医用电介质强度测试仪维护保养规程

医用电介质强度测试仪维护保养规程

实验29-铁电性能测量实验讲义全

铁电体电滞回线的测量 铁电材料是一类具有自发极化,而且其 自发极化矢量在外电场作用下可以翻转的 电介质材料,它具有优异的铁电、压电、介 电、热释电及电光性能,在非挥发性铁电存储器、压电驱动器、电容器、红外探测器和电光调制器等领域有重要的应用。铁电材料的主要特征是具有铁电性,即极化强度与外 电场之间具有电滞回线的关系,如图1所示。 电滞回线是铁电体的重要特征和重要判据 之一,通过电滞回线的测量可以得到自发极化强度P s 、剩余极化强度P r 、矫顽场E c 等重 要铁电参数,理解铁电畴极化翻转的动力学过程。 【实验目的】 1. 了解铁电测试仪的工作原理和使用方法。 2. 掌握电滞回线的测量及分析方法。 3. 理解铁电材料物理特性及其产生机理。 【实验仪器】 本实验采用美国Radiant Technology 公司生产的RT Premier Ⅱ型标准铁电测试仪,该仪器可以测量铁电材料的电滞回线、漏电流、疲劳、印痕、PUND (Positive Up Negative Down)等性能,而且配备了变温系统和热释电软件还可以测量热释电性能。 【实验原理】 铁电体的自发极化强度并非整个晶体为同一方向,而是包括各个不同方向的自发极化区域,其中具有相同自发极化方向的小区域叫做铁电畴。电滞回线的产生是由于铁电晶体中存在铁电畴。铁电体未加电场时,由于自发极化取向的任意性和热运动的影响,宏观上不呈现极化现象。当加上外电场大于铁电体的矫顽场时,沿电场方向的电畴由于新畴核的形成和畴壁的运动,体积迅速扩大,而逆电场方向的电畴体积则减小或消失,即逆电场方向的电畴转化为顺电场方向,因此表面电荷Q (极化强度P )和外电压V (电场强度 E )之间构成电滞回线的关系。另外由于铁电体本 身是一种电介质材料,两面涂上电极构成电容器 之后还存在着电容效应和电阻效应,因此一个铁 电试样的等效电路如图2所示。其中C F 对应于电 畴反转的等效电容,C D 对应于线性感应极化的等 效电容,R C 对应于试样的漏电流和感应极化损耗 相对应的等效电阻。如果在试样两端加上交变电图2 铁电测试等效电路图 O +E c -P r P E +P r -E c P S 图1 铁电体的电滞回线

电介质的电学性能及测试方法

电介质材料的电性包括介电性、压电性、铁电性和热释电性等。 1介电性、 介质在外加电场时会产生感应电荷而削弱电场,介质中电场与原外加电场(真空中) 的比值即为相对介电常数,又称诱电率,与频率相关。介电常数是相对介电常数与真空中绝对介电常数乘积。 介电常数又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。对介电常数越小即某介质下的电容率越小,应该更不绝缘。来个极限假设,假设该介质为导体,此时电容就联通了,也就没有电容,电容率最小。介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。 科标检测介电常数检测标准如下: GB11297.11-1989热释电材料介电常数的测试方法 GB11310-1989压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试 GB/T12636-1990微波介质基片复介电常数带状线测试方法 GB/T1693-2007硫化橡胶介电常数和介质损耗角正切值的测定方法 GB/T2951.51-2008电缆和光缆绝缘和护套材料通用试验方法第51部分:填充膏专用 试验方法滴点油分离低温脆性总酸值腐蚀性23℃时的介电常数23℃和100℃时的直 流电阻率 GB/T5597-1999固体电介质微波复介电常数的测试方法 GB/T7265.1-1987固体电介质微波复介电常数的测试方法微扰法 GB7265.2-1987固体电介质微波复介电常数的测试方法“开式腔”法 SJ/T10142-1991电介质材料微波复介电常数测试方法同轴线终端开路法 SJ/T10143-1991固体电介质微波复介电常数测试方法重入腔法 SJ/T11043-1996电子玻璃高频介质损耗和介电常数的测试方法 SJ/T1147-1993电容器用有机薄膜介质损耗角正切值和介电常数试验方法 SJ20512-1995微波大损耗固体材料复介电常数和复磁导率测试方法 SY/T6528-2002岩样介电常数测量方法 服务范围:老化测试、物理性能、电气性能、可靠性测试、阻燃检测等 介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负 电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化(electronic polarization,1015Hz),离子极化(ionic polarization,1012~1013Hz),转向极化(orientation polarization,1011~1012Hz)和 空间电荷极化(space charge polarization,103Hz)。这些极化的基本形式又分为位 移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立

抗电强度测试方法

抗电强度试验的概念与方法 江苏省电子信息产品质量监督检验研究院杨东岩 作为电子电器设备安全性能考核的重要手段之一,有关安全标准都会给出抗电强度试验的要求。那么这种试验的目的和要求是什么呢? 一、试验的目的 评价在设备中作隔离用的绝缘耐高压冲击的性能。 1.考核电气设备中带电部件与可触及件之间的用作隔离措施的绝缘材料的性能。 我们知道电流通过人体会引起病理生理效应,通常毫安级的电流就会对人体产生危害,更大的电流甚至会造成人的死亡。因此,在各类电子电气设备的安全设计中防触电保护是一个很重要的内容。 通常产生电击危险的原因有: z触及带电件 z正常情况下带危险电压零部件和可触及的导电零部件(或带非危险电压的电路)之间的隔离用的绝缘击穿 z接触电流过大 z大容量电容器放电 在安全设计中采用的措施之一就是通过使用双重绝缘或加强绝缘,将带危险电压的零部件与可触及件隔离。这样防止危险带电件与可触及件之间的绝缘击穿就是个关键点,产品内所有绝缘都必须能够承受产品在正常工作条件下和单一故障条件下产品内部产生的相关电压,还必须承受来自电网电源和从通信网络传入的瞬态冲击电压,而不飞弧、击穿。 击穿的概念: 当绝缘承受的电压足够高而使得绝缘电阻无法再限制电流的增大,此时在施加电压的两极间发生放电,称为击穿。此时施加在绝缘上的电压引起的电流以失控的方式迅速增大。 击穿的途径:可能是固体绝缘材料内部;或沿两电极之间的绝缘体表面(即所谓的“爬电”);或沿两电极之间最短的空间路径(即气体介质中的“飞弧”) 击穿的主要形式: 电击穿----绝缘材料的电介质结构直接为电场力所破坏而致。 热击穿----由于绝缘材料的介质损耗导致电介质发热所致。 在交变正弦电压作用下绝缘材料的介质损耗为 P=U2ˉ2πˉfˉCˉtgδ 式中:U—电压(V) f—频率(Hz) C—电容(F) tgδ--损耗角正切 在直流电压作用下绝缘材料的介质损耗为 P=U2/R 式中:U—电压(V) R—绝缘电阻(Ω) 电化学击穿----由于外加电压的作用,致使电介质内部发生化学变化而引起。 为考核设计的有效性,。要求在施加相应的试验电压下用于安全隔离的绝缘不能被击穿。 二、试验原理 1.试验电压 电气设备在使用过程中,其绝缘长期承受各种因素引起的瞬态过电压的作用,这些电压

01-介质试验

第一章介质试验 绝缘介质的强度电气通过其耐压试验来验证。 模拟绝缘在运行中可能受到的各种电压(包括电压波形、幅值、持续时间等),对绝缘施加与之等价的或更为严酷的电压,从而考查绝缘耐受这类电压的能力,称为耐压试验。 这类试验显然是最有效和最可信的,但这类试验有可能导致绝缘的破坏,故也称破坏性试验。 一、冲击耐压试验 1 试验要求 1.1主电路的冲击耐受电压 (1)从带电部件至接地部件和极与极之间的电气间隙应承受表1(参照GB14048.1中表12)所列对应额定冲击耐受电压的试验电压的考核。 表1 冲击耐受电压 (2)断开触头间的电气间隙应承受: ——在有关产品标准中规定的冲击耐受电压(如适用的话); ——对具有隔离功能的电器,应承受下表2(参照GB14048.1中表14)所列的对应于额定冲击耐受电压的试验电压。

表2 隔离电器断开触头间的试验电压 (如适用的话)试验。 1.2 辅助电路和控制电路的冲击耐受电压 (1)直接从主电路引入额定工作电压的辅助电路和控制电路应按1.1中1)的规定进行验证。 (2)不直接从主电路引入额定电压的辅助电路和控制电路,其过电压能力不同于主电路,这类电路的电气间隙和有关的固体绝缘无论是交流还是直流,都应承受下表5规定的适当电压。

5

2 试验方法 2.1 一般要求 电器绝缘的验证应采用额定冲击耐受电压进行。 如果电器的某些部分其介电性能受海拔影响较小(如:联接器、密封部分),则其绝缘验证可选择无海拔修正系数的额定冲击耐受电压进行试验。这些部分是独立的,而电器的其他部分应该选择有海拔修正系数的额定冲击耐受电压进行试验。 电气间隙等于或大于下表6(海拔2000米及以下,参照GB14048.1中表13)情况A之值时,可以用测量来验证。 表6 空气中最小电气间隙 对于海拔高于2 000m的低压电器设备,电气间隙的确定应按上表的规定值乘以相应海拔修正系数,其海拔修正系数见表6-1。如电气间隙达不到要求,可用冲击耐受电压来验证。高原环境下,低压电器产品的爬电距离应按照污染等级不小于3级选择,并不小于相应的电气间隙。

电介质强度测试仪的操作规程

电介质强度测试仪的操作规程 一、适用范围适用于公司内电介质强度测试仪的使用。 二、环境条件: 1、工作环境温度:xx℃;相对湿度:<80%RH。 2、储存环境温度:0-40℃;相对湿度:<80%RH。 3、其它条件:工作及储存场所无阳光直射、无腐蚀性气体、灰尘少、无明显振动,温度变化率不大于5℃/h。 三、使用方法:1)此测试时是治疗机的不接电源的情况下测试,测试过程中会要高压,注意任意必须远离治疗机10CM以上的距离;2)A-a1:将电介质强度测试仪的一根测试线接在电源接口的230V的任一根线上,测试线的另外一根测试线接在治疗机上的外壳的任意金属触点上,然后打开测试仪的电源开关,调节电压调节旋钮,观察刻度表上的电压值,调节到1500V时停止旋钮调节(注意表上每个小刻度是250V),然后测试1分钟并听和观察治疗机内是否有异常响声,无则合格。然后调节电压旋钮至0V并关闭电介质强度测试仪的电源;3)A-a2:将电介质强度测试仪的一根测试线接在电源接口的230V的任一根线上,测试线的另外一根测试线接在治疗机上的塑料外壳上,然后打开测试仪的电源开关,调节电压调节旋钮,观察刻度表上的电压值,调节到4000V 时停止旋钮调节,然后测试1分钟并听和观察治疗机内是否有异常响声,无则合格。然后调节电压旋钮至0V并关闭电介质强度测

试仪的电源;4)B-a:将电介质强度测试仪的一根测试线接在电源接口的230V的任一根线上,测试线的另外一根测试线接在治疗机上的导光臂上,然后打开测试仪的电源开关,调节电压调节旋钮,观察刻度表上的电压值,调节到4000V时停止旋钮调节,然后测试1分钟并听和观察治疗机内是否有异常响声,无则合格。然后调节电压旋钮至0V并关闭电介质强度测试仪的电源;5)将检验结果填写在检验记录报告上。 四、注意事项:1、本仪器的电源输入插座应带有保护接地线。2、本仪器的电源输入插座应保持相线和中线(L、N)的正确接法。3、使用后填写仪器使用记录。

耐电压测试

耐电压测试 为什么要进行耐电压测试 电介质强度测试, 亦称hi-pot 测试, 大概是最多人知道的和经常执行的生产线安全测试。实际上,表明它的重要性是每个标准的一部分。hi-pot 测试是确定电子绝缘材料足以抵抗瞬间高电压的一个非破坏性的测试。 这是适用于所有设备为保证绝缘材料是足够的一个高压测试。 进行hi-pot 测试的其它原因是, 它可以查出可能的瑕疵譬如在制造过程期间造成的漏电距离和电气间隙不够。 进行型式测试的时候, hi-pot 测试是在某些测试(譬如失效, 潮态及振动测试)之后进行来确定是否因为这些测试造成绝缘的退化。但是,日常生产进行的hi-pot 测试, 是制造过程中的测试来确定是否所生产的产品的结构是与型式测试所用产品的结构相同。 一些由生产流程造成的缺陷可以通过在线hi-pot 测试检查出来,例如, 变压器绕组电气间隙和爬电距离减小。 这样的故障可能起因于绕线部门的一名新操作员。 其它例子包括检查绝缘材料的针孔瑕疵或发现一个过大的焊点。 大多数安全标准使用2xU + 1000 V 的惯例作为基本的绝缘材料测试的依据, 这里的U 是操作电压(rms值)。 这个惯例仅仅作为一个指导, 对于个别标准特别是IEC 60950 提供了一个具体的表格来定义根据测量到的实际工作电压来确定确切的测试电压1.至于使用1000 V 作为基本惯例的原因是产品的绝缘材料在日常使用中可能承受瞬间过电压。 实验和研究表示, 这些过电压通常高达1000 V 。 测试方法: 高压通常是应用的在横跨被测试绝缘材料的二个部件之间, 譬如测试设备(EUT)的一次侧电路(Primary Circuit)和金属外壳。 如果绝缘材料在两个部件之间是足够的, 那么加在两个由绝缘体分离的导体之间的大电压只能产生非常小的电流流过绝缘体。 虽然这个小电流是可接受的, 但是空气绝缘或固体绝缘不应该发生击穿。 因此, 需要注意这个电流是因为局部放电或击穿的结果, 而不是由于电容联结引起的。 另外一个例子是对介于电源的一次(Primary)和二次(Secondary)电路之间的绝缘材料进行测试。 这时所有输出短接在一起。 耐压测试仪的接地探针与短接在一起的输出相连, 同时高压探针与L 和N连接(L和N短接)(参见图1) 。在hi-pot 测试期间EUT不工作。必须注意, 在进行型式测试期间, 理想的情况是先加低于规定的电压的1/2, 然后逐渐上升,并且在10 秒中达到规定电压,并且维护1 分钟。 然而,大多数测试仪器, 直接输出规定电压或使用一个电子控制线路来实现电压的爬升。 测试持续时间: 如果测试是代表认证过程的一部分, 那么测试持续时间必须是所使用的安全标准相符合。 例如,多数标准, 包括IEC 60950 , 测试持续时间是1 分钟。 但是, 当在生产线对产品进行测试, 通常对每个产品进行1 分钟hi-pot 测试是不实际的, 制造商通常会缩短测试时间, 譬如几秒钟, 但是使用更高的电压。 一个典型的经验法则是110-120% (2xU + 1000 V), 1-2 秒。 测试持续时间和程序应该得到相关测试机构的同意。 值得注意的是, 虽然被减少的时间和增加的电压是近似, 实验和制造商的'数据表明, 每种绝缘材料有它自己的具体电压时间特征 电流设定: 现在大多数hi-pot 测试仪允许用户自行设定电流的限值。

电介质强度测试方法

电介质强度测试方法 1、测试仪器 ①YX267OB(医用)耐压测试仪 ②测试线1副 2、测量前的准备 ①本仪器输出高电压,操作人员须带橡皮手套、绝缘皮垫。 ②仪器安全接地端应接地。 ③在仪器使用前,应将仪器处于复位状态,电压调节旋钮逆时针旋转到底。 ④电源线插头插入电源插座。 3、测试操作步骤 ①打开仪器电源开关。 ②设置测试时间:拨动拨码开关按键,设置时间80S。 ③设定漏电流截断值:将“10mA /100mA”转换按钮置于10mA状态。 ④设置报警值:将“设置/测试”转换按钮置于设置状态,再将“报警电流调节”调为5mA,再将“设置/测试”转换按钮置于“测试”状态。 ⑤设置电压:按“测试”按钮,测试指示灯亮,顺时针旋转电压调节旋钮,调节到750V,然后按下复位按钮。 ⑥测试线连接:两条测试线,大夹子(红色)为高压输出夹子,小夹子(黑色)为接地输出夹子,关闭仪器电源,分别将大夹子夹在设备电气控制板的电源输入端L或N端,小夹子夹在设备的外壳上及可

接触金属部件上,再将测量线接入仪器面板的测量端口,分别将黑色插头插入仪器面板黑色插座内,红色插入仪器面板红色插座内,旋紧螺母。 ⑦测试,按“测试”按钮,并迅速调节电压,在10S期间将电压涿渐增加到1500V,保持1min之后,在10S期间将电压涿渐降到750V。 ⑧测试结果判断,记录漏电流,无发生闪线或击穿视为合格。有发生闪线或击穿现象,则视为不合格, ⑨重复测试、连续测试,如果被测设备需要重复测试,只要在上述情况下,再按一下测试按钮即可。如需连续测同一种物件,只须按要求连接测试连线即可继续启动测试,测试必须按以上步骤执行。 ⑩测试结束,关闭电源,将电压调节旋钮逆时针旋转到底,拆除测试连接线。

安规测试

抗电强度: 又叫电介质强度测试, 英文为hipot test, 大概是最多人知道的和经常执行的生产线安全测试。实际上,表明它的重要性是每个标准的一部分。hipot 测试是确定电子绝缘材料足以抵抗瞬间高电压的一个非破坏性的测试。这是适用于所有设备为保证绝缘材料是足够的的一个高压测试。进行hipot 测试的其它原因是, 它可以查出可能的瑕疵譬如在制造过程期间造成的漏电距离和电气间隙不够。 测试方法就是在交流输入线之间或交流输入与机壳之间将零电压增加到3000V交流或4200V直流时,不击穿或拉电弧就合格。 温度: 安全标准对电子电器的求很严,并要求材料有阻燃性,开关电源的内部温升不应超过65℃,比如环境温度是25℃,电源元器件的温度应小于90℃。但一般来说,不管是UL或CE认证的测试中,都是按照元器件(特别是安全器件)的安全证书所标识的耐温限值为标准。安规测试中表示温度单位为K(热力学温标又称开尔文温标,或称绝对温标,它规定分子运动停止时的温度为绝对零度,记符号为K。),它是减去室温的才得出的结果。 接地测试: 亦称接地连续性测试, 接地测试必须对所有一类产品(Class I)进行。测试的目的是保证产品上的所有在单一绝缘失效的情形下会变成带电体,并且可以被使用者接触到的导电性部件被可靠连接到电源输入的接地点。换句话说, 一个接地测试使用大电流的低电压源加到接地回路来核实接地路径的完整性。 通过测量连接在保护接地连接端子或接地触点和零件之间的阻抗来判断是否符合标准要求, 阻抗不超出产品安全标准确定的某个值则认为是符合要求的。一定要记住, 从结构和设计观点来看, 用做保护接地的导体不应该包含任何的开关或保险丝。 漏电流测量(leakage current measurement) UL与CSA标准规格中需要所有露出的固定金属组件必须予以接到大地端,而且经由连接至地端的1500Ω电阻器来测量漏电流; VDE标准规格则规定在1.06倍额定电压下, 由1500Ω电阻器与150nF电容器并联来测量漏电流. 通过隔离变压器在电源的火线或零线与易触及的金属之间串接电流表,开关电源的漏电流在260V交流输入下不应超过3.5mA。 绝缘电阻( insulation resistance) 在VDE标准规格中,输入端与SELV输出电路之间需要有7.0MΩ的最小电阻值,而输入端与较容易受变动的金属组件之间,则需要有2.0MΩ的最小电阻值,而其外施电压则为1分钟500Vac. SELV:安全特低电压电路(safety extra-low voltage circuit)其定义为具有适当保护设计之次级电路,即在任意两个可能碰触组件之间或人体可能碰触到任意组件和产品的接地保护端子之间电压不会超过42.4Vacpeak或60Vdc的次级电路; ELV:特低电压电路(extra-low voltage circuit)其定义为在导体与导体之间或导体对地之间的交流电压峰值不超过42.4Vac或直流电压不超过60Vdc的次级电路; 危险电压(hazardous voltage):交流峰值超过42.4Vac或直流超过60Vdc的电压.

电介质实验报告

电介质相对介电常数的测量 复旦大学 2013年10月25日 一、引言 介电性是电介质最基本的物理性质,对介电性的研究不但在电介质材料的应用上具有重要意义,而且也是了解电介质的分子结构激化机理的重要分析手段之一。它是电容器的性能的重要参数之一。电介质极化能力越强,其介电常数就越大。对介电性的研究与利用一定程度上主导了电容器的发展。 最原始的电容器是1745年荷兰莱顿大学P.穆森布罗克发明的莱顿瓶,它是玻璃电容器的雏形。1874年德国M.鲍尔发明云母电容器。1876年英国D.斐茨杰拉德发明纸介电容器。1900年意大利L.隆巴迪发明瓷介电容器。30年代人们发现在陶瓷中添加钛酸盐可使介电常数成倍增长,因而制造出较便宜的瓷介电容器。1921年出现液体铝电解电容器,1938年前后改进为由多孔纸浸渍电糊的干式铝电解电容器。 本实验采用电桥法测电容的方法通过计算得到介电常数。 1) 本实验测量研究平行板电容器的极板面积S 与两板间距d 与电容C 的关系;圆柱形电 容器的长度I 与电容C 的关系。 2) 测定平板介质的相对介电常数。 二、实验原理 1. 平行板、圆柱形电容器的物理特性 电介质是一种不导电的绝缘介质,在电场作用下会产生极化现象,从而在均匀介质表面上感应出束缚电荷,这样就减弱了外电场的作用。 对于在充电的真空平行板电容器,若其两金属极板自由电荷密度分别为0σ±,极 板面积为S ,两内表面间距离为d ,而且2 S d ,则电容器内部所产生的均匀电场的强度为0 00 E σε= ,电容量为 0000Q s C U d ε= =(1) 式中0Q 为极板电量,0U 为两金属极板间的电位差,0C 为其真空电容量。 对于充电的真空圆柱形电容器,若其长度L 远大于其外壳内径2R 与内壳外径1R 之差,则其中产生的电场强度为0002Q E Lr πε= ,电容量为 () 00 212ln /L C R R πε=(2) 式中0Q 为电极电量,r 为场点距离圆柱柱心的距离,0C 为其真空电容量。 当电容器充满了极化率为χ的均匀电介质后,束缚电荷(面密度为s ±)所产生的附加电场与原电场方向相反,故合成电场强度E 较0E 为小。可以证明, 0r C C ε=(3) 显然,由于电容器两极上电量不变,而两极的电位差下降,故电容量增大。式(3)中,r ε称为电介质的相对介电常数,是一个无量纲的量。对于不同的电介质,r ε值不

电气强度试验是电气安全性能测试标准所要求的第三项测试

电气强度试验是电气安全性能测试标准所要求的第三项测试。 电气强度试验包括在测试过程火线和地线同时短路的情况下,测量被测设备的漏电量。电气耐压试验的测量结果是电流值,需低于国际标准的非强制性极限值。 电气强度测试仪(也称为耐压测试仪,电介质强度测试仪,闪点测试器,高压测试仪)是用来测量此类电流值的测试仪。 测试电压 交/直流电压,电压几百伏到数万伏可调。测试电压的性质和数值的选择应由所测产品应用标准决定。 在缺少标准的情况下,可适用以下的经验公式: 测试总在同类样品的电压下进行,而不是同种过程的样品。 例如:电池适用直流电。变压器适用交流电。 可按给出公式计算最大值:测试电压U = 2倍工作电压+ 1000伏 某家蒸汽熨斗的生产者可据此在以下电压下进行测试: 测试电压U = 2 x 230V 交流+ 1000V 交流= 1460伏交流 电气强度测试可分为破坏性和非破坏性。 破坏性试验 某些标准化测试需要高功率电源应用于样品的电气强度测试中。这意味着测试设备因绝缘部分的碳化而被破坏。这种试验主要被用于测试中高功率的电力或电子技术中采用的元器件或设备(断路器,开关,变压器,绝缘子等等)。 非破坏性试验 图1 漏电电流随电压变化的函数图 在这一领域内,耐压测试仪发展最优,在精度和可选择的方法上为用户提供不断进步的更佳性能。 非破坏性测试的特点是使用低电压测试仪器,其短路电流不超过几毫安,且测试系统可准确迅速的在击穿前立即断电。 这种限制电流的快速断电,在大多数情况下可避免使绝缘体被无法修复的击穿和起皱,或电介质表面或内部含碳酸的残渣沉积问题。在元器件或设备生产过程中的系统化测试,测试样品时对样品不产生破坏是强制性条件。 电气强度击穿测试 因此击穿电压的检测必须重视电介质击穿现象的电参数值的测量。此参数受电流所通过的样品中的电介质的影响。检测仪器确有两种检测模式以供选择。 - 阈值电流检测 - 变化电流检测 阈值电流检测 将测试电压施加到样品上,你可观察到——直到后面的某一确定值之前——漏电电流成比例的增加;这一电流值决定于测试项目的绝缘电阻和/或测试项目的电容(交流,或直流负载效应)。正如图1所示,而从电压Uc开始,漏电电流迅速增加,击穿电压达到Ue。 然后电流达到最大值,这一最大值可通过电介质强度试验台的电流容量或者——某一瞬时值——由样品的电容元

电动力学习题解答2

第二章 静电场 1. 一个半径为R 的电介质球,极化强度为2/r K r P =,电容率为ε。 (1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球内的电势; (4)求该带电介质球产生的静电场总能量。 解:(1)P ?-?=p ρ2222/)]/1()/1[()/(r K r r K r K -=??+??-=??-=r r r )(12P P n -?-=p σ R K R r r /=?==P e (2))/(00εεεε-=+=P P E D 内 2 00)/()/(r K f εεεεεερ-=-??=??=P D 内 (3))/(/0εεε-==P D E 内内 r r f r KR r V e e D E 2 002 00)(4d εεεεπερ ε-= = = ?外 外 r KR r )(d 00εεεε?-=?=?∞ r E 外外 )(ln d d 0 εεεε?+-= ?+ ?= ? ? ∞r R K R R r r E r E 外内内 (4)? ? ?∞ -+ -= ?= R R r r r R K r r r K V W 4 2 2 0022 2 2 2 2 02 d 4) (21 d 4) (21d 2 1 πεεεεπεεεE D 2 ))( 1(2εεεεπε-+ =K R 2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势: (1)导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q 解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为极轴,球心为原点建立球坐标系。 当0R R >时,电势?满足拉普拉斯方程,通解为 ∑ ++ = n n n n n n P R b R a )(cos )(1 θ? 因为无穷远处 0E E →,)(cos cos 10000θ?θ??RP E R E -=-→ 所以 00?=a ,01E a -=,)2(,0≥=n a n 当 0R R →时,0Φ→? 所以 01 01000)(c o s )(c o s Φ=+-∑ +n n n n P R b P R E θθ ? 即: 002 010000/,/R E R b R b =Φ=+?

电介质强度测试流程

电介质强度测试流程: 1、为什么要测电介质强度 为检验设备的绝缘性能(考验电介质自身的耐电强度) 正常情況下,电力系统中的电压波形是正弦波.电力系统在运行中由于雷击,操作,故障或电气设备的参数配合不当等原因,引起系统中某些部分的电压突然升高,大大超过其额定电压,这就是过电压。过电压按其发生的原因可分为两大类,一类是由于直接雷击或雷电感应而引起的过电压,称为外部过电压。雷电冲击电流和冲击电压的幅值都很大,而且持续时间很短,破坏性极大。另一类是因为电力系统内部的能量转换或参数变化引起的,例如切合空载线路,切断空载变压器,系统内发生单相弧光接地等,称为内部过电压。内部过电压是确定电力系统中各种电气设备正常绝缘水平的主要依据。也就是说,产品的绝缘结构的设计不但要考虑额定电压而且要考虑产品使用环境的内部过电压。耐压测试就是检测产品绝缘结构是否能够承受电力系统的内部过电压。 2、测试电介质的标准要求 1)、对各部分绝缘类型的描述 见9706 20.1 20.2 (p37,38) 2)、试验电压值:U为在正常使用时当设备施加额定供电电压或制造商规定的电压二者中较高电压时,设备有关绝缘可能受到的电压 3、测试电介质强度的试验方法 开始时,应施加不超过一半的电压,然后应在10s期间将电压逐渐增加到规定值,应保持此值达1min,之后应在10s期间将电压逐渐降至规定值的一半以下。 试验时不应发生闪络击穿,如发生轻微的电晕放电,当试验电压值暂时降到较低的值,但必须高于基准电压U时,放电现象停止,且这种放电现象不会引起试验电压的下降,则这种电晕放电可以不考虑 使用金属箔时,应适当放置金属箔,以免绝缘内衬边缘产生闪络,若适用,移动金属箔以使表面的各个部位都受到试验 网电源部分、信号输入部分、信号输出部分的接线端子,在试验时要各自短接 其他未提到的部件要断开,电容器要短接 附: 1、关于预处理过程 1)、设备升温至工作温度 2)、潮湿预处理,见9706 4.10 (p15) 3)、设备消毒处理见9706 44.7 (p55) (其中(2)(3)条一般不做) 2、对测试结果的判定 A、过载断路的最大值可设定在10mA。高压变压器断路前应能提供规定的电压,过流检测断路装置的动作应视为闪络或击穿。 B、测试仪的输出电压有明显的降低,同时,被测器具上出现了烧焦的迹象,一般来说,也属于击穿了。

【免费下载】电介质强度及测试

中国医疗器械杂志07.第4期发表 电介质强度及测试 李雨明张宜川潘全亮 本文从电介质的性质、电介质强度、电介质强度的测试及测试设备的角度对比叙述,并从理论上和实际操作上分析,提出了符合目前实际情况的测试方法和测试判定。 电介质强度的测试过程中,由于国家标准规定的测试方法与要求及合格与否的判定不具体,造成电介质强度测试方法和判定的不同,并且形成一定的争议。在此,根据我们工作中所碰到的情况在此提出,供大家参考。 一、电介质及强度 什么是电介质:其基本电磁性能是受电场作用而极化的物质。有称:一切绝缘体统称为电介质;或者是在外电场的作用下内部结构发生变化,并且反过来影响外电场的物质。例如空气、云母、陶瓷、玻璃纸、塑料、油等都是电介质。从极化过程可以看到,电介质分子中正、负电荷在外电场中受电场力的作用有被分离的趋势。如果外电场足够强大,有可能使一些电子在电场力作用下脱离原子核束缚而成为自由电子,这些自由电子在外电场作用下又获得加速,具有很大的动能。它们在遇到其它分子时。可能使被碰撞的分子又释放出电子来,这种连续反应使电介质中的自由电子愈来愈多,可使介质失去绝缘性能成为导体,这种情况叫做电介质的“击穿”。各种电介质材料都有一定的能承受而不致遭到破坏而击穿的最高电场强度 ,又称绝缘场强。电介质中的场强超过击穿场强会引起介质中出现大量自由电子,导致流过介质的电流急剧增加,介质温度也迅速上升,最后介质被烧坏。这类在强电场作用下,电介质丧失电绝缘能力的现象,导致击穿的最低临界电压称为击穿电压。均匀电场中,击穿电压与介质厚度之比称为击穿电场强度(或称电介质强度、击穿强度、介电强度、电气强度、耐电压强度、抗电强度等)。它反映电介质自身的耐电强度。 固体电介质击穿有3种形式:电击穿、热击穿和电化学击穿。电击穿是因电场使电介质中积聚起足够数量和能量的带电质点而导致电介质失去绝缘性能。热击穿是因在电场作用下,电介质内部热量积累、温度过高而导致失去绝缘能力。电化学击穿是在电场、温度等因素作用下,电介质发生缓慢的化学变化,性能逐渐劣化,最终丧失绝缘能力。电介质的化学变化通常使其电导增加,这会使介质的温度上升,因而电化学击穿的最终形式是热击穿。 影响电介质强度的因素很多,包括电压,温度,湿度,时间,频率,波形等。 二、电介质强度测试方法与要求 电介质强度测试方法在不同的电气行业中基本上相同,但是,被测设备电介质强度合格与否的判定存在不同,并且,在判定的具体操作上也很难一致,如: 1、GB9706.1-1995 《医用电气设备第一部分:安全通用要求》规定: 20.4 试验 a)单相设备和按单相设备来试验的三相设备的试验电压,必须按表5规定加在如20.1和20.2条所述的绝缘部分上历时1min: 开始,必须加上不超过一半规定值的电压,然后必须在10s内将电压逐渐增加到规定

电学性能检测测试项目和标准

电学性能检测测试项目和标准 电学检测是用于核定待测系统或元件整体电学性能是否满足要求的检测。 电学性能检测项目: 表面电阻、表面电阻率、体积电阻、体积电阻率、击穿电压、介电强度、介电损耗、静电性能等。 电学性能检测标准: GB 11297.11-1989 热释电材料介电常数的测试方法 GB 11310-1989 压电陶瓷材料性能测试方法相对自由介电常数温度特性的测 试 GB/T 12636-1990 微波介质基片复介电常数带状线测试方法 GB/T 1693-2007 硫化橡胶介电常数和介质损耗角正切值的测定方法 GB/T 2951.51-2008 电缆和光缆绝缘和护套材料通用试验方法第51部分:填充 膏专用试验方法滴点油分离低温脆性总酸值腐蚀性23℃时的介电常数23℃和100℃时的直流电阻率 GB/T 5597-1999 固体电介质微波复介电常数的测试方法 GB/T 7265.1-1987 固体电介质微波复介电常数的测试方法微扰法 GB 7265.2-1987 固体电介质微波复介电常数的测试方法“开式腔”法 SJ/T 10142-1991 电介质材料微波复介电常数测试方法同轴线终端开路法 SJ/T 10143-1991 固体电介质微波复介电常数测试方法重入腔法 SJ/T 11043-1996 电子玻璃高频介质损耗和介电常数的测试方法 SJ/T 1147-1993 电容器用有机薄膜介质损耗角正切值和介电常数试验方法 SJ 20512-1995 微波大损耗固体材料复介电常数和复磁导率测试方法 SY/T 6528-2002 岩样介电常数测量方法 GB/T 3333-1999 电缆纸工频击穿电压试验方法 GB/T 3789.17-1991发射管电性能测试方法电气强度的测试方法 GB/T 507-2002 绝缘油击穿电压测定法 GB 7752-1987 绝缘胶粘带工频击穿强度试验方法 SH/T 0101-1991 石油蜡和石油脂介电强度测定法 GB/T 1424-1996 贵金属及其合金材料电阻系数测试方法 GB/T 351-1995 金属材料电阻系数测量方法 HG/T 3331-1978 绝缘漆漆膜体积电阻系数和表面电阻系数测定法(原HG/T 2-59-78) HG 3332-1978 绝缘漆耐电弧性测定法 HG/T 3332-1980 耐电弧漆耐电弧性测定法

耐电压测试

耐电压测试(一)电介质强度测试, 亦称hipot 测试, 大概是最多人知道的和经常执行的生产线安全测试。实际上,表明它的重要性是每个标准的一部分。hipot 测试是确定电子绝缘材料足以抵抗瞬间高电压的一个非破坏性的测试。这是适用于所有设备为保证绝缘材料是足够的的一个高压测试。进行hipot 测试的其它原因是, 它可以查出可能的瑕疵譬如在制造过程期间造成的漏电距离和电气间隙不够。 进行型式测试的时候, hipot 测试是在某些测试(譬如失效, 潮态及振动测试)之后进行来确定是否因为这些测试造成绝缘的退化。但是,日常生产进行的hipot 测试, 是制造过程中的测试来确定是否所生产的产品的结构是与型式测试所用产品的结构相同。一些由生产流程造成的缺陷可以通过在线hipot 测试检查出来,例如, 变压器绕组电气间隙和爬电距离减小。这样的故障可能起因于绕线部门的一名新操作员。其它例子包括检查绝缘材料的针孔瑕疵或发现一个过大的焊点。 大多数安全标准使用2xU + 1000 V 的惯例作为基本的绝缘材料测试的依据, 这里的U 是操作电压(rms值)。这个惯例仅仅作为一个指导, 对于个别标准特别是IEC 60950 提供了一个具体的表格来定义根据测量到的实际工作电压来确定确切的测试电压1.至于使用1000 V 作为基本惯例的原因是产品的绝缘材料

在日常使用中可能承受瞬间过电压。实验和研究表示, 这些过电压通常高达1000 V 。 测试方法: 高压通常是应用的在横跨被测试绝缘材料的二个部件之间, 譬如测试设备(EUT)的一次侧电路(Primary Circuit)和金属外壳。如果绝缘材料在两个部件之间是足够的, 那么加在两个由绝缘体分离的导体之间的大电压只能产生非常小的电流流过绝缘体。虽然这个小电流是可接受的, 但是空气绝缘或固体绝缘不应该发生击穿。因此, 需要注意这个电流是因为局部放电或击穿的结果, 而不是由于电容联结引起的。 另外一个例子是对介于电源的一次(Primary)和二次(Secondary)电路之间的绝缘材料进行测试。这时所有输出短接在一起。耐压测试仪的接地探针与短接在一起的输出相连, 同时高压探针与L 和N连接(L和N短接)(参见图1) 。在hipot 测试期间EUT 不工作。必须注意, 在进行型式测试期间, 理想的情况是先加低于规定的电压的1/2, 然后逐渐上升,并且在10 秒中达到规定电压,并且维护1 分钟。然而,大多数测试仪器, 直接输出规定电压或使用一个电子控制线路来实现电压的爬升。

电介质的损耗

第二节电介质的损耗 作用下的能量损耗,由电能转变为其它形式的能,如热能、光能等,统称为介质损耗。它是导致电介质发生热击穿的根源。电介质在单位时间内消耗的能量称为电介质损耗功率,简称电介质损耗。 1 损耗的形式 ①电导损耗: 在电场作用下,介质中会有泄漏电流流过,引起电导损耗。气体的电导损耗很小,而液体、固体中的电导损耗则与它们的结构有关。非极性的液体电介质、无机晶体和非极性有机电介质的介质损耗主要是电导损耗。而在极性电介质及结构不紧密的离子固体电介质中,则主要由极化损耗和电导损耗组成。它们的介质损耗较大,并在一定温度和频率上出现峰值。 电导损耗,实质是相当于交流、直流电流流过电阻做功,故在这两种条件下都有电导损耗。绝缘好时,液、固电介质在工作电压下的电导损耗是很小的,与电导一样,是随温度的增加而急剧增加的。 ②极化损耗: 只有缓慢极化过程才会引起能量损耗,如偶极子的极化损耗。它与温度有关,也与电场的频率有关。极化损耗与温度、电场频率有关。在某种温度或某种频率下,损耗都有最大值。用tgδ来表征电介质在交流电场下的损耗特征。` ③游离损耗: 气体间隙中的电晕损耗和液、固绝缘体中局部放电引起的功率损耗称为游离损耗。电晕是在空气间隙中或固体绝缘体表面气体的局部放电现象。但这种放电现象不同于液、固体介质内部发生的局部放电。即局部放电是指液、固体绝缘间隙中,导体间的绝缘材料局部形成“桥路”的一种电气放电,这种局部放电可能与导体接触或不接触。这种损耗称为电晕损耗。 2介质损耗的表示方法 在理想电容器中,电压与电流强度成90o ,在真实电介质中,由于GU分量,而不是90o。此时,合成电流为: ; 故定义: ——为复电导率

电器主要安全测试标准

电气主要安全测试标准 电气安全主要测试指标包括交/直流耐压、绝缘电阻、泄漏电流、接地电阻等。 一 Hi-Pot测试 1、耐压测试基本原理: 将被测产品在高压机输出的试验高电压下产生的漏电流与设置的判定电流相比较,若检出的漏电流值小于预设定值,则被测产品通过测试,当检出的漏电流大于判定电流时,试验电压瞬时切断并发出声光报警,从而测定被测件的耐压强度。 对一般被测设备,耐压测试是测量火线与机壳之间的漏电流值 2、耐压测试目的: Hi-Pot测试亦称电介质强度测试。耐压测试是一种无破坏性的测试,它用来检测经常发生的瞬态高压(过电压)下产品的绝缘能力是否合格,确定电子绝缘材料足以抵抗瞬间高电压。它在一定时间内施加高压到被测试产品以确保测试产品的绝缘性能足够强。进行这项测试的另一个原因是它也可以检出产品的一些缺陷: a、绝缘材料的绝缘强度太弱; b、绝缘体上有针孔; c、零组件之间距离不够/电气间隙和爬电距离(漏电距离)不够 d、绝缘体被挤压而破裂 关于过电压:分外部过电压(雷击引起)和内部过电压。内部过电压是确定电力系统中各种电气设备正常绝缘水平的主要依据。也就是说,产品的绝缘结构的设计不但要考虑额定电压而且要考虑产品使用环境的内部过电压。耐压测试就是检测产品绝缘结构是否能够承受电力系统的内部过电压。 3、高压测试机参数设定 目前市场上所见的耐压测试仪采用GB4706(等同IEC1010)标准 高压测试机参数一般有四个参数:测试电压、漏电流、测试时间、频率。 设定方法如下: 3-1、按SET键进入参数设定模式﹔ 3-2、电压设定﹕

通过UP与DOWN兩键选择“AC档”,交流电压测试。 然后设定电压值,并选择“60Hz档” 基本规定是:以两倍于被测物的工作电压再加1000V作为测试的标准电压。按照IEC61010的规定,测试电压必须在5s内逐渐地上升到所要求的试验电压值(例如5kV等),保证试验电压值稳定加在被测绝缘体上不少于5s 如果测试是代表认证过程的一部分,必须是所使用的安全标准,包括IEC 60950 , 测试持续时间是1 分钟。 制造商通常会缩短测试时间,大多数安全标准使用110-120% (2xU + 1000 V), 1-2 秒的惯例作为基本的绝缘材料测试的依据, 这里的U 是操作电压(rms值)。使用1000 V 作为基本惯例的原因是产品的绝缘材料在日常使用中可能承受瞬间过电压。实验和研究表示, 这些过电压通常高达1000 V。 3-3、电流设定﹕ 需要设定最低漏电流和最高漏电流(一般电器不超过5mA)两个值,当实际测量值在这两个设定值之间时,才判定OK. 最好的选择限值的方式是测试一些产品样品并得到平均hi-pot 电流,然后泄漏电流的限制值被设定为一个稍高出平均值的值。 设置泄漏电流需要了解的: 线路泄漏电流通过一个Y 电容产生, 但是hi-pot 测试产生的泄漏电流通有各条线路的电容同时产生。推导出I (hi-pot)的等式, 你可以预测hi-pot 测试电流。所以, hi-pot 测试仪电流限值应该被设置足够高以避免因为泄露电流的存在而导致的误判, 同时不能太高而导致无法检测出真实的绝缘材料击穿。 ※交流hi-pot 测试仪存在一个小弊端,那就是如果被测试的电路中有大容量的 Y 电容, 可能会因为hi-pot 测试器的电流限值设置, 可能造成ac 测试仪显示测试失败而实际上绝缘并没有击穿。多数安全标准允许用户断开Y 电容器进行测试, 或者选择使用直流 hi-pot 测试仪。直流hi-pot 测试仪不会因为大容量Y电容的存在而显示失效,因为Y 电容器对于直流电压不会有电流通过其本身。 (X,Y电容都是安规电容,火线零线间的是X电容,火线与地线间的是Y电容.) ※上限电流与误判 上限报警时,指漏电流超过了跳闸电流值(不符合工厂规定的上限电流限值),或者是超出绝缘耐压测试仪量程范围,但这种情况被测物不一定是被高压击穿,只能说明漏电流超过参考值,需对产品做进一步的品质鉴定从而确定产品是否存在严重的安全问题 测试线、测试夹具等,只要回路中的任何一点有开路,此时流过被测物的电流几乎为零,由于没有超出绝缘耐压测试仪上限的设定值,于是仪器就会给出试验合格的提示,认为绝缘是合格的。这种情况下的测试数据是不真实的,倘若此时的被测物恰好是绝缘性能存在缺陷,那么就会造成严重的误判。 如何避免误判的产生:在耐压测试中,我们都是认为漏电流越小越好,因此很多的操作者都没有对下限电流进行设定(一般出厂值设定为零),如果出现上述的情况,就存在误判的可能,这时合理地设定漏电流下限就能解决此种情况的发生。 3-4、时间设定﹕ 设定的时间即为测试时间(5S以内) 4 测试点和测试电压 依据具体产品的相关标准来定。 北美標準的耐壓測試的特点可以由下面两个标准体现: &&&Motor-Operated Appliances (Household and Commercial: CAN/CSA-C22.2 No.68-92

相关文档
最新文档