是当代科学与艺术的结晶。
从汽车的引擎启动开始就已经发生了涉及到物理、化学、机械等数不清的多种变化,因此,汽车的总体工作是一个非常复杂的过程。
由于汽车行业的飞速发展,所以,我们仅对当今非常普遍的采用燃油喷射(EFI)引擎的汽车予以了解。
在驾驶者通过钥匙启动点火开关时:此时点火开关迅速接通蓄电池与起动机,起动机将蓄电池的电能转化为机械能,起动机的前端齿轮啮合引擎曲轴后方的大飞轮旋转实现发动机的运转。
在引擎正常运转以后,起动机停止工作。
车载系统工作原理

车载系统工作原理车载系统工作原理随着汽车的普及,车载系统已成为车辆不可或缺的组成部分之一,而车载系统的工作原理是什么呢?下面详细介绍车载系统的工作原理。
一、车载系统的概念车载系统是指安装在车辆中的各种电子设备以及它们之间的相互连接方式。
车载系统包括:车载音响、导航系统、综合控制系统等。
二、车载系统的组成部分1.车载音响系统车载音响系统是指安装在车辆中的音响设备。
它可以将声音转换为电信号,并通过优质扬声器将电信号转换为声音。
车载音响系统的核心是CD机和收音机。
当驾驶员从CD机选择音乐时,CD机会将数字音频信号发到音频控制器。
音频控制器对音频进行放大,再传送到扬声器。
当驾驶员调整音量时,音频控制器会调整音频信号的放大倍数。
2.导航系统导航系统既可以通过GPS来定位车辆所在位置,也可通过车载电子地图来指引驾驶员,使驾驶员了解最近的交通信息,路线情况。
车载导航系统的核心是GPS接收器和导航电路。
GPS接收器接收卫星信号,确定车辆的位置,然后通过导航电路计算出最佳路线。
3.综合控制系统综合控制系统可以控制汽车电子设备,包括车窗、车灯、天窗和空调等。
综合控制系统的核心是中央控制器,中央控制器接收驾驶员的指令并控制电子设备运转。
三、车载系统的工作原理车载系统的工作原理是系统组成部分之间的信息传递与交互。
车载系统的信息传递方式一般有两种:CAN总线和LIN总线。
1.CAN总线CAN(Controller Area Network)总线是汽车电子系统中用于传递信息的总线。
每个车载系统设备都有一个唯一的地址,通过CAN总线向其他设备发送信号。
CAN总线是双向通信的,可确保车载系统中每个设备之间实时交换信息。
2.LIN总线LIN(Local Interconnect Network)总线是一种用于在汽车电子系统中连接低速模块的总线。
LIN总线不支持双向通信,但是可以通过主从模式实现信息交换。
主设备会向从设备发送指令,然后从设备会响应该指令。
汽车的工作原理是什么

汽车的工作原理是什么
汽车的工作原理是将燃料转化为能量,通过传输系统将能量传递到车轮上,从而推动汽车前进。
下面是汽车工作的基本原理:
1. 发动机:汽车发动机是汽车的动力源。
大多数汽车使用内燃机,其中最常见的是四冲程汽油发动机。
它通过燃烧混合燃料(汽油和空气)来产生能量。
汽车还可以使用柴油、天然气、电动机和混合动力系统等其他类型的发动机。
2. 燃烧过程:在汽车的发动机中,燃油与空气在发动机的气缸中混合,并在点火后发生燃烧。
燃烧过程产生的爆炸能量推动气缸内的活塞运动。
3. 活塞运动:发动机内的活塞在爆炸过程中沿着气缸上下运动。
这种运动将线性动能转化为旋转动能。
4. 曲轴和连杆:活塞通过连杆与曲轴相连接。
曲轴将活塞的上下直线运动转化为曲轴的旋转运动。
5. 传动系统:曲轴旋转的动力通过传动系统传递到车轮上。
传动系统通常包括离合器、变速器和驱动轴。
离合器用于在换挡时分离发动机和传动系统。
变速器可以通过不同的齿轮比例调整车辆的速度和扭矩输出。
驱动轴将转动力传递到车轮上。
6. 轮胎:车轮连接在驱动轴上,通过与地面的摩擦来产生牵引力。
这使得车辆能够前进。
7. 控制系统:汽车还配备了各种控制系统,包括刹车系统、转向系统、照明系统、空调系统等。
这些系统通过控制车辆的各个部件来实现驾驶员的操作。
总之,汽车的工作原理是将燃料的化学能转化为机械能,通过传动系统将机械能传递到车轮上,推动汽车前进。
同时,汽车还需要各种控制系统来实现安全和舒适的驾驶体验。
汽车电控系统工作原理与结构

汽车电控系统工作原理与结构汽车电控系统是指用电子技术控制汽车运行和操作的系统。
它是汽车电子技术的重要应用,通过精确控制发动机、传动系统、制动系统、灯光系统等汽车的相关部件,提高汽车的性能、安全性和舒适性。
本文将从工作原理和结构两个方面,详细介绍汽车电控系统的相关知识。
一、工作原理1.传感器感知:汽车电控系统通过传感器感知车身的各种物理、化学和电学参数。
例如,氧传感器能够感知排气中的氧含量,进而判断发动机的燃烧情况;油温传感器能够感知发动机的油温,从而为油路提供适当的油量和油压。
2.信号转化:传感器将感知到的参数转化为电信号,从而为后续的电子元件处理和传输提供基础。
例如,氧传感器将氧含量转化为电压信号,通过电缆传输给电控单元。
3.信号处理:电控单元作为汽车电控系统的核心部件,接收各个传感器传来的电信号,进行数字化处理,计算各参数的值,并根据预先设定的控制策略制定相应的控制命令。
例如,在发动机控制方面,电控单元根据氧传感器的信号计算空燃比,再根据设定的控制策略调整喷油时间和量。
4.执行器控制:执行器根据电控单元发送的控制信号,控制相应部件的工作状态。
例如,喷油器根据电控单元的命令,调节燃油的喷入量和喷射时间,从而实现发动机功率和排放控制。
二、结构1.感知系统:感知系统由各种传感器组成,用于感知控制参数。
例如,汽车发动机控制系统常用的传感器包括氧传感器、油温传感器、速度传感器等。
2.信号调理系统:信号调理系统用于将传感器感知到的信号进行处理和转化。
例如,模拟信号经过模拟电路处理后,转化为数字信号,再传输给电控单元进行处理。
3.控制器:控制器是整个电控系统的核心部件,负责接收和处理感知到的信号,并根据设定的控制算法制定控制策略。
控制器一般由微处理器和相应的存储器组成。
4.执行器:执行器根据控制器的命令,控制汽车各个部件的工作状态。
例如,喷油器根据控制器的控制信号,调整喷油时间和量;制动系统根据控制器的信号,调节制动力度。
汽车导航系统工作原理

汽车导航系统工作原理汽车导航系统是我们常见的一种车载设备,通过使用卫星定位和地图数据,帮助驾驶员找到最佳路线并提供导航指引。
本文将介绍汽车导航系统的工作原理,包括卫星定位原理、地图数据处理和导航指引算法。
一、卫星定位原理汽车导航系统使用全球定位系统(GPS)来确定车辆的准确位置。
GPS系统由一组卫星组成,这些卫星在地球轨道上定期发送定位信号。
汽车内部的接收器接收这些信号,并计算出车辆的经度、纬度和海拔高度信息。
卫星定位的原理是基于三角测量法。
汽车内部的接收器接收到来自至少四颗卫星的信号,通过测量信号的传播时间和卫星位置信息,可以得出车辆的准确位置。
这个准确位置信息可以用来显示车辆在地图上的位置,并计算出最佳路线。
二、地图数据处理导航系统中的地图数据是非常重要的。
地图数据包括道路信息、道路等级、路口标志、交通流量等。
地图数据通常包括数字地图和语音导航指令,它们一起提供给驾驶员详细的导航信息。
地图数据的处理是通过导航软件来实现的。
导航软件首先将汽车的位置信息与地图数据进行比对,确定车辆在地图上的准确位置。
然后,导航软件会根据用户设置的导航目的地,计算出最佳路线,并将导航指引显示在屏幕上。
这些导航指引包括转向提示、车道指示和预估到达时间等。
地图数据通常是预先加载到导航系统的存储器中。
对于在线导航系统,地图数据可以通过互联网实时下载。
导航软件还会定期更新地图数据,以保证驾驶者获取到最新的道路信息。
三、导航指引算法汽车导航系统的导航指引算法是为了提供最佳的行驶路线和导航指引。
导航指引算法会考虑车辆的当前位置、导航目的地、交通信息以及用户的偏好。
通过这些信息,导航指引算法会选择最佳的路线,并向驾驶员提供导航指引。
导航指引算法通常包括以下几个步骤:1. 路径规划:根据车辆的位置和导航目的地,计算出最佳的行驶路线。
这个过程需要考虑道路等级、交通流量以及用户的偏好。
2. 车道指示:提供准确的车道指示,帮助驾驶员在复杂路口和高速公路上正确变道。
汽车运行原理

汽车运行原理
汽车运行的原理是由发动机驱动车辆的动力系统,通过燃料的燃烧来产生能量。
发动机内燃机的工作原理是利用可燃燃料与氧气的化学反应,经过一系列的动力传递装置,将能量转化为机械能,进而推动车辆运动。
发动机内部由多个活塞组成,活塞与曲柄连杆机构相连。
当燃油混合气进入活塞上方的汽缸时,活塞在火花塞的点火下向下运动。
活塞的运动带动曲柄轴转动,将线性运动转化为旋转运动。
曲轴的旋转运动通过连杆传递给车轮,推动车辆前进。
同时,发动机还需要供应空气和燃料来进行燃烧。
空气通过进气道进入发动机,并通过气缸内的滤清器和油箱供应系统供应燃油到燃烧室中。
燃烧室内的火花塞通过电弧点火,将燃料点燃,产生高温和高压气体。
高温高压气体的爆发推动活塞向下运动,并带动曲柄轴转动,继而驱动车轮运动。
随着多个活塞的运动,发动机能够连续地工作,提供持续的动力输出。
除了发动机,汽车的运行还涉及到其他系统的配合。
例如,冷却系统用于保持发动机的工作温度,润滑系统用于减少发动机各部件之间的摩擦损耗,电力系统用于提供电力给车辆的电子设备等。
总的来说,汽车的运行原理是通过发动机内燃机的燃烧作用,
将化学能转化为机械能,驱动车辆前进。
各个系统的协调工作保证了汽车能够高效稳定地运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发动机工作原理概述汽车的引擎是汽车的动力源泉,就像人的心脏一样重要。
所以,一部车引擎的特性可以作为决定整部车性能的重要指标。
也就是说,如果一部车的引擎非常出色,那么这部车的性能也一定很出色。
汽车的引擎是通过燃油和空气所形成的混合气体燃烧、爆炸来产生动力的。
这一切的物理、化学变化都是在燃烧室内进行的。
首先,起动机带动引擎的曲轴运动,而曲轴通过特有的曲柄连杆机构带动气缸内的活塞上下运动。
在活塞向下运动时,气缸内产生了真空效应,同时外界的新鲜空气通过空气过滤器被吸入到进气腔,并通过此时开启的进气门而被引入到气缸内。
在空气进入气缸的同时,燃油也通过喷油嘴以绝对雾化状态喷射到气缸的燃烧室内(目前多数喷射引擎都是将燃油喷射到进气门处,然后与空气一起进入到气缸内)并与空气形成混合气体。
在混合气体形成同时,汽缸的燃烧室内火花塞开始打火,形成高达几万伏特的高压电火花,迅速点燃混合气体,混合气体发生爆炸,推动活塞向下运动。
这时气缸的排气们开启,将燃烧后的废气引入到排气管内,通过消音器被排放到空气中。
在活塞运动到下止点后,一个完整的工作流程结束。
由于运动的特性及曲柄连杆机构的特性,活塞会再度向上运动,同时开始第二个工作流程。
通过上图我们不难了解整个运动的过程(由于是剖视图,气缸未标出,活塞位于气缸内,活塞到达运动的上止点时与缸盖之间的空间为燃烧室),正是因为引擎的多个气缸内的活塞有顺序的交替运汽车总体工作原理概述可以说,汽车是当代科学与艺术的结晶。
从汽车的引擎启动开始就已经发生了涉及到物理、化学、机械等数不清的多种变化,因此,汽车的总体工作是一个非常复杂的过程。
由于汽车行业的飞速发展,所以,我们仅对当今非常普遍的采用燃油喷射(EFI)引擎的汽车予以了解。
在驾驶者通过钥匙启动点火开关时:此时点火开关迅速接通蓄电池与起动机,起动机将蓄电池的电能转化为机械能,起动机的前端齿轮啮合引擎曲轴后方的大飞轮旋转实现发动机的运转。
在引擎正常运转以后,起动机停止工作。
此时,引擎控制计算机(在钥匙插入点火开关并旋转时已经开始工作)同时控制燃油泵通过油箱向引擎输送燃油、引擎点火线圈在适当时机点火。
因为引擎的运转,气缸内的活塞已经高速的在气缸内上下运动,同时产生真空效应将外界的新鲜空气通过空气流量计和进气门引入到气缸内。
在空气进入到气缸同时,引擎控制计算机所控制的燃油也通过喷油嘴喷注到气缸内并与空气形成混合气体。
在混合气体形成后,计算机控制点火线圈通过火花塞迅速在气缸内点燃混合气体,产生巨大能量的爆炸将活塞向下推动。
在汽车的怠速阶段:引擎多个气缸内的活塞在混合气爆炸的推动下有顺序的交替上下运动,带动引擎曲轴的高速转动,这样就形成了汽车的最原始动力。
这时曲轴输出的原始动力将通过离合器(手排挡方式的变速箱)传递到变速箱。
在怠速阶段变速箱应处于空挡状态,此时,引擎传递过来的原始动力不会通过变速箱传递到车轮,而是在变速箱内部转化为热能。
这样就形成了汽车的停车怠速。
在此状态下驾驶者通过油门对发动机所做出的任何动作都不会导致汽车运行。
在汽车的行驶阶段:在怠速过程中踩下离合器(使变速箱与引擎的原始动力脱离)时,将档位操纵杆推入到相应的档位上,再松开离合器(使变速箱接受引擎的原始动力)。
这时,由引擎所传递的动力在变速箱内通过不同档位的齿轮比转换后,通过传动轴传递到车轮上,就形成了汽车的行驶运动。
同时在行驶时按照需要,可以变换不同的档位使动力动态的传递到车轮上来满足行驶的需求。
传动系工作原理概述汽车传动系的基本功用是将引擎输出的动力传输给驱动车轮。
按结构和传动介质分,汽车传动系的型式可分为机械式、液力机械式、静液式(容积液压式)、电力式等。
其实通俗的说,传动系主要分为离合器、变速箱(手动或自动)、传动轴、差速器等几大部分。
下面我们就这几大部分分别解释。
离合器——离合器其实主要是衔接引擎与变速箱的动力(自动排挡方式的变速箱不存在离合器),同时保证变速箱档位切换时动力的平稳输出。
离合器的主要部件是摩擦片,在汽车正常行驶时,摩擦片与引擎曲轴的大飞轮紧密结合,这时引擎动力通过离合器摩擦片传输给变速箱,当我们踩下离合器时,摩擦片与大飞轮分开,此时引擎动力被切断,我们可以自由切换档位。
这也就是为什么我们不踩下离合器而不能切换档位的原因。
(在变速箱接受引擎动力期间,变速箱内相应齿轮高速运转,如果不踩下离合器而强行切换档位将导致变速箱齿轮损坏,所以,一般变速箱都设有换档同步装置)。
变速箱——变速箱内设有多组不同比率的齿轮对应不同的档位(根据不同的齿轮比设定),将引擎输出的动力分别转化成高扭矩或者高转速的型式,来满足驾驶者的行驶需求。
一般来说低档位就会输出很高的扭矩,使汽车获得很高的起动或者攀爬力量;而高档位就会输出很高的转速,使汽车获得很高的行驶速度。
因为汽车在静止到起动行驶需要很高的扭矩,所以我们一般都是开始切换到低档位让汽车起动,在起动行驶以后可以逐步切换到高档位来获得行驶速度。
法拉利V8引擎+变速箱传动轴——传动轴在变速箱接受到引擎的动力后,将动力分别输送给驱动车轮。
差速器——差速器这个字眼对于一些人来说可能是比较陌生的,但是它却是传动系统中非常重要的一部分。
在汽车转向的时候,由于变速箱输出的动力是单一的,所以分配到每个驱动车轮的动力应该是一致的。
这就导致一种现象,如果2边驱动车轮转速一致,是不可能实现转向的,正确的应该是靠内侧的转向车轮的转速应该低于外侧车轮的转速,才可能实现转向。
因此在汽车的2边驱动车轮之间都设有差速器,来实现转向时内外侧驱动车轮的转速差。
由图片可以看出,汽车动力的传递方向:引擎—离合器—变速箱—传动轴—驱动车轮行驶工作原理概述汽车行驶系的功能是接受由引擎经传动系输出的转矩,并通过驱动轮与路面间附着作用,产生路面对汽车的牵引力来保证汽车的正常行驶;传递并承受路面作用于车轮的各向反力及其形成的力矩;此外,行驶系尽可能缓和不平路面对车身造成的冲击和震动,保证汽车行驶平稳性,并且与汽车转向系配合工作,实现汽车行驶方向的正确控制。
汽车行驶系主要由车架、车桥、车轮和悬架组成,如图所示:宝马528i行驶机构由上图可以看出,这是一部典型的引擎前置后轮驱动汽车。
引擎动力经长长的传动轴传输给后车轮,实现后轮驱动。
这样的布局方式有利于提高汽车高速行驶的稳定性能。
车架——现代汽车绝大多数都具有作为整车骨架的车架,用来支撑连接汽车的各零部件,并承受来自车内外的各种载荷。
当今很多数跑车都采用以钢管焊接的桁架式车架,这种立体结构车架兼有车架和车身的作用。
也有部分轿车和大型客车取消了车架以车身来代替车架的作用,例如上图的宝马528i轿车。
车桥——主要功用是来传递车架与车轮之间的各方向作用力,目前几乎所有的轿、跑车都是断开式车桥,与独立悬架配合使用(一般重型机车使用整体式车桥)。
车桥还包括转向桥、转向驱动桥、支持桥(上图驱动桥为支持驱动桥,不具备转向功能)。
一般来说,全轮驱动的引擎前置跑车的前车桥都为转向驱动桥,即负责转向又起驱动作用。
在汽车行驶过程中驾驶者转动方向盘就是通过相应传动装置控制转向结使车轮左右摆动的。
而汽车行驶过程中的车轮自动回正特性是通过主销后倾角、主销内倾角、前轮外倾角和前轮前束这几个定位参数实现的,由于涉及到复杂的物理特性,这里暂不作介绍。
车轮——车轮主要由轮毂与轮胎组成。
在当今高速跑车的性能指标中,轮胎是至关重要的,它会体现跑车高速行驶时的抓地特性。
在正常使用汽车过程中,本着安全原则应选择抓地性强的轮胎,而在要求高速漂移过弯的拉力赛或者GT房车大赛中就要选择抓地性稍弱的轮胎来实现甩尾过弯。
例如雷诺的Clio Trophy赛车所采用的米其林Slick轮胎,在未预热前几乎没有抓地力。
悬架——悬架系统主要部件为避震器,主要是以液压控制。
汽车行驶的稳定性和舒适性主要取决于这个部件。
超级跑车的悬架及避震器都是经过绝对精密的测试与设定的,主要还可以有效的降低车身高度来提高车身的空气动力性。
所以,悬架系统的调校是十分复杂的。
另外,一些高级房车还采用了气压控制的悬架系统,主要由计算机根据车身高度控制气体的动态变化,从而提高车内驾驶者及乘坐者的舒适性。
转向工作原理概述汽车转向系的功能是改变或恢复汽车的行驶方向,满足驾驶者的行驶需求。
转向系根据转向能源的不同可分为机械转向系和动力转向系两大类。
由于目前绝大多数轿、跑车都采用动力转向系,所以本文着重对动力转向机构进行介绍。
动力转向机构是在机械转向系统基础上增加了液压助力系统HPS(hydraulic power steering),它是建立在机械系统的基础之上的,额外增加了一个液压系统,一般有油泵、V形带轮、油管、供油装置、助力装置和控制阀。
由于其工作可靠、技术成熟至今仍被广泛应用。
现在液压助力转向系统在实际中应用的最多,根据控制阀形式有转阀式和滑阀式之分。
这个助力转向系统最重要的新功能是液力支持转向的运动,因此可以减少驾驶员作用在方向盘上的力。
1.方向盘2.转向轴3.转向中间轴4.转向油管5.转向油泵6.转向油罐7.转向节臂8.转向横拉杆9.转向摇臂 10.整体式转向器 11.转向直拉杆 12.转向减振器上图为液压式动力转向系统示意图。
其中属于转向加力装置的部件是:转向油泵5、转向油管4、转向油罐6 以及位于整体式转向器10内部的转向控制阀及转向动力缸等。
当驾驶员转动转向盘1时,转向摇臂9摆动,通过转向直拉杆11、横拉杆8、转向节臂7,使转向轮偏转,从而改变汽车的行驶方向。
与此同时,转向器输入轴还带动转向器内部的转向控制阀转动,使转向动力缸产生液压作用力,帮助驾驶员转向操纵。
这样,为了克服地面作用于转向轮上的转向阻力矩,驾驶员需要加于转向盘上的转向力矩,比用机械转向系统时所需的转向力矩小得多。
近年来,随着电子技术的不断发展,转向系统中愈来愈多的采用电子器件。
相应的就出现了电液助力转向系统。
电液助力转向可以分为两大类:电动液压助力转向系统EHPS(electro-hydraulic power steering)、电控液压助力转向ECHPS(electronically controlled hydraulic power steering)。
EHPS是在液压助力系统基础上发展起来的,其特点是原来有发动机带动的液压助力泵改由电机驱动,取代了由发动机驱动的方式,节省了燃油消耗。
ECHPS 是在传统的液压助力转向系统的基础上增加了电控装置构成的。
电液助力转向系统的助力特性可根据转向速率、车速等参数设计为可变助力特性,使驾驶员能够更轻松便捷的操纵汽车。
而当今高级轿车更多采用了更先进的电动转向系统EPS(Electric Power Steering),主要由机械和电控电机组成,工作时由计算机通过力矩的计算来控制电机运动实施转向。