电介质的击穿
电弧是怎样产生原理

电弧是怎样产生原理
电弧是由于电流在中断或阻断的情况下,通过两电极之间的空气形成的一种放电现象。
具体的产生原理如下:
1. 电介质击穿:当电压升高到一定程度时,电压将足以击穿空气中的电介质分子,使其电离。
这个过程会形成一个电导通道,使电流能够流经该通道。
2. 离子和电子的移动:电介质击穿后,空气中的分子将电离形成离子和电子。
电子由于负电荷的作用被吸引到阳极,而正离子则被吸引到阴极。
3. 空气的加热:电流通过离子和电子的碰撞,将能量传递给空气分子,使空气分子发生震动和旋转,导致空气的加热。
4. 电流弧光:由于空气被加热,电弧形成,并放出明亮的光。
电弧通常呈现出蓝白色或紫色。
总的来说,电弧产生的原理是通过电压升高击穿空气形成导电路径,离子和电子在电流作用下移动并产生加热效应,最终形成明亮的电弧。
两层电介质的击穿原理

两层电介质的击穿原理
两层电介质的击穿原理是指在两个电介质材料之间施加高电压时,当电压达到一定临界值时,电介质失去绝缘性能,电流迅速增加,形成击穿现象。
具体来说,两层电介质的击穿原理可以分为以下几个步骤:
1. 初始电离阶段:当施加电压时,两层电介质之间的电场强度逐渐增加,电场会将电介质中的原子或分子电离成正负电荷。
这些电离产生的自由电子和离子将形成电流,但电介质仍具有良好的绝缘性能。
2. 自由电子增多阶段:随着电场强度的继续增加,电介质中的电离现象逐渐增加,产生的自由电子的数量也随之增加。
自由电子能够在电场中自由移动,导致电介质的电导率增加。
3. 冲击离子产生阶段:当电场强度进一步增加,电离现象会继续增强,产生更多的离子。
这些离子可以与电介质中其他离子相互碰撞,产生冲击离子。
冲击离子的运动具有高的动能,可以撞击和激发电介质中的原子或分子,形成更多的自由电子和离子。
4. 雪崩阶段:当电场强度达到一定临界值时,电介质中的冲击离子和自由电子数量急剧增加,形成电离雪崩效应。
电离雪崩效应导致电流迅速增加,电介质失去了绝缘性能,形成击穿现象。
总结来说,两层电介质的击穿原理是在施加电压的作用下,电介质中的电离现象不断增加,导致电介质失去绝缘性能,电流迅速增加,形成击穿现象。
举出电介质中热击穿在生活中的例子

举出电介质中热击穿在生活中的例子电介质是一种在电场作用下具有绝缘性能的材料,在高电场下,电介质中可能发生热击穿现象,即电介质由于电场强度过大而导致局部区域温度升高,从而引发击穿现象。
以下是生活中常见的电介质热击穿的例子:1. 电线绝缘层击穿:在家庭用电中,电线绝缘层的材料通常为电介质,如塑料。
如果电线绝缘层老化或损坏,电场强度可能会超过电介质的击穿强度,导致绝缘层发生热击穿,甚至引发火灾。
2. 电器内部击穿:在电器中,如电视、冰箱等,电路板上也会存在电介质。
如果电路板设计不合理或电介质质量不好,电场可能会集中在某个位置,导致该位置的电介质发生热击穿,可能会损坏电器或引发安全隐患。
3. 电容器击穿:电容器是一种常见的电子元件,它由两个导体之间夹带电介质而成。
如果电容器电场强度过大,电介质可能发生热击穿,导致电容器损坏或产生火花。
4. 绝缘子击穿:在高压输电线路中,绝缘子起到支持导线和隔离电力的作用。
如果绝缘子的表面被污秽物覆盖或损坏,电场可能会集中在某些位置,导致电介质发生热击穿,引发绝缘子损坏或导线短路。
5. 电池热击穿:电池是一种常见的电源装置,内部也包含电介质。
如果电池内部发生故障或短路,电池可能会发生热击穿,导致电池变形、泄漏,甚至爆炸。
6. 电子元件击穿:在电子设备中,电子元件如二极管、晶体管等也会存在电介质。
如果电子元件内部电场强度过大,电介质可能会发生热击穿,导致元件损坏或失效。
7. 电力设备击穿:在电力系统中,如变压器、开关设备等也使用了电介质。
如果设备设计不合理或电介质质量不好,电场可能会在设备内部集中,导致电介质发生热击穿,引发设备故障或火灾。
8. 电线穿孔:在家庭装修中,如果电线直接穿过墙体或隔板,由于电场强度集中在穿孔位置,电介质可能会发生热击穿,引发短路或火灾。
9. 电力线路击穿:在高压输电线路中,如果电线间距过小或绝缘层破损,电场强度可能会超过电介质的击穿强度,导致电线之间发生热击穿,引发线路故障。
举出电介质中热击穿在生活中的例子

举出电介质中热击穿在生活中的例子电介质是指在电场作用下能够发生极化的物质,常见的电介质有空气、玻璃、橡胶等。
在生活中,电介质的热击穿现象是指电介质在电场作用下,由于电场强度过高导致电介质发生局部击穿,导致电流突然增大,产生大量热量,引发火灾或设备损坏等危险。
下面是几个电介质中热击穿在生活中的例子:1. 家用电器中的电击穿:在家用电器中,电介质的热击穿现象可能导致电器短路、电线熔断甚至引发火灾。
例如,在使用电熨斗时,如果电熨斗的电线绝缘层损坏,电流就会通过绝缘层发生热击穿,造成火灾。
2. 电力变压器中的热击穿:电力变压器中使用的绝缘材料通常是油纸绝缘,如果绝缘材料老化或受潮,电场强度就会增大,导致绝缘材料发生热击穿,造成变压器故障,甚至引发火灾。
3. 高压输电线路中的电击穿:在高压输电线路中,空气作为电介质,当电场强度高到一定程度时,空气中的分子会发生电离,产生电流,导致电介质的热击穿。
这种热击穿现象可能导致输电线路短路,造成停电或引发火灾。
4. 电容器中的电击穿:电容器中的电场强度过高时,电介质容易发生热击穿。
例如,电子设备中使用的电解电容器,如果电压过高或电容器质量不合格,可能发生电击穿,导致设备损坏或爆炸。
5. 火花塞中的电击穿:火花塞是内燃机中的重要部件,用于点火。
在工作过程中,火花塞中的电场强度会很高,如果电介质发生热击穿,可能导致点火不正常,引发发动机故障。
6. 绝缘子中的电击穿:在高压设备中,绝缘子用于支撑导线,防止电流通过。
当电场强度过高时,绝缘子中的电介质可能发生热击穿,导致设备故障或火灾。
7. 电子元器件中的电击穿:在电子设备中,电介质的热击穿可能导致电子元器件的损坏,影响设备的正常运行。
例如,电子电路中使用的电容器、继电器等元件,如果电介质发生热击穿,可能导致元件烧毁。
8. 充电宝中的电击穿:充电宝是现代生活中常见的便携式充电设备,其中使用的电池通常是锂电池。
如果充电宝的电路设计不合理或电池质量不过关,可能导致电介质的热击穿,引发充电宝爆炸或起火。
液体电介质的击穿特性

/22
3. 电压作用时间
Ubp(kV)(峰值) 冲击系数Kl最小值
700
Φ
600
50
20
50
0
10-6 10 -5 10-4 10-3 10-2 10-1 1 10 1
t(s)
10 9 8
7 6
5 4 3 2 1
10 2
稍不均匀电场中变压器油的伏秒特性曲线
(虚线表示未经研究过的区域)
(虚线表示未经研究的区域)
/22
4. 电场均匀程度
油的纯净程度较高时,改善电场的均匀程度能 使工频或直流电压下的击穿电压明显提高
液体电介质击穿电压的分散性和电场的均匀程 度有关 工频击穿电压的分散性在极不均匀电场中不 超过5%,而在均匀电场中可达3040%
/22
5.压强
Ub(有效值)/kV
d
主要内容
液体电介质的击穿理论 影响液体电介质击穿电压的因素 提高液体电介质击穿电压的方法
(一)液体电介质的击穿理论
液体电介质 :纯净的液体电介质 工程用液体电介质
击穿机理不同:电击穿理论、气泡击穿理论 小桥击穿理论
/22
1. 纯净液体电介质的电击穿理论
液体中因强场发射等原因产生的电子,在电场 中被加速,与液体分子发生碰撞电离
在极不均匀电场中变压器油的击穿过程,先在 尖电极附近开始电离,电离开始阶段以后是流 注发展阶段,流注分级地向另一电极发展,放 电通道出现分枝,最后流注通道贯通整个间隙
与长空气间隙的放电过程很相似
/22
2. 纯净液体电介质的气泡击穿理论
当外加电场较高时,液体介质内由于各种原因 产生气泡 1)电子电流加热液体,分解出气体; 2)电子碰撞液体分子,使之解离产出气体; 3)静电斥力,电极表面吸附的气泡表面积累电 荷,当静电斥力大于液体表面张力时,气泡体 积变大; 4)电极凸起处的电晕引起液体气化。
液体电介质的击穿

(二)以电子崩发展至一定大小为击穿条件
定义α为液体介质上一个电子沿电场方向 行径单位距离平均发生的碰撞电离次数
类似气体放电 条件的处理
1
e Chv eE
电离几率 电极距离
单位距离 碰撞总数
Chv Eb e ln(d A )
设击穿条件为d A
其他参数一定时 Eb∝1/lnd
二、含气纯净液体电介质的气泡击穿理论
一次碰撞中,液体分子平均吸收的能量为一个振动能 量子hʋ。
当电子在相邻两次碰撞间得到的能量大于hʋ,电子就 能在运动过程中逐渐积累能量,至电子能量大到一定 值时,电子与液体相互作用时便导致碰撞电离。
2.定量分析 设电子电荷为e,电子平均自由程为λ,电场强度为E 则碰撞电离的临界条件为 eEλ=Chʋ 如果把这个条件作为击穿条件,则击穿场强可写为
Chv E e
b
C-大于1的整数
如何确定电子平均自由行程?
以直链型碳氢化合物液体为例
设液体分子浓度为N,分子由各种CH基团组成,Sj代 表第j个基团的碰撞截面,设一个分子主链由m个原子 构成,原子间有效距离为h0,线型分子的有效半径为a, 则一个分子的总碰撞截面为 S=ΣSj=2a(m-1)h0=s0(m-1)
(m-1)h0
2a
2h0 直链型碳氢化合物分子模型
已知电子平均自由程与碰撞截面的关系为
1 SN
液体分子浓度
M -液体分子量 ρ -密度 N0-阿佛伽德罗常数
N N0 M
代入上式,得
M M SN 0 N 0 S 0 (m 1)
从而根据击
穿场强的表达式得 固有振动频 率平均值 Chvi Chvi Eb S 0 (m 1) N 0 A(m 1) e e M M
电介质击穿的例子

电介质击穿的例子电介质是一种具有较高电阻性质的物质,一般情况下不导电。
然而,在特定条件下,电介质也会发生击穿现象,即在电场强度达到一定值时,电介质内部会出现电流的瞬时放电现象。
下面列举了十个常见的电介质击穿的例子。
1. 空气击穿:空气是最常见的电介质之一,当电场强度达到约30 kV/cm时,空气中的分子会离子化并形成电流通路,导致电介质击穿。
这种击穿现象在雷电中尤其常见。
2. 水击穿:水也是一种常见的电介质,当电场强度达到一定值时,水中的离子会发生移动并形成电流通路,导致电介质击穿。
这种现象在高电压设备中可能会发生。
3. 油击穿:油是一种常用的绝缘介质,在高压设备中起着绝缘和散热的作用。
然而,当电场强度超过油的击穿强度时,油会发生击穿现象。
4. 绝缘纸击穿:绝缘纸是一种常用的绝缘材料,用于电力设备的绝缘保护。
然而,在高电压下,绝缘纸也会发生击穿现象,导致设备故障。
5. 绝缘胶击穿:绝缘胶是一种常见的绝缘材料,广泛应用于电线电缆的绝缘保护。
然而,在高电场强度下,绝缘胶也会发生击穿现象。
6. 陶瓷击穿:陶瓷是一种常见的绝缘材料,具有优良的耐高温和耐磨损性能。
然而,在极端条件下,如高温和高电压下,陶瓷也会发生击穿现象。
7. 陶瓷电容器击穿:陶瓷电容器是电子电路中常用的电子元件,具有良好的电介质特性。
然而,在过高的电场强度下,陶瓷电容器也会发生击穿现象。
8. 电缆击穿:电缆是电力传输和通信领域中常用的设备,具有良好的绝缘性能。
然而,在极端条件下,如高温和高电压下,电缆也会发生击穿现象。
9. 电力变压器击穿:电力变压器是电力系统中常用的设备,用于升降电压。
然而,在过高的电场强度下,电力变压器也会发生击穿现象。
10. 玻璃击穿:玻璃是一种常见的绝缘材料,广泛应用于建筑和家居装饰中。
然而,在极端条件下,玻璃也会发生击穿现象。
以上是十个常见的电介质击穿的例子。
电介质的击穿现象会导致设备故障和电击危险,因此在设计和使用电力设备时,需要合理选择和使用绝缘材料,以防止电介质的击穿现象的发生。
电介质击穿名词解释

在强电场中,电介质会失去极化特征而成为导体,最后导致电介质的损坏(如晶格裂缝、氧化、熔化等)现象,这种现象称为电介质的击穿现象。
电介质的击穿有三种形式,即热击穿、化学击穿和电击穿。
热击穿是电介质的损耗引起的。
当损耗所产生的热量多于电介质向周围传递的热量时,电介质的温度迅速上升,电导率随之增加,甚至导致电介质的热损坏。
所以热击穿总是在电容器最不好的地方发生的。
化学击穿是电介质长期处于高压下工作之后出现的。
强电场会在电介质表面或内部的小孔附近引起局部的空气碰撞电离,从而引起电介质的电晕,生成臭氧和二氧化碳。
这些气体对有机绝缘材料是有害的,会使这些材料的绝缘性能降低,并损坏电介质。
电击穿是电介质在强电场作用下,被激发自由电子而引起的。
这时,电介质中出现的电子电流随电场的增加而急剧增大,从而破坏电介质的绝缘性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
✓ 绝缘层:当覆盖层厚度增大,本身承担一定电压时,称为绝缘层。 ✓ 屏障:在油间隙中放置的尺寸较大的(与电极形状相适应)、厚度在
1~3mm的层压纸板或层压布板。
B.对固体电介质
✓ 改进制造工艺:如尽可能地清除固体介质中残留的杂质、气泡、 水分等,使介质尽可能均匀致密。这可以通过精选材料、改善工 艺、真空干燥、加强浸渍(油、胶、漆)等方法来达到。
调节电抗器的电感L或改变试 验电压的频率,达到谐振:
串联谐振回路原理图
L 1 CX
U X QU0
Q为谐振回路的品质因素,一般为20~80。
C.电压的波形
工频电压的波形:正弦波。
波形畸变影响介电强度试验结果:
✓ 高次谐波会降低击穿场强; ✓ 击穿决定于电压的峰值,而测量的电压是有效值,若波形畸变,则
✓ 发生表面闪络; ✓ 边缘电场集中导致试样击穿发生在电极的边缘。
消除措施:
✓ 将电极边缘做成圆角; ✓ 将试样和电极浸入相对介电常数(或电导率)大、击穿场
强较高的液体媒质中。
常用液体媒质有变压器油,温度较高时采用硅油。 不能选用相对介电常数或电导率太大的媒质,以免 造成测量误差和设备损坏。
如引起媒质本身发热严重、保护电阻上电压降增大、以及试验变压器过载等问题。
聚异丁烯的EB与温度关系
B.湿度的影响
湿度增大,会使击穿场强下降。 (对液体电介质尤为明显,因为水分 的电导和介质损耗较大,会改变电场 分布。)
变压器油的击穿电压与含有 水分的关系
C.气压的影响
巴申定律:
U B f ( pS ) (p为气压,S为电极间距离)
S固定,改变p时:
✓ 气压较低时,气体密度较小,碰撞几率减
(4)保护和接地
✓ 在试验回路的低压部分可能出现高电压的地方接上放电间隙。 ✓ 在高压测试回路中应接保护电阻。 ✓ 接地点和接地体的连接线应采用尽量短的多股线,以减小电
阻和电感。 ✓ 高压试验区应装有保护围栏,并备有接地棒。
二、工频高电压的测量
测量方法:静电电压表法、球隙测量法、互感器测量法、 分压器法、测量绕组法。
如果在空气中进行击穿试验:
(把空气和试样看作双层介质)
1)在交流电场下,电极边缘空气中场强 Ea与试样中相邻点的场强EX之比:
Ea rx 1 tan2 X rx EX ra 1 tan2 a ra
电极边缘的电场分布
2)在直流电场下: Ea x EX a
由于εra<εrx,γa<γx,则Ea > EX; 而空气的击穿场强较低,导致电极边缘的空气 中先出现局部放电:
电极中央试样最薄处δ应比 试样厚度小5倍以上;球电极 半径r要比δ大20倍。
沿试样表面击穿
试样的面积要比电极面积大,使之在击穿前不会发生闪络。 为了能暴露材料中存在的弱点,一般选取电极直径为25mm或 50mm。
各类试样的尺寸(GB1408-78)
试样厚度的测量:对厚度均匀试 样,通过击穿点的直径上测三点 取平均值;对厚度不均匀试样, 以击穿点的厚度来计算。
✓ 改进绝缘设计:采用合理的绝缘结构,使各部分绝缘的耐电强度 能与其所承担的场强有适当的配合。改进电极形状、使电场尽可 能均匀。改善电极与绝缘体的接触状态,以消除接触处的气隙或 使接触处的气隙不承受电位差(如采用半导体漆)。
✓ 改善运行条件:如注意防潮,防止尘污和各种有害气体的侵蚀, 加强散热冷却(如自然通风,强迫通风,氢冷、水内冷等)。
(6)其它因素
➢ 辐射的影响
X射线照射离子型晶体,会使晶格缺 陷产生变化,从而使EB发生变化。
➢ 机械应力的影响 机械应力增大,击穿场强降低。
NaCl晶体的击穿场强受辐射的影响
➢ 杂质、缺陷的影响
工程上用的绝缘材料中的杂质、缺 陷会明显地降低击穿场强。
提高电介质击穿强度的措施
A.对液体电介质
(1)减少杂质
正极性
负极性
针尖对平板电极系统
当针尖电极为正极性时,击穿电压要比针尖电极为负极性时低。
(4)试样的厚度与不均匀性
试样的厚度增加,会增加材料散热的困难, 也会增加电场的不均匀度,试样内部含有缺 陷的几率增大,从而使EB下降。
EB
UB d
Ad n1
绝缘纸的EB与厚度的关系
A为常数,d为试样厚度,n随材料性质、电压波形、及厚度范围在0.3~1.0范围内取值。
(2)固体材料的电极
要求:
✓ 电极必须具有良好的导电、导热性能。 ✓ 电极表面要平整光沿并与试样保持良好接触。 ✓ 在试验过程中电极与试样不会有相互作用。
对于平整光滑的板材或薄膜试样,一般采用圆柱形铜或不锈钢电极; 对于管状材料或型材试样,电极要用金属箔或沉积金属层。
电极的形状和尺寸选用:
根据能形成比较均匀的电场,能合理 地暴露材料的弱点,以及使用方便、 节约材料等要求。
对于薄膜试样,EB将随厚度减小而显著增加。
(5)环境条件
A.温度的影响
聚 乙 烯 (PE) 和 聚 丙 烯 (PP) 的 EB 与温度关系
温度升高,通常会使EB下降。(尤其 在材料的玻化温度范围,因发生热击穿
EB下降最明显。)
在低温区某些 材 料 的 EB 随 温 度升高而增加, 这是温度对电击 穿电压的影响。
(因直流下只有电导损耗)
✓ 冲击电压下因作用时间短,热的积累效应 和局部放电造成的破坏还来不及形成,其 EB高于直流和和工频交流下的EB。
✓ 电压频率越高,介质损耗越大, EB越低。
击穿场强与频率的关系
工程上绝缘材料的击穿场强通常是指工频电压下的击穿场强。
(2)电压作用时间
电击穿的时间很短,可以在10-7~10-9s 内发生。热击穿因热的累积需要较长 时间,随着时间增长,EB明显下降。
(测量误差不超过1%)
✓ 当试样厚度较大时(>3mm),如果击穿电压超过试验变压器 的额定电压,或表面闪络难以解决,可将试样削薄。
✓ 对于纸或薄膜材料,可将多层试样叠加在一起进行击穿试验。
注:试验标准中一般规定至少要测5个试样,取其算术平均值 作为试验结果。如果其中一个数值偏离平均值超过15%,则必 须另取5个试样,以10个试样平均值作为试验结果。
一、试验设备与装置
试验设备与装置:高压试验变压器、调压器以及控制线 路和保护装置。 (1)高压试验变压器:
要求:具有足够的额定电压和容量,且输出电压的波形没有畸变。
A.变压器的容量
指变压器在额定电压电流的情况下的视在功率。 (视在功率:交流电路中,电压和电流的乘积,或者说有功功率 和无功功率的矢量和,单位为V·A或KV·A。)
液体材料的试样与电极
电极的形式:平板型和球型。
(我国现行标准用平板型电极)
电极的尺寸要求:如图所示
注意事项:
液体击穿隙应均匀。
✓ 电极容器材料不会与被试液体相互作用,常用电瓷或玻璃制成, 电极用铜或不锈钢制成。
✓ 取样时不能让杂质混入,注入液体后静止片刻,避免电极间留有 气泡。
同一峰值电压测得的有效值就不同了。
波形因素:正弦波电压的峰值与有效值之比。
U幅值 2U有效
通常要求波形因素不超过: (2 1 5%)
波形畸变的原因:变压器的非线性激磁电流造成的。
试验变压器的输入电压为:
U1 k(Us U2 )
变压器的磁化曲线:a)磁通与激磁电流 的关系;b)磁通及激磁电流的波形
移圈调压器原理图
(3)控制线路
满足要求:
✓ 只有在试验人员撤离高压试验区,并关好安全门之后,才 能加上电压进行试验。
✓ 升压必须从零开始,以一定方式和速度上升。 ✓ 在试样发生击穿时,能自动切断电源;在自动控制线路中,
能自动是电压下降到零。
了解:非自动和自动调压介电强度试验原理(见P79~80)
计算机在介电强度试验的控制系统中应用:采用单片机或微机控制 步进电动机带动调压器实现升压、降压过程。
本节课内容
➢概述 ➢气体电介质的击穿 ➢液体电介质的击穿 ➢固体电介质的击穿 ➢影响介电强度的因素 ➢试样、电极和升压方式的选择
固体材料的试样与电极
(1)固体材料的试样
为了能使试样的击穿发生在均匀的电场中,必须把试 样做成各种型材。
r δ
模压材料或板材
均匀电场下击穿试验用型材与电极
➢ 试样要求:
(要求测量误差不超过3%,测量用仪表一般要求为0.5级)
固体电介质击穿的形式:电击穿、热击穿和电化学击穿。
(1)电击穿:
由碰撞游离形成电子崩,当电子崩足够强时,破坏介质晶格结 构导致击穿。 主要特征:击穿电压高、击穿过程极快、击穿前发热不显著、击 穿场强与电场均匀程度密切相关而与周围环境温度无关。
本节课内容
S UI U 2Cx
绝缘材料击穿试验通常选取容量为10kV·A的变压器。 对与大电容试样的耐压试验,采用超低频正弦电压,可以大大 降低变压器的容量。(如采用0.1Hz超低频电压,变压器容量可 减小到50Hz时的1/500。)
B.变压器的电压
额定电压等级是根据试样的试验电压等级来选定,通常选取 50~100kV。采用多台变压器串接可获得更高的试验电压。
Et
E (1
a 4t
)
聚乙烯的击穿场强与电 压作用时间的关系
E∞为加压时间足够长击穿电压达到稳定时的最小击穿场强 a为常数,t为加压时间, Et为加压时间t时的击穿场强。
(3)电场的均匀性及电压的极性
不均匀电场下的击穿场强低于均匀电场下的本征击穿场强。 在不均匀电场下,直流和冲击电压的极性对击穿电压有明显影响。
✓ 过滤:将绝缘油在压力下连续通过装有大量事先烘干的过滤纸层 的过滤机,将抽中碳粒、纤维等杂质滤去,油中部分水分及有机 酸也被滤纸所吸收。