气体电介质的击穿 液体电介质的击穿 固体电介质的击穿
《高电压工程》习题答案完整版

《高电压工程》习题答案第一章1. 解释绝缘电阻、吸收比、泄漏电流、tan δ的基本概念。
为什么可以用这些参数表征绝缘介质的特性?绝缘电阻:电介质的电阻率很大,只有很小的泄漏电流(一般以μA 计)流过电介质,对应的电阻很大,称为绝缘电阻。
绝缘电阻是电气设备和电气线路最基本的绝缘指标。
绝缘电阻值的大小常能灵敏的反映绝缘情况,能有效地发现设备局部或整体受潮和脏污,以及绝缘击穿和严重过热老化等缺陷。
吸收比:吸收比K 定义为加上直流电压后60s 与15s 时的绝缘电阻值之比。
即ss R R K 1560=。
若绝缘良好,比值相差较大;若绝缘裂化、受潮或有缺陷,比值接近于1,因此绝缘实验中可以根据吸收比K 的大小来判断绝缘性能的好坏。
泄漏电流:流过电介质绝缘电阻的纯阻性电流,不随时间变化,称为泄漏电流。
泄漏电流实际上就是电气线路或设备在没有故障和施加电压的作用下,流经绝缘部分的电流,因此,它是衡量电器绝缘性好坏的重要标志之一。
tan δ :介质损耗因数是在交流电压作用下,电介质中电流的有功分量与无功分量的比值。
即CR I I =δtan 。
tan δ是反映绝缘介质损耗大小的特征参数。
2. 为什么一些电容量较大的设备如电容器、电力电缆等经过直流高压实验后,要用接地棒将其两极间短路放电长达5-10min?因为容型设备的储存电荷较多,放电实质是一个RC电路,等效的公式为U(1-e T),其中时间常数T=R*C ,电容越大,放电的时间越长。
为了操作安全以及不影响下一次试验结果,因此要求电容要充分放电至安全程度,时间长达5-10min。
3. 试比较气体、液体、固体电介质的击穿场强大小及绝缘恢复特性。
固体电介质击穿场强最大,液体电介质次之,气体电介质最小;气体电介质和液体电介质属于自恢复绝缘,固体电介质属于非自恢复绝缘。
4. 何谓电介质的吸收现象?用电介质极化、电导过程的等值电路说明出现此现象的原因。
为什么可以说绝缘电阻是电介质上所加直流电压与流过电介质的稳定体积泄漏电流之比?(1)一固体电介质加上直流电压U,如图1-1a所示观察开关S1合上之后流过介质电流i的变化情况。
电介质的电气特性及放电理论-高电压技术考点复习讲义和题库

考点1:电介质的电气特性及放电理论(一)气体电介质的击穿过程气体放电可以分非自持放电和自持放电两种。
20世纪Townsend在均匀电场,低气压,短间隙的条件下进行了放电试验,提出了比较系统的理论和计算公式,解释了整个间隙的放电过程和击穿条件。
1、汤逊放电理论的适用范围:汤逊理论的核心是:(1)电离的主要因素是电子的空间碰撞电离和正离子碰撞阴极产生表面电离;(2)自持放电是气体间隙击穿的必要条件。
汤逊理论是在低气压、Pd值较小的条件下进行的放电实验的基础上建立起来的,这一放电理论能较好的解释低气压短间隙中的放电现象。
因此,汤逊理论的适用范围是低气压短间隙(Pd<26 66kPa.cm)。
在高气压、长气隙中的放电现象无法用汤逊理论加以解释,两者间的主要差异表现在以下几方面:(1) 放电外形根据汤逊理论,气体放电应在整个间隙中均匀连续地发展。
低气压下气体放电发光区确实占据了整个间隙空间,如辉光放电。
但在大气压下气体击穿时出现的却是带有分支的明亮细通道。
(2) 放电时间根据汤逊理论,闻隙完成击穿,需要好几次循环:形成电子崩,正离子到达阴极产生二次电子,又形成更多的电子崩。
完成击穿需要一定的时间。
但实测到的在大气压下气体的放电时间要短得多。
(3) 击穿电压当Pd值较小时,根据汤逊自持放电条件计算的击穿电压与实测值比较一致;但当Pd值很大时,击穿电压计算值与实测值有很大出入。
(4) 阴极材料的影响根据汤逊理论,阴极材料的性质在击穿过程中应起一定作用。
实验表明,低气压下阴极材料对击穿电压有一定影响,但大气压下空气中实测到的击穿电压却与阴极材料无关。
由此可见汤逊理论只适用于一定的Pd范围,当Pd>26 66kPa. cm后,击穿过程就将发生改变,不能用汤逊理论来解释了。
2、流注理论利用流注理论可以很好地解释高气压、长间隙情况下出现的一系列放电现象。
(1) 放电外形 流注通道电流密度很大,电导很大,故其中电场强度很小。
液体和固体电介质的击穿特性

一、电介质的组合原则
直流电压下,各层绝缘分担的电压与其绝缘电阻 成正比,亦即场强与各层电导率σ 成反比: E1/E2=σ 2/ σ
则E1σ 1= E2σ 2 ,各层Eb1 σ 定。
1 1
值小的先击穿,由电导率决
二、组合绝缘的特点
1、“油-屏障”式绝缘
油浸电力变压器主绝缘采用的是“油-屏障”式绝缘 结构,在这种组合绝缘中以变压器油作为主要的电介 质,在油隙中放置若干个屏障是为了改善油隙中的电 场分布和阻止贯通性杂质小桥的形成。一般能将电气 强度提高30%~50%。
电压作用时 间越短,液体的击 穿电压越高,因为 形成杂质“小桥” 需要时间。
稍不均匀电场中变压器油的伏秒特性曲线
在电压作用时间短至几个微秒时击穿电压很高,
击穿有时延特性,属电击穿;
电压作用时间为数十到数百微秒时,杂质的影响
还不能显示出来,仍为电击穿,这时影响油隙击
穿电压的主要因素是电场的均匀程度;
发生两种情况:
(1)杂质小桥尚未接通电极时,则纤维等杂质 与油串联,由于纤维的εr大以及含水分纤维的电 导大,使其端部油中电场强度显著增高并引起电离,
于是油分解出气体,气泡扩大,电离增强,这样下
去必然会出现由气体小桥引起的击穿。
(2)如果杂质小桥尚未接通电极,因小桥的电 导大而导致泄漏电流增大,发热会促使汽化,气 泡扩大,发展下去会出现气体小桥,使油隙发生 击穿。
复合绝缘体:不同的绝缘体组合起来使用。 一方面,复合绝缘相互弥补弱点,得到更高的 击穿场强; 另一方面,实用绝缘结构很难使用单一绝缘。
一、电介质的组合原则
常见的复合绝缘体:由多种电介质构成的层叠绝缘
理想的电压分布:各层电介质承受的场强与该层介 质的耐电强度成正比,这样整个组合绝缘的电气 强度最高,各层绝缘材料的利用也最合理、最充 分。
气体固体液体电介质击穿过程的异同

气体固体液体电介质击穿过程的异同在我们生活中,气体、固体、液体和电介质都扮演着重要的角色,但当它们遇到电压时,情况就变得有趣了。
想象一下,就像我们在热锅上煮水,水分子一开始懒洋洋地呆着,突然加热之后,它们开始活跃,整个气氛瞬间就变得热烈起来。
这就像气体在电场下,随着电压的增加,气体分子们逐渐被激发,最终达到一种击穿的状态。
哇,这可是个激动人心的时刻,气体里的离子开始奔跑,像是聚会的年轻人,一下子就打破了原有的沉寂,形成了电流。
这种现象我们称为“气体击穿”,听起来是不是挺酷的?再说说固体,固体的击穿就像是在一个坚固的城堡里,原本安静的守卫突然发现外面来了敌人,固体中的电子并不容易被激发。
它们得先突破重重防线,经过一番苦战,才有可能进入击穿状态。
这时候,城堡里就会出现一条裂缝,电流也就趁机而入。
固体的击穿往往需要更高的电压,这就像打破坚冰,非得动用点“重武器”才能奏效。
而液体的情况又是另一番景象。
液体分子就像在水中游泳的鱼儿,一开始在电场的影响下,它们也会变得活跃。
但液体的击穿更像是一场聚会,朋友们在水里玩得正欢,电场的出现就像是一个闪亮的烟花,把大家的注意力吸引过去。
随着电压的增加,液体分子开始剧烈运动,最终形成了导电路径。
这种情况常常会让人联想到水电的奇妙联系,真是让人感叹大自然的神奇。
再来看看电介质,这可是一位非常特别的角色。
电介质就像是聚会中总是保持冷静的人,虽然它的结构相对复杂,但在电场作用下,它却能产生极大的极化效应。
当电场施加到它身上时,电介质内部的电偶极子开始排列,形成了一个隐秘的保护层。
可是,当电压足够高时,这层保护就会被打破,电流便会蜂拥而入,形成击穿现象。
这就像是终于忍不住加入舞池的朋友,一下子就把气氛推向了高兴。
说到这里,我们不得不提到这些击穿过程的异同。
气体、固体、液体和电介质都可以在电场的影响下发生击穿,但每种物质的“耐压能力”可不一样。
气体需要较低的电压,固体的耐压最高,液体则介于两者之间,而电介质则有自己独特的表现方式。
5液体、固体介质的击穿

二、影响固体介质击穿的因素
电压作用时间、 E均匀程度、温度、受潮、累积效应等
1、电压作用时间
如果电压作用时间很短(例如0.1s以下),固体介质的击穿 往往是电击穿,击穿电压当然较高。 随着电压作用时间的增长,击穿电压将下降,如果加压 数分钟到数小时才引起击穿,则热击穿往往起主要作用。 不过二者有时很难分清,例如工频1min耐压试验中试 品被击穿,常常是电和热双重作用的结果。 电压作用时间长达数十小时甚至几年才发生击穿时,大多 属于电化学击穿的范畴。
2、工程用变压器油的击穿过程及其特点
可用气泡击穿理论解释其过程,依赖于气泡的形成、发热膨 胀、气泡通道扩大并形成小桥,有热过程,属于热击穿范畴。 由于水和纤维的εr很大,易沿电场方向极化定向,并排列成 杂质小桥。
油中受潮→水分(εr=81) 纸布脱落→纤维(εr=6-7) 有两种情况: (1)如果杂质小桥接通电 极,因小桥的电导大而导 致泄漏电流增大,发热会 促使汽化,气泡扩大,发 展下去会出现气体小桥, 使油隙发生击穿。
E (r )
1
r2 r1
r3
2
1
2
(a) 电缆截面图
0
r1
r2
r3
r
(b) 电场分布
利用分阶绝缘调整电场分布
3.4 电介质老化(自学)
1、老化种类及原因、特点是什么?
电老化主要由于局部放电引起
2、什么是“热老化的8 C 规则”? 3、受潮对介质有什么影响?
加速电老化和热老化过程
思考作业
3-2、3-3、3-7、3-8
悬浮态的水易在电场下形成 “小桥”,对击穿电压影响很大;
变压器油中含水量超过溶解度 50ppm时,含水量↑→Ub迅速↓
5液体、固体介质的击穿教程

②80度以上: 温度↑→汽化↑→Ub↓
③-5度-0度:冰水、全部悬浮,Ub最低 ④-5度以下:粘度↑→小桥不易形成→Ub↑
3、电场均匀度
电场较均匀时,电场越均匀杂质小桥越易形成,油的品质 对工频Ub影响越大; 电场极不均匀时,电极附近电场很强,造成强烈电离,电 场力对带电质点的强烈作用使该处的油剧烈扰动,杂质和水 分很难形成“小桥”。
悬浮态的水易在电场下形成 “小桥”,对击穿电压影响很大;
变压器油中含水量超过溶解度 50ppm时,含水量↑→Ub迅速↓
(2)纤维越多,杂质小桥越易形 成,击穿电压越低
有纤维存在时,水分影响特别明显
(3)气体含量超过油中溶解度时, 将以自由态出现→Ub迅速↓
2、油温
①0-60度: 温度↑→水珠溶解度↑→Ub↑
2、热击穿理论
由于电导γ存在→损耗→发热→T↑→R↓→I↑↑→损耗 发热↑↑(Q发>Q散)→T↑↑→介质分解、劣化→击穿
热击穿的主要特点:
击穿与环境、电压作用时间、电源频率及介质本身有关。 击穿时间较长,击穿电压较低。
3、电化学击穿
固体介质在电、热、化学和机械力长期作用下,会逐渐 发生某些物理化学过程,使其绝缘性能逐渐劣化,这种 现象称为绝缘的老化。 由于绝缘的老化而最终导致的击穿称为电化学击穿。 最终可能是电击穿也可能是热击穿。 电化学击穿特点: 长时间;击穿电压低(工作电压下即可能发生)
2、工程用变压器油的击穿过程及其特点
可用气泡击穿理论解释其过程,依赖于气泡的形成、发热膨 胀、气泡通道扩大并形成小桥,有热过程,属于热击穿范畴。 由于水和纤维的εr很大,易沿电场方向极化定向,并排列成 杂质小桥。
油中受潮→水分(εr=81) 纸布脱落→纤维(εr=6-7) 有两种情况: (1)如果杂质小桥接通电 极,因小桥的电导大而导 致泄漏电流增大,发热会 促使汽化,气泡扩大,发 展下去会出现气体小桥, 使油隙发生击穿。
第三章固体电介质和液体电介质的击穿特性

一、液体电介质的击穿机理(击穿过程)
液体电介质
纯净的液体电介质 击穿机理不同
工程用液体电介质(含杂质)
一、液体电介质的击穿机理(击穿过程)
1.电击穿过程(碰撞游离)
碰撞游离开始作为击穿条件 电子崩发展至一定大小为击穿条件
液体电介质
纯净的液体电介质
击穿机理
电击穿过程
工程用液体电介质(含杂质)
电击穿过程 气泡击穿过程
二、影响液体介质击穿电压的主要因素
1.杂质
2.温度 3.电场的均匀程度 4.电压作用时间 5.压力
二、影响液体介质击穿电压的主要因素
油中含有杂质,击穿电压就会显著降低!
通过标准油杯中 变压器油的工频击 穿电压来衡量油的 品质
引言
空气的耐电强度 液体介质的耐电强度 固体介质的耐电强度
10 — 30kV/cm左右; 100 — 200 kV/cm; 一百多 — 几千kV/cm
液体、固体电介质是电气设备内绝缘的主要绝缘材料。
液体、固体电介质的电气强度高,用它们作为绝缘介质,可以大 大缩小导体间的绝缘距离,从而减小电气设备的体积。
二、影响液体介质击穿电压的主要因素 2.温度
①干燥的油 温度对有的击穿电压影响很小 ②受潮的油 冰-溶解-汽化=击穿电压“N”形变化
二、影响液体介质击穿电压的主要因素
3.电场均匀程度
电场愈均匀,杂质越易形成“小桥”, 杂质对油在工频电压下的击穿电压的影响愈大。
优质油:保持油不变,而改善电场均匀度,能使工频击穿电 压显著增大,也能大大提高其冲击击穿电压。
绝缘油的试验项目及标准
气体电介质的击穿 液体电介质的击穿 固体电介质的击穿

第5章电介质的击穿气体电介质的击穿液体电介质的击穿固体电介质的击穿¾电介质的击穿介质发生击穿时,通过介质的电流剧烈地增加,通常以介质伏安特性斜率趋向于∞(即dI/dU=∞)——击穿发生的标志。
¾击穿电压¾击穿场强:电介质的击穿场强是电介质的基本电性能之一,它决定了电介质在电场作用下保持绝缘性能的极限能力。
5.1 气体电介质的击穿¾正常气体中的载流子(离子和电子)在外电场作用下迁移,形成电流电流随电压增加而增加电离产生的载流子来不及复合,全部到达电极气体中出现碰撞电离,载流子浓度增大,电流不再保持恒定而迅速上升载流子数剧增,气体中的电流无限增大(dI/dU→∞)——丧失绝缘性能。
气体击穿(气体放电):气体由绝缘状态变为良导电状态的过程。
击穿场强:均匀电场中击穿电压与气体间隙距离之比.击穿场强反映了气体耐受电场作用的能力,即气体的电气强度。
平均击穿场强:不均匀电场中击穿电压与间隙距离之比称¾气体发生击穿时除电流剧增外,通常还伴随有发光及发热等现象。
5.1.1 均匀电场中气体击穿的理论1.气体击穿的汤逊(Townsend)理论电子崩形成过程(电子倍增过程)(1)电子崩与电流倍增外界电离因子在阴极附近产生了一个初始电子,如果空间电场强度足够大,该电子在向阳极运动时就会引起碰撞电离,产生一个新的电子,初始电子和新电子继续向阳极运动,又会引起新的碰撞电离,产生更多的电子。
α如电离系数为,则从阴极出发的一个电子,行经单位距离后增加为2α个电子。
类似雪崩似地发展,这种急剧增大的空间电子流被称为电子崩。
电子崩模型右图所示,在电子崩发展过程中,崩头最前面集中着电子,其后直到崩尾是正离子。
在强电场中出现电子崩α的过程称为过程。
这样的放电依赖于外界条件的,也称为非自持放电.(2)气体的自持放电实验发现,当气隙不太宽时,放电与电极材料有关,因而导致考虑γ过程的作用,由γ过程和过程一起来决定气隙中的电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章电介质的击穿气体电介质的击穿液体电介质的击穿固体电介质的击穿¾电介质的击穿介质发生击穿时,通过介质的电流剧烈地增加,通常以介质伏安特性斜率趋向于∞(即dI/dU=∞)——击穿发生的标志。
¾击穿电压¾击穿场强:电介质的击穿场强是电介质的基本电性能之一,它决定了电介质在电场作用下保持绝缘性能的极限能力。
5.1 气体电介质的击穿¾正常气体中的载流子(离子和电子)在外电场作用下迁移,形成电流电流随电压增加而增加电离产生的载流子来不及复合,全部到达电极气体中出现碰撞电离,载流子浓度增大,电流不再保持恒定而迅速上升载流子数剧增,气体中的电流无限增大(dI/dU→∞)——丧失绝缘性能。
气体击穿(气体放电):气体由绝缘状态变为良导电状态的过程。
击穿场强:均匀电场中击穿电压与气体间隙距离之比.击穿场强反映了气体耐受电场作用的能力,即气体的电气强度。
平均击穿场强:不均匀电场中击穿电压与间隙距离之比称¾气体发生击穿时除电流剧增外,通常还伴随有发光及发热等现象。
5.1.1 均匀电场中气体击穿的理论1.气体击穿的汤逊(Townsend)理论电子崩形成过程(电子倍增过程)(1)电子崩与电流倍增外界电离因子在阴极附近产生了一个初始电子,如果空间电场强度足够大,该电子在向阳极运动时就会引起碰撞电离,产生一个新的电子,初始电子和新电子继续向阳极运动,又会引起新的碰撞电离,产生更多的电子。
α如电离系数为,则从阴极出发的一个电子,行经单位距离后增加为2α个电子。
类似雪崩似地发展,这种急剧增大的空间电子流被称为电子崩。
电子崩模型右图所示,在电子崩发展过程中,崩头最前面集中着电子,其后直到崩尾是正离子。
在强电场中出现电子崩α的过程称为过程。
这样的放电依赖于外界条件的,也称为非自持放电.(2)气体的自持放电实验发现,当气隙不太宽时,放电与电极材料有关,因而导致考虑γ过程的作用,由γ过程和过程一起来决定气隙中的电流。
α放电由非自持转入自持的条件为:1)1(=−d eαγ)11ln(γα+=d 或在均匀电场中,这也就是气隙击穿的条件。
(3)击穿电压、巴申定律温度不变时均匀电场中气体击穿电压U是气体压b 力和间隙距离的乘积的函数,简记为:U=(pdf)b——这个规律在汤逊的碰撞电离理论提出之前已由物理学家巴申(Paschen)从实验中得到,故通常称为巴申定律。
巴申发现:气隙放电电压U b 与气压p 和气隙宽度d 的乘积pd 有关;在某一pd 值下,气隙放电电压出现极小值。
均匀电场中几种气体的U b ~pd 实验曲线汤逊理论与实验结果的比较实线---实验结果虚线---理论计算(4)汤逊气体放电理论的适用范围汤逊放电理论只适用于一定pd 范围内的气体放电.随着pd 的变化,击穿电压将出现极小值。
击穿电压的极小值为:min )(pd B U b =汤逊气体放电理论是在气压较低、pd 值较小条件下进行的放电实验基础上建立起来的。
2.气体击穿的流注理论流注理论是用来说明工程上常见的压力较高(大气压力附近)及间隙距离较大的气体击穿现象。
只限于对放电过程的定性描述。
(1)流注理论的实验基础放电云雾室结构示意图1-火花间隙2-石英窗3-电极4-玻璃壁5-接泵6-绝缘柱(2)流注放电的机理当电子崩发展到足够程度后,电子崩中出现了大量的空间电荷,电场明显畸变。
崩头的电子成为负空间电荷,它加强崩头电场;崩尾的正离子成为正空间电荷,它加强了崩尾的电场,而崩中部正、负电荷混合区域好似一个等离子区,电场被削弱。
电子崩空间电荷对电场的畸变二次电子崩形成示意图(3)自持放电条件流注形成的条件就是自持放电条件,在均匀电场中也就是间隙击穿的条件。
在均匀电场中自持放电条件为:常数=c ax e ──初崩头部电荷达到一定数量时崩的长度c x3.电负性气体的击穿一般来说,电子亲和力大的一些气体,如含卤素的气体,其电离能远低于He等惰性气体,但其与空气的耐压比(相同pd时)却比He等惰性气体的大.在这类气体中,由于SF在性能上具有很多优点,6因此在高压电气设备中得到广泛应用。
5.1.2 极不均匀电场中气体的击穿极不均匀电场中,在电压还不足以导致击穿前,大曲率电极电场最强处已发展起相当强烈的电离现象,大量空间电荷的积聚使间隙中电场畸变,对放电过程的发展有很大影响。
针——板间隙中的电场分布是典型的极不均匀电场。
这种间隙中,针极附近的电场强度很高,而远离针极区域的电场强度则低得多,因此电离过程总是先从针极附近开始的。
1.极不均匀电场中的电晕放电电晕放电是极不均匀电场所特有的一种自持放电形式。
开始发生电晕时的电压称为电晕起始电压。
电场越不均匀,间隙击穿电压和电晕起始电压间的差别也越大。
针-板间隙中空间电荷的分布(a)负针-正板(b)正针-负板2.极不均匀电场中气体的击穿针-板间隙击穿电压与距离的关系随着电压升高,针极附近形成电晕后,不同极性下空间电荷对放电进一步发展所起的作用与电晕放电有所不同。
针为负极性时,流注通道的发展较为困难。
完5.2 液体电介质的击穿5.2.1 高度纯净去气液体电介质的电击穿理论1.碰撞电离开始作为击穿条件设电子电荷为e ,电子平均自由行程为,电场强度为E ,则碰撞电离的临界条件为:ChveE =λλ击穿场强为:M m A N M m S e v Ch e v Ch E i i b ρρλ)1()1(00−=−==Mm A N M m S e v Ch e v Ch E i i b ρρλ)1()1(00−=−==式中C——大于1的整数;S 0——分子常数2ah 0;m——组成分子的原子个数;ρ——液体的密度;M——液体的分子量;N 0——阿佛伽罗常数。
2. 电子崩发展至一定大小为击穿条件定义为液体介质上一个电子沿电场方向行径单位距离平均发生的碰撞电离次数,则正比于碰撞总数乘以电离几率,即λλαeE Chv e /1−=ααλ1λeE Chv e /−)/ln(λλA d e Chv E b =上式说明在其他参数一定时,E b ∝1/ln d ,即液体介质层的厚度减薄时,击穿场强应增大。
设击穿条件为Aad =式中d ——电极间距离;A ——常数λλb eE Chv e dA ad /−==发生击穿时5.2.2 含气纯净液体电介质的气泡击穿理论气泡击穿理论认为,不论由于何种原因使液体中存在气泡时总是气泡先发生电离,使气泡温度升高,体积膨胀,电离将进一步发展;而气泡电离产生的高能电子又碰撞液体分子,使液体分子电离生成更多的气体,扩大气体通道,当气泡在两极间形成“气桥”时,液体介质就能在此通道中发生击穿。
¾热化气击穿¾电离化气击穿1.热化气击穿当液体得到的能量(转化为热量)等于电极附近液体气化所需的热量时,便产生气泡。
夏博以产生气泡条件作为液体击穿条件,即:[]b m a bl T T c m AE +−=)(0τ式中n ——代表空间电荷影响的常数,其值约在1.5~2之间;——液体在电极粗糙处强场区滞留的时间;A ——常数; c ——液体比热;l b ——液体气化热;E b ——液体击穿场强。
ττ当液体温度升高时,击穿场强下降。
2. 电离化气击穿油在放电作用下产生低分子气体,其中主要是氢气、甲烷等,这种化气过程大致如下:C n H2n+2→C n H2n+1+H0C m H2m+2→C m H2m+1+H02 H0→H2↑C n H2n+1+ C m H2m+1→C n+m H2(n+m)+2对绝缘油击穿时的气体进行光谱分析,证明了不存在残留的空气及油的蒸气,主要存在的是氢气。
5.2.3工程纯液体电介质的杂质击穿工程用液体介质总或多或少含有一些杂质,在工程纯液体介质的击穿中,这些杂质起着决定性的作用。
1.水分的影响液体介质中含有水分时,如果水分溶解于液体介质中,则对击穿电压影响不大;如果水分呈悬浮状态,则使击穿电压明显下降。
水与纤维杂质共存时,水分的影响更为严重。
吉孟特专门研究了含水液体介质的击穿。
他的水桥击穿模型如下图所示。
与含水重量浓度m的关系变压器油Eb水桥击穿模型1—计算结果;2—实验结果工程用绝缘油含水时,在0~60范围内,随着温度的升高,水在油中溶解度增大,一部分悬浮状态的水变成溶解状态,相当于胶粒水珠的体积浓度下降,故击穿场强随温度升高而明显增加,约在60~80℃范围内出现最大值。
1—干燥的油;2—潮湿的油温度更高时,油中所含的水分汽化增多,又使击穿场强下降。
而纯净干燥变压器油在0~80℃范围内,E几b乎与温度无关。
2.固体杂质的影响杂质小桥击穿模型液体介质击穿场强与杂质粒子半径的r -3/2成正比工程上经常对液体介质进行过滤、吸附等处理,除去粗大的杂质粒子,以提高液体介质的击穿场强。
电场越均匀,杂质对击穿电压的影响越大,击穿电压的分散性也越大,而在不均匀电场中,杂质对击穿电压的影响较小。
完5.3固体电介质的击穿5.3.1固体电介质的击穿类型固体介质击穿后在材料中留下有不能恢复的痕迹常见的固体击穿形式有热击穿、电击穿和不均匀介质局部放电引起击穿等。
电介质击穿场强与电压作用时间的关系及不同击穿形式的范围如右图:固体电介质击穿场强与电压作用时间的关系¾热击穿热击穿是由于电介质内部热不稳定过程所造成的。
当固体电介质加上电场时,电介质中发生的损耗将引起发热,使介质温度升高。
电介质的热击穿不仅与材料的性能有关,还在很大程度上与绝缘结构(电极的配置与散热条件)及电压种类、环境温度等有关。
¾电击穿•电击穿是在较低温度下,采用了消除边缘效应的电极装置等严格控制的条件下,进行击穿试验时所观察到的一种击穿现象。
•电击穿的主要特征是:击穿场强高(大致在5~15MV/cm范围),实用绝缘系统是不可能达到的;在一定温度范围内,击穿场强随温度升高而增大,或变化不大。
•均匀电场中电击穿场强反映了固体介质耐受电场作用能力的最大限度,它仅与材料的化学组成及性质有关,是材料的特性参数之一,所以通常称之为耐电强度或电气强度。
¾不均匀电介质的击穿不均匀电介质击穿是指包括固体、液体或气体组合构成的绝缘结构中的一种击穿形式。
与单一均匀材料的击穿不同,击穿往往是从耐电强度低的气体开始,表现为局部放电,然后或快或慢地随时间发展至固体介质劣化损伤逐步扩大,致使介质击穿。
5.3.2固体电介质的热击穿1.瓦格纳热击穿理论瓦格纳热击穿模型每秒钟内导电通道由于电流通过而产生的热量为:假设固体介质置于平板电极a 、b 之间,该介质有一处或几处的电阻比其周围小得多,构成电介质中的低阻导电通道。
d S U R U Q γ22124.024.0==——为电导率γ每秒钟内由导电通道向周围介质散出的热量与通道长度d ,通道平均温度T 与周围介质温度T 0的温差(T ﹣T 0) 成正比,即散热量为:dT T Q )(02−=β——散热系数β电介质导电通道的电导率与温度的关系:)(00TT t e−=αγγ0t γ——导电通道在温度T0时的电导率;α——温度系数对于不同的电压U 值,Q 1与T 的关系是一簇指数曲线,曲线1、2、3分别为在电压U 1、U 2、U 3(U 1>U 2>U 3)作用下,介质发热量与介质导电通道温度的关系。