人教版数学七年级上册第四章第四章《几何图形初步》单元测试卷
人教版数学七年级上册第4章 几何图形初步单元测试(含答案)

七年级上册第4章单元测试一.选择题(共10小题)1.一个角的余角是44°,这个角的补角是()A.134°B.136°C.156°D.146°2.下列图形能折叠成正方体的是()A .B .C .D .3.下面各图是圆柱的展开图的是()A .B .C .D .4.甲、乙两个城市,乙城市位于甲城市北偏东50°方向,距离为80km,那么甲城市位于乙城市()A.南偏东50°方向,距离为80kmB.南偏西50°方向,距离为80kmC.南偏东40°方向,距离为80km第1页(共12页)D.南偏西40°方向,距离为80km5.有一个正六面体骰子放在桌面上,将骰子如图所示顺时针方向滚动,每滚动90°算一次,则滚动第2020次后,骰子朝下一面的数字是()A.5B.4C.3D.26.下列各角中,()是钝角.A .周角B .平角C.平角D .平角7.小明家在学校的南偏西50°方向上,则学校在小明家()上.A.南偏西50°B.西偏南50°C.北偏东50°D.北偏东40°8.下列度分秒运算中,正确的是()A.48°39′+67°31′=115°10′B.90°﹣70°39′=20°21′C.21°17′×5=185°5′D.180°÷7=25°43′(精确到分)9.一个圆柱体切拼成一个近似长方体后()A.表面积不变,体积变大B.表面积变大,体积不变C.表面积变小,体积不变D.表面积不变,体积不变10.下列语句中,正确的个数是()第2页(共12页)①直线AB和直线BA是两条直线;②射线AB和射线BA是两条射线;③若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余;④一个角的余角比这个角的补角小;⑤一条射线就是一个周角;⑥两点之间,线段最短.A.1个B.2个C.3个D.4个二.填空题(共5小题)11.已知,∠A=46°28',则∠A 的余角=.12.一个长方体的高是10cm,它的底面是边长为4cm的正方形,如果底面正方形的边长增加acm,则它的体积增加了cm3.13.已知如图,C是线段AB上的一点,N是线段BC的中点,若AB=10,AC=6,则AN=.14.已知线段AB=8cm.在直线AB上画线段AC=5cm,则BC的长是cm.15.如图,将长方形ABCD纸片按如图所示的方式折叠,EF,EG为折痕,点A落在A',点B落在B',点A',B',E在同一直线上,则∠FEG=度.三.解答题(共5小题)16.如图,CD是Rt△ABC斜边上的高,请找出图中各对互余的角.第3页(共12页)17.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.18.如图,已知线段AB=12 cm,点C为线段AB上的一动点,点D,E分别是AC和BC中点.(1)若点C恰好是AB的中点,则DE =cm;(2)若AC=4 cm,求DE的长;(3)试说明无论AC取何值(不超过12 cm),DE的长不变.第4页(共12页)19.如图,已知射线OB平分∠AOC,∠AOC的余角比∠BOC小42°.(1)求∠AOB的度数:(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数.(3)在(2)的条件下,画∠AOD的角平分线OE,则∠BOE=.20.如图,平面上有四个点A,B,C,D.(1)根据下列语句画图:Ⅰ、画射线DC;Ⅱ、画直线AC与线段BD相交于点F ;(2)图中以F为顶点的角中,请写出∠AFB的补角.第5页(共12页)参考答案一.选择题(共10小题)1.解:∵一个角的余角是44°,∴这个角的度数是:90°﹣44°=46°,∴这个角的补角是:180°﹣46°=134°.故选:A.2.解:A、能折叠成正方体,故此选项符合题意;B、出现了“凹”字格,不能折叠成正方体,故此选项不符合题意;C、折叠后有两个面重合,不能折叠成正方体,故此选项不符合题意;D、出现了“田”字格,不能折成正方体,故此选项不符合题意.故选:A.3.解:由图可知,该圆柱底面直径为6,高为4,所以该圆柱的底面周长(圆柱侧面展开得到的长方形的长)为:6×3.14=18.84,故选:C.4.解:如图:第6页(共12页)∵乙城市位于甲城市北偏东50°方向,距离为80km,∴甲城市位于乙城市南偏西50°方向,距离为80km,故选:B.5.解:观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2020÷4=505,∴滚动第2020次后与第一个相同,∴朝下的数字是3的对面4,故选:B.6.解:平角=180°,钝角大于90°而小于180°,平角=×180°=120°,是钝角.故选:B.7.解:∵小明家在学校的南偏西50°方向上,∴学校在小明家北偏东50°方向上.故选:C.8.解:48°39'+67°31'=115°70'=116°10',故A选项错误;90°﹣70°39'=19°21',故B选项错误;21°17'×5=105°85'=106°25',故C选项错误;180°÷7=25°43',故D选项正确.故选:D.9.根据立体图形的切拼方法可知:圆柱体切拼成一个长方体后,体积大小不变,表面积增加了两个以圆柱的高和第7页(共12页)底面半径为边长的长方形的面积,所以表面积变大了.故选:B.10.解:①直线AB和直线BA是一条直线,原来的说法是错误的;②射线AB和射线BA是两条射线是正确的;③互余是指的两个角的关系,原来的说法是错误的;④一个角的余角比这个角的补角小是正确的;⑤周角的特点是两条边重合成射线.但不能说成周角是一条射线,原来的说法是错误的;⑥两点之间,线段最短是正确的.故正确的个数是3个.故选:C.二.填空题(共5小题)11.解:∵∠A=46°28′,∴∠A的余角=90°﹣46°28′=43°32′.故答案为:43°32′.12.解:长方体原体积为:4×4×10=160cm3.底面边长增加acm后,边长为(4+a)cm,体积为:10(4+a)2=(10a2+80a+160)cm3.体积增加为:10a2+80a+160﹣160=10a2+80a.故答案为:(10a2+80a).13.解:∵AB=10,AC=6,∴CB=10﹣6=4,第8页(共12页)∵N是线段BC的中点,∴CN=2,∴AN=AC+CN=6+2=8.14.解:当C点在线段AB上时,BC=AB﹣AC=8﹣5=3(cm);当C点在线段BA的延长线上时,BC=AB+AC=8+5=13(cm).故BC的长为3或13cm.故答案为3或13.15.解:由折叠可得∠AEF=∠A'EF,∠BEG=∠B'EG,∵∠AEB=180°,∴∠FEG=∠A'EF+∠B'EG =∠AEB=90°,故答案为90.三.解答题(共5小题)16.解:∵CD⊥AB,∴△ABC,△BCD是直角三角形,又∵△ABC是直角三角形,∴∠A与∠B,∠A与∠ACD,∠B与∠BCD互余(直角三角形的两个锐角互余),又∵∠ACB=90°,∴∠ACD与∠BCD互余.∴图中互余的角有:∠A与∠B,∠A与∠ACD,∠B与∠BCD,∠ACD与∠BCD.17.解:(1)因为点C为OP的中点,第9页(共12页)所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.18.解:(1)∵点D,E分别是AC和BC的中点,∴DC =AC,CE =CB,∴DC+CE =(AC+CB)=6cm;故答案为:6.(2)∵AC=4cm,∴CD=2cm,∵AB=12cm,AC=4cm,∴BC=8cm,∴CE=4cm,DE=DC+CE=6cm;(3)∵点D,E分别是AC和BC的中点,∴DC =AC,CE =CB,∴DC+CE =(AC+CB),即DE =AB=6cm,故无论AC取何值(不超过12 cm),DE的长不变.第10页(共12页)19.解:(1)由射线OB平分∠AOC可得∠AOC=2∠BOC,设∠BOC=x,则∠AOC=2x,依题意列方程90°﹣2x=x﹣42°,解得:x=44°,即∠AOB=44°.(2)由(1)得,∠AOC=88°,①当射线OD在∠AOC内部时,∠AOD=22°,则∠COD=∠AOC﹣∠AOD=66°;②当射线OD在∠AOC外部时,∠AOD=22°则∠COD=∠AOC+∠AOD=110°;(3)∵OE平分∠AOD,∴∠AOE =,当射线OD在∠AOC内部时,∠BOE=∠AOB﹣∠AOE=44°﹣11°=33°;当射线OD在∠AOC外部时,∠BOE=∠AOB+∠AOE=44°+11°=55°.∴∠BOE度数为33°或55°.故答案为:33°或55°20.解:(1)作图如下:第11页(共12页)(2)∠AFB的补角为∠BFC,∠AFD.第12页(共12页)。
人教版七年级数学上册第四章几何图形初步单元测试卷

人教版七年级数学上册第四章几何图形初步单元测试卷班级:姓名:得分:一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.下列各图中,∠1与∠2互为补角的是()2.下列语句错误的是()A.延长线段AB B.延长射线ABC.直线m和直线n相交于点PD.在射线AB上截取线段AC,使AC=3 cm3.下列立体图形中,都是柱体的为()4.如图,表示∠1的其他方法中,不正确的是()A.∠ACB B.∠C C.∠BCA D.∠ACD 5.如图所示的表面展开图所对应的几何体是()A.长方体B.球C.圆柱D.圆锥6.如图所示的物体从上面看到的形状是()7.下列各图中,经过折叠能围成一个正方体的是()8.在直线上顺次取A ,B ,C 三点,使得AB =5 cm ,BC =3 cm ,如果O 是线段BC 的中点,那么线段AO 的长度是( ) A .8 cmB .7.5 cmC .6.5 cmD .2.5 cm9.如图,∠AOC =∠DOE =90°,如果∠AOE =65°,那么∠COD 的度数是( ) A .90°B .115°C .120°D .135°10.用折纸的方法,可以直接剪出一个正五边形(如图).方法是:拿一张长方形纸对折,折痕为AB ,以AB 的中点O 为顶点将平角五等分,并沿五等分的线折叠,再沿CD 剪开,使展开后的图形为正五边形,则∠OCD 等于( ) A .108°B .90°C .72°D .60°二、填空题(本大题共10小题,每小题3分,共30分.把答案填在题中横线上)11.植树时只要先确定两个树坑的位置,就能确定一行树所在的位置,其根据是__________.12.已知线段AB =9厘米,在直线AB 上画线段BC ,使它等于3厘米,则线段AC =__________.13.若∠AOB =40°,∠BOC =60°,则∠AOC =__________. 14.53°40′30″×2-75°57′28″÷2=__________.15.已知线段AB =3厘米,延长AB 到C ,使BC =2AB ,若D 为AB 中点,则线段DC 的长为__________.16.8°44′24″用度表示为__________,110.32°用度、分、秒表示为__________.17.如图是一套三角尺组成的图形,则∠AFD =____________,∠AEB =__________,∠BED =____________.18.∠α与∠β互补,若∠α=47°37′,则∠β=__________. 19.将线段AB 延长到C ,使BC =13AB ,延长BC 到D ,使CD =13BC ,延长CD 到E ,使DE =13CD ,若AE =80厘米,则AB =__________.20.在圆柱的展开图中,圆柱的侧面展开图为__________,棱柱的侧面展开图为三、三、解答题(本大题共5小题,共40分)21.(6分)如图所示的一张纸:(1)将其折叠能叠成什么几何体?(2)要把这个几何体重新展开,最少需要剪开几条棱?22.(7分)如图所示,点E,F分别是线段AC,BC的中点,若EF=3厘米,求线段AB 的长.23.(8分)如图所示,直线AB,CD,EF都经过点O,且AB⊥CD,OG二等分∠BOE,如果∠EOG=25∠AOE,求∠EOG,∠DOF和∠AOE的度数.24.(9分)如图所示,设相邻两个角∠AOB,∠BOC的平分线分别为OE,OF,且∠EOF 是直角,你能说明OA,OC为什么成一条直线吗?试试看吧!25.(10分)某校七年级学生李刚在周六下午六点多钟外出买东西时,看手表上的时针和分针的夹角是110°,下午近七点回家时,发现时针和分针的夹角又是110°,你能知道李刚同学外出用了多长时间吗?你是怎么知道的呢?参考答案1答案:C2答案:A点拨:由于5点半时,时针在5和6之间,分针在6上,所以它们之间的夹角是半个大格,即12×30°=15°.3答案:D 4答案:A 5答案:D6答案:C点拨:PQ=PC+CQ=11222m n AC BC++=.7答案:C点拨:由于棱柱的上底与下底分别在两边,所以A,B,D都不对.8答案:D点拨:C点可能在线段AB内,亦可能在线段AB的延长线上,还可能在直线AB外.9答案:B点拨:设这个角为∠α,则180°-(90°-∠α)=4(180) 5a︒-∠,∴∠α=30°.∴90°-∠α=90°-30°=60°.10答案:B11答案:两点确定一条直线12答案:6厘米或12厘米点拨:由于点C的位置不确定,所以要分情况讨论:当C 在线段AB上时,AC=AB-BC=9-3=6(厘米);当C在AB的延长线上时,AC=AB+BC =9+3=12(厘米).13答案:100°或20°14答案:69°22′16″15答案:7.5厘米16答案:8.74°110°19′12″17答案:135°30°60°18答案:132°23′19答案:54厘米点拨:设DE=x厘米,则CD=3x厘米,BC=9x厘米,AB=27x 厘米,∴AE=x+3x+9x+27x=80,解得x=2,∴AB=54厘米.__________,圆锥的侧面展开图为__________.20答案:长方形长方形扇形21解:(1)三棱柱.(2)最少剪开5条棱.22解:∵E,F分别是AC,BC的中点,∴EC=12AC,FC=12BC,∴EF=EC-FC=12AC-12BC=1()2AC BC-=12AB=3(厘米),∴AB=6厘米.23解:∵∠EOG=25AOE∠,OG平分∠BOE,∴∠BOE=45AOE ∠.∵∠AOE+∠BOE=95AOE∠=180°,∴∠AOE=100°,∠BOE=45AOE∠=45×100°=80°,∴∠EOG=40°.∵AB⊥CD,∠EOF=180°,∴∠DOF=180°-∠BOE-∠BOD=180°-80°-90°=10°.24解:根据题意可得:∠AOE=∠BOE,∠COF=∠BOF,∠EOF=90°,∴(∠AOE+∠EOB)+(∠COF+∠BOF)=2×90°=180°,即∠AOB+∠BOC=180°,∴∠AOC=180°,∴AO,OC成一直线(即A,O,C三点共线).25解:设时针从李刚外出到回家走了x°,则分针走了(2×110°+x°),由题意,得22036030x x︒+︒︒=︒︒,解得x=20,因时针每小时走30°,则202303︒=︒小时,即李刚外出用了40分钟时间.。
七年级数学上册《第四章 几何图形初步》单元测试卷及答案(人教版)

七年级数学上册《第四章几何图形初步》单元测试卷及答案(人教版) 一、单选题1.已知∠α=76°22′,则∠α的补角是().A.103°38′B.103°78′C.13°38′D.13°78′2.下列图形沿着某一直线旋转180°后,一定能形成圆锥的是()A.直角三角形B.等腰三角形C.矩形D.扇形3.已知α是某直角三角形内角中较大的锐角,β是某五边形的外角中的最大角,甲、乙、丙、丁计算1(α6+β)的结果依次为10°、15°、30°、35°,其中有正确的结果,则计算正确的是()A.甲B.乙C.丙D.丁4.图中所示的网格是正方形网格,则下列关系正确的是()A.∠1>∠2B.∠1<∠2C.∠1+∠2=90°D.∠1+∠2=180°5.如图,C为线段AB上一点,D为线段BC的中点,已知AB=10,AD=7,则AC的长为()A.5 B.4 C.3 D.26.如图,直线AB,CD相交于点O,OF平分∠AOC,若∠AOD=50°,则∠COF=()A.60°B.50°C.45°D.65°7.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.20°或50°B.20°或60°C.30°或50°D.30°或60°8.如图,一平面经过圆锥的顶点截圆锥所得到的截面形状是( )A.A B.B C.C D.D二、填空题9.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,平面内不同的六个点最多可确定条直线.10.在数轴上表示﹣10的点与表示﹣4的点的距离是.11.如图,在2×3的方格图案中,正方形和长方形的个数分别为.12.如图,将一副三角板的直角顶点重合,摆放在桌面上.若∠AOD=150°,则∠BOC= °.13.如图,∠AOB与∠COD都是直角,∠AOD= 140°21′,则∠COB= °.三、作图题14.如图,已知四点A、B、C、D(1)画直线AB;(2)画射线AC;(3)连接BC;(4)画点P,使PA+PB+PC+PD的值最小四、解答题15.写出如图的符合下列条件的角.(图中所有的角均指小于平角的角).(1)能用一个大写字母表示的角;(2)以点A为顶点的角.16.如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点,若AB=15,CE=4.5求出线段AD的长度.17.已知正方体的展开图如图所示,如果正方体的六个面分别用字母A,B,C,D,E,F表示,当各面上的数分别与它对面的数互为相反数,且满足B=1,C=﹣a2﹣2a+1,D=﹣1,E=3a+4,F=2﹣a时,求A面表示的数值.18.如图,已知线段AB 和CD 的公共部分为BD ,且BD = 14 AB = 16 CD ,线段AB ,CD 的中点E ,F 之间的距离是30,求线段AB ,CD 的长.19.如图,O 为直线AB 上的一点,∠AOC =50°,OD 平分AOC ,∠DOE =90°①求∠BOD 的度数;②OE 是∠BOC 的平分线吗?为什么?20.如图所示的长方体的容器,AB=BC ,BB ’=3AB 且这个容器的容积为192立方分米.(1)求这个长方体容器底面边长AB 的长为多少分米?(2)若这个长方体的两个底面和侧面都是用铁皮制作的,则制作这个长方体容器需要多少平方分米铁皮?(不计损耗)参考答案1.A2.B3.C4.B5.B6.D7.C8.B9.1510.611.8,10 12.30 13.39°39′14.(1)解:如图(2)解:如图(3)解:如图(4)解:如图,连接AC 、BD ,两线交点为P点P 就是所求作的点.15.解:(1)能用一个大写字母表示的角有∠C ,∠B(2)以点A 为顶点的角有∠CAB ,∠CAD 和∠DAB16.解:∵点C 为线段AB 的中点, AB =15∴BC =12AB =12×15=7.5∴BE =BC −CE =7.5−4.5=3∴AE =AB −BE =15−3=12∵点D 为线段AE 的中点∴AD =12AE =12×12=617.解:根据题意∵E 面和F 面的数互为相反数∴3a+4+2﹣a=0∴a=﹣3把a=﹣3代入C=﹣a 2﹣2a+1解得:C=﹣2∵A 面与C 面表示的数互为相反数∴A 面表示的数值是2.18.解:设BD =x ,则AB =4x ,CD =6x.∵点E 、点F 分别为AB 、CD 的中点∴AE = 12 AB =2x ,CF = 12 CD =3xAC=AB+CD﹣BD=4x+6x﹣x=9x.∴EF=AC﹣AE﹣CF=9x﹣2x﹣3x=4x.∵EF=20∴4x=20解得:x=5.∴AB=4x=20,CD=6x=30.19.解:①∵∠AOC=50°,OD平分AOC∴∠1=∠2= 1∠AOC=25°2∴∠BOD的度数为:180°﹣25°=155°;②∵∠AOC=50°∴∠COB=130°∵∠DOE=90°,∠DOC=25°∴∠COE=65°∴∠BOE=65°∴OE是∠BOC的平分线.20.(1)解:设AB=x∵ AB=BC,BB’=3AB∴BC=x BB′=3x 由这个容器的容积为192立方分米∴x•x•3x=192∴x3=64∴x=4∴AB=4(分米).(2)解:∵AB=BC=4 BB′=12∴长方体的表面积为:2×4×4+4×4×12=32+192=224(平方分米)∴制作这个长方体容器需要224平方分米的铁皮。
人教版七年级上册数学 第四章 几何图形初步 单元测试(含解析)

第四章几何图形初步单元测试一.选择题1.对如图所示几何体的认识正确的是()A.棱柱的底面是四边形B.棱柱的侧面是三角形C.几何体是四棱柱D.棱柱的底面是三角形2.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于()A.点动成线B.线动成面C.面动成体D.以上都不对3.下列说法正确的是()A.延长直线AB到点CB.延长射线AB到点CC.延长线段AB到点CD.射线AB与射线BA是同一条射线4.如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD 上,且EA=1,则BE的长为()A.4B.6或8C.6D.85.下列说法正确的是()A.两点之间的线段,叫做这两点之间的距离B.87'等于1.45°C.射线OA与射线AO表示的是同一条射线D.延长线段AB到点C,使AC=BC6.线段AB=9,点C在线段AB上,且有AC=AB,M是AB的中点,则MC等于()A.3B.C.D.7.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间8.如图,将一副三角板叠在一起使直角顶点重合于点O,(两块三角板可以在同一平面内自由转动),下列结论一定成立的是()A.∠BOA>∠DOC B.∠BOA﹣∠DOC=90°C.∠BOA+∠DOC=180°D.∠BOC≠∠DOA9.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离10.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.10二.填空题11.若一个六棱柱,则它有条棱,有个面.12.秒针旋转一周时,形成一个圆面,用数学知识可以理解为.13.已知点A、B、C在同一直线上,若AB=10cm,AC=16cm,点M、N分别是线段AB、AC中点,则线段MN的长是.14.如图,线段AB=3,延长AB到点C,使BC=2AB,则AC=.15.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF 的长度为cm.16.人们会把弯曲的河道改直,这样能够缩短航程.这样做的道理是.17.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.18.如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF 的中点,且MN=8cm,则EF长为.19.如图,C、D是线段AB上的两点,E是AC的中点,F是BD的中点,若AB=m,CD =n,则线段EF的长为.20.如图,射线OC,OD在∠AOB内,∠AOB和∠BOC互为补角,.若∠COD比∠BOD大m°(m<30),则∠AOC=°.(用含m的式子表示)三.解答题21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.22.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.23.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.24.如图,在直线AD上任取一点O,过点O做射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,求∠BOE的度数.25.如图,C是线段AB上一点,AC=5cm,点p从点A出发沿AB以3cm/s的速度匀速向点B运动,点Q从点C出发沿CB以1cm/s的速度匀速向点B运动,两点同时出发,结果点P比点Q先到3s.(1)求AB的长;(2)设点P、Q出发时间为ts,①求点P与点Q重合时(未到达点B),t的值;②直接写出点P与点Q相距2cm时,t的值.26.线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB 的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.参考答案1.解:如图所示的几何体是三棱柱,它有两个全等的三角形的底面,三个矩形的侧面,因此选项ABC均不符合题意,选项D符合题意;故选:D.2.解:孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于线动成面,故选:B.3.解:A、直线可以沿两个方向无限延伸,故不能说延长直线AB,故本选项不符合题意;B、射线可沿延伸方向无限延伸,故不能说延长射线AB,故本选项不符合题意;C、线段不能延伸,可以说延长线段AB到点C,故本选项符合题意;D、射线AB与射线BA不是同一条射线,故本选项不符合题意;故选:C.4.解:若E在线段DA的延长线,如图1,∵EA=1,AD=9,∴ED=EA+AD=1+9=10,∵BD=2,∴BE=ED﹣BD=10﹣2=8,若E线段AD上,如图2,EA=1,AD=9,∴ED=AD﹣EA=9﹣1=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.故选:B.5.解:A、应为:连结两点的线段的长度叫做这两点间的距离,故本选项错误;B、87'=60'+27'=1°+()°=1.45°,故本选项正确;C、射线OA的端点是点O,射线AO的端点是点A,所以,它们不是同一条射线,故本选项错误;D、延长线段AB到点C,则AC一定大于BC,不能使AC=BC,故本选项错误.故选:B.6.解:∵AB=9,∴AC=AB=3,∵M是AB的中点,∴AM=AB=∴MC=AM﹣AC=﹣3=故选:B.7.解:∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在A、B区之间时,设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当x=0时,即在A区时,路程之和最小,为4500米;综上,当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A区.故选:A.8.解:因为是直角三角板,所以∠AOC=∠BOD=90°,所以∠BOA+∠DOC=∠AOC+∠BOC+∠DOC=∠AOC=∠BOD=180°,故选:C.9.解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.10.解:∵OC平分∠DOA,∴∠AOC=∠COD,∵OE平分∠DOB,∴∠DOE=∠BOE,∴∠COE=90°,∴∠AOC+∠BOE=90°,∠AOC+∠DOE=90°,∠COD+∠BOE=90°,∠COD+∠DOE =90°,∠COF+∠EOF=90°,∵OF⊥AB,∴∠AOC+∠COF=90°,∠COD+∠COF=90°,∠BOE+∠EOF=90°,∠BOD+∠DOF =90°,∠DOE+∠EOF=90°,∴互余的角有10对.故选:D.11.解:因为六棱柱上下两个底面是6边形,侧面是6个长方形,所以共有18条棱,8个面;故答案为18,8.12.解:根据点、线、面、体之间的关系可得,线动成面.13.解:(1)如图1,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AM+AN=5+8=13(cm)(2)如图2,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AN﹣AM=8﹣5=3(cm),综上,线段MN的长是13cm或3cm.故答案为:13cm或3cm.14.解:∵AB=3,∴BC=2AB=6,∴AC=AB+BC=3+6=9.故答案为:9.15.解:∵点F是BC的中点,且BF=40cm,∴BC=2BF=80cm,∵CD=AD=BC,∴CD=×80=16cm,AD=64cm,∴AC=AD﹣CD=48cm,∵E、F分别是AC、BC的中点,∴CE=AC=24cm,CF=BF=40cm,∴EF的长度为CE+CF=64cm,故答案为:64.16.解:由线段的性质可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.17.解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.18.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x ∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故答案为:12cm.19.解:∵AB=m,CD=n.∴AB﹣CD=m﹣n,∵E、F分别是AC、DB的中点,∴CE=AC,DF=DB,∴CE+DF=(m﹣n),∴EF=CE+DF+DC=(m﹣n)+n=m+n,故答案为:m+n.20.解:∵∠AOB和∠BOC互为补角,∴∠AOB+∠BOC=180°,∵∠BOD=,∴3∠BOD+∠BOC=180°,即∠BOC=180°﹣3∠BOD,∵∠COD+∠BOD=∠BOC,∴180°﹣3∠BOD=∠COD+∠BOD,∴∠COD+4∠BOD=180°,∵∠COD比∠BOD大m°(m<30),∴∠COD﹣∠BOD=m°,∴∠BOD=()°,∠COD=()°∴∠BOC=()°,∴∠AOB=180°﹣∠BOC=(108﹣)°,∴∠AOC=∠AOB﹣∠BOC=(108﹣)°﹣()°=(36﹣m)°.故答案为(36﹣m).21.解:(1)(1×3+2×3+1×2)×2=22(m2),(2)根据棱柱的展开与折叠,可得可以折叠成长方体的盒子,其长、宽、高分别为3cm,2cm,1cm,因此体积为:1×2×3=6(m3),22.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.23.解:(1)因为点C为OP的中点,所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.24.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.∴∠BOD=180°﹣52°=128°.∵OE平分∠DOB,∴∠BOE=∠DOB=×128°=64°.25.解:(1)设AB=xcm,根据题意可得:(x﹣5)﹣=3,解得:x=12,答:AB的长为12cm;(2)①由题意可得:3t=t+5,解得:t=,故点P与点Q重合时(未到达点B),t的值为;②当点P追上点Q前相距2cm,由题意可得:3t+2=t+5,解得:t=,当追上后相距2cm,由题意可得:3t﹣2=t+5,解得:t=,总上所述:t=或t=.26.解:(1)∵AC=15cm,CB=AC,∴CB=×15=10(cm),∴AB=15+10=25(cm).∵D,E分别为AC,AB的中点,∴AE=BE=AB=12.5cm,DC=AD=AC=7.5cm,∴DE=AE﹣AD=12.5﹣7.5=5(cm);(2)设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵∠MON=90°,∴6x=90°,∴x=15°,∴∠AOB=135°.。
人教版七年级数学上册第四章《几何图形初步》单元练习题(含答案)

人教版七年级数学上册第四章《几何图形初步》单元练习题(含答案)一、单选题1.如图是一个由5个相同的正方体组成的立体图形,从其正面看,得到的平面图形是()A.B.C.D.2.如图,将矩形绕着它的一边所在的直线l旋转一周,可以得到的立体图形是()A.B.C.D.3.图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体可能是()A.B.C.D.4.下列图形旋转一周,能得到如图几何体的是()A.B.C.D.5.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C. D.6.数学源于生活,并用于生活,要把一根木条固定在墙上至少需要钉两颗钉子,其中的数学原理是()A.过一点有无数条直线B.线段中点的定义C.两点之间线段最短D.两点确定一条直线7.下列图形是正方体展开图的个数为()A .1个B .2个C .3个D .4个8.下列说法中正确的有( ).(1)线段有两个端点,直线有一个端点; (2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关; (4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若AOC ∠与AOB ∠有公共顶点,且AOC ∠的一边落在AOB ∠的内部,则AOB AOC ∠>∠.A .1个B .2个C .3个D .4个9.如果一个角的度数比它的补角的度数2倍多30°,那么这个角的度数是( ) A .50°B .70°C .130°D .160°10.圆柱与圆锥的体积之比为2:3,底面圆的半径相同,那么它们的高之比为( ) A .2:3B .4:5C .2:1D .2:911.几何图形都是由点、线、面、体组成的,点动成线,线动成面,面动成体,下列生活现象中可以反映“线动成面”的是( ) A .笔尖在纸上移动划过的痕迹 B .长方形绕一边旋转一周形成的几何体 C .流星划过夜空留下的尾巴 D .汽车雨刷的转动扫过的区域12.己知点M 是线段AB 上一点,若14AM AB =,点N 是直线AB 上的一动点,且AN BN MN -=,则MNAB 的( ) A .34B .12C .1或12D .34或2二、填空题13.有一块积木,每一块的各面都涂上红绿黑白蓝黄六种不同的颜色,下面是它摆放的三种不同方向的图像,请根据图像判断绿色面的对面是_____色14.将两个三角尺的直角顶点重合为如图所示的位置,若108∠=︒,则AOD∠=_________.COB15.如图是用一副七巧板拼成的正方形,边长是10cm.图中小正方形(涂色部分)的面积是( )2cm.16.如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.17.圆柱的侧面展开图是一个相邻的两边长分别为4,2π的长方形,则圆柱体的体积为_____.18.有一个正方体,六个面上分别写有数字1,2,3,4,5,6,如图是我们能看到的三种情况,如果记6的对面数字为a,2的对面数字为b,那么a+b的值为_____.三、解答题19.如图,点E是线段AB的中点,C是EB上一点,AC=12,(1)若EC:CB=1:4,求AB的长;(2)若F为CB的中点,求EF长。
人教版数学七年级(上)第4章《几何图形初步》单元综合练习卷(含答案)

人教版数学七年级(上)第4章《几何图形初步》单元综合练习卷(含答案)一.选择题1.下列说法:①直线AB和直线BA是同一条直线;②平角是一条直线;③两点之间,线段最短;④如果AB=BC,则点B是线段AC的中点.其中正确的有()A.1个B.2个C.3个D.4个2.下列四个图形中是如图展形图的立体图的是()A.B.C.D.3.如图,若CB=4,DB=7,且D是AC的中点,则AC的长为()A.3B.6C.9D.11 4.下列图形中不是正方体的平面展开图的是()A.B.C.D.5.钟表在2点半时,其时针和分针所成的角是()A.60°B.75°C.105°D.120°6.将一副三角板按如图所示的位置摆放,其中∠α和∠β一定互余的是()A.B.C.D.第 1 页共33 页7.下列说法正确的有()句.①两条射线组成的图形叫做角;②同角的补角相等;③若AC=BC,则C为线段AB的中点;④线段AB就是点A与点B之间的距离;⑤平面上有三点A、B、C,过其中两点的直线有三条或一条.A.0B.1C.2D.3 8.下列标注的图形名称与图形不相符的是()A.球B.长方体C.圆柱D.圆锥9.点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB中点的是()A.AM=BM B.AB=2AM C.BM=AB D.AM+BM=AB10.如图是小明画的正方体表面展开图,由7个相同的正方形组成.小颖认为小明画的不对,她剪去其中的一个正方形后,得到的平面图就可以折成一个正方体.小颖剪去的正方形的编号是()A.7B.6C.5D.411.将一张长方形纸片按如图所示的方式折叠,EC,ED为折痕,折叠后点A′,B′,E在同一直线上,则∠CED的度数为()第 2 页共33 页A.90°B.75°C.60°D.95°12.一个六棱柱模型如图所示,底面边长都是5cm,侧棱长为4cm,这个六棱柱的所有侧面的面积之和是()A.20cm2B.60cm2C.120cm2D.240cm2二.填空题13.一个棱柱有20个顶点,每条侧棱长6cm,底面每条边长是2m,则所有侧棱长是.14.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于.15.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是.16.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.17.按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b)c= .第 3 页共33 页18.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.三.解答题19.如图,已知A、O、B三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.20.有一个养鱼专业户,在如图所示地形的两个池塘里养鱼,他每天早上要从住处P分别前往两个池塘投放鱼食,试问他怎样走才能以最短距离回到住地?(请用尺规作图,保留作图痕迹,不写作法)第 4 页共33 页21.将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.观察并回答下列问题:(1)其中三面涂色的小正方体有个,两面涂色的小正方体有个,各面都没有涂色的小正方体有个;(2)如果将这个正方体的棱n等分,所得的小正方体中三面涂色的有个,各面都没有涂色的有个;(3)如果要得到各面都没有涂色的小正方体125个,那么应该将此正方体的棱等分.22.已知,如图,点C在线段AB上,且AC=6cm,BC=14cm,点M、N分别是AC、BC的中点.(1)求线段MN的长度;(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.23.读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;第 5 页共33 页(2)过点P作PR⊥CD,垂足为R.24.数学课上,李老师出示了如下框中的题目.如图1,在∠AOB的内部有一条射线OC把∠AOB分成两个角,射线OM、ON分别平分∠AOC、∠BOC,试探究∠MON与∠AOB之间的数量关系,并说明理由.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论:①请你在下表中填上当∠AOB为60°、90°、120°时∠MON的大小:②探索发现:无论∠AOB的度数是多少,∠MON与∠AOB的数量关系是不变的,请你直接写出结论:∠MON ∠AOB.(2)特例启发,解答题目:如图2,如果∠AOB=α,请你求∠MON的大小(用α表示).(3)拓展结论,设计新题:如图3,把一张报纸的一角斜折过去,使A点落在E点处,BC为折痕,BD是∠EBM的平分线,求∠CBD的度数.第 6 页共33 页第7 页共33 页参考答案一.选择题1.解:①∵直线AB和直线BA是同一条直线,∴①正确;②∵角是角,线是线,∴平角是一条直线,∴②错误;③两点之间,线段最短,∴③正确;④∵如果A、B、C三点不共线,则AB=BC不能得出点B是线段AC的中点,∴④错误.故选:B.2.解:因为含小黑正方形的面不能与含大黑正方形的面相邻,两个小黑正方形不能在同一行,所以B,C不是左边展形图的立体图;两个小黑正方形在大黑正方形的对面”,那么A图中,正好是大黑正方形在上面,那么小黑正方形就在底面,A符合;故选:A.3.解:∵CB=4,DB=7,∴DC=DB﹣CB=7﹣4=3,∵D是AC的中点,∴AC=DC×2=3×2=6.故选:B.4.解:A、是正方体的展开图,不合题意;B、是正方体的展开图,不合题意;C、不能围成正方体,故此选项正确;D、是正方体的展开图,不合题意.故选:C.第8 页共33 页5.解:时针转过的角度是(2+)×30°=75°,分钟转过的角度是30×6°=180°,所以钟表在2点半时,其时针和分针所成的角是180°﹣75°=105°,故选:C.6.解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β互余,故本选项正确;C、∠α与∠β不互余,故本选项错误;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:B.7.【解答】解:①由一个点出发的两条射线组成的图形叫角,故①错误;③若AC=BC,此时点C在线段AB的垂直平分线上,故③错误;④线段AB的长度是点A与点B之间的距离,故④错误;故选:C.8.解:长方体是立体图形,选项B中缺少遮挡的虚线,所以B图形名称与图形不相符.故选:B.9.解:A、由AM=BM可以判定点M是线段AB中点,所以此结论正确;B、由AB=2AM可以判定点M是线段AB中点,所以此结论正确;C、由BM=AB可以判定点M是线段AB中点,所以此结论正确;D、由AM+BM=AB不可以判定点M是线段AB中点,所以此结论不正确;因为本题选择不能判定点M是线段AB中点的说法,故选:D.10.解:根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是5.故选:C.11.解:由题意知∠AEC=∠CEA′,∠DEB=∠DEB′,则∠A′EC=∠AEA′,∠B′DE=∠B′EB,第9 页共33 页所以∠CED=∠AEB=×180°=90°,故选:A.12.解:六棱柱的侧面积为:4×5×6=120(cm2).故选:C.二.填空题(共6小题)13.解:∵一个棱柱有20个顶点,每条侧棱长6cm,∴底面为10边形,有10条侧棱,∴所有侧棱长的和是10×6=60cm,故答案为:60cm.14.解:∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2﹣∠1=12°,可得:5x﹣12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°15.解:∵点B、O、D在同一直线上,∠COD=150°,∴∠COB=180°﹣150°=30°,∵OB平分∠AOC,∴∠AOC=2×30°=60°,故答案为:60°.16.解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.第10 页共33 页17.解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“﹣1”相对,面“c”与面“2”相对,“﹣3”与面“b”相对,∵相对面上的两个数都互为相反数,∴a=1,b=3,c=﹣2,则(a+b)c=(1+3)﹣2=.故答案为:.18.解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.三.解答题(共6小题)19.解:(1)∵A、O、B三点共线,∠AOD=42°,∴∠BOD=180°﹣∠AOD=138°;(2)∵∠COB=90°,∴∠AOC=90°,∵∠AOD=42°,∴∠COD=48°,∵OE平分∠BOD,∴∠DOE=∠BOD=69°,∴∠COE=69°﹣48°=21°.20.解:如图所示:PD→DE→EP才能以最短距离回到住地.第11 页共33 页21.解:(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体.观察其中三面被涂色的有8个,两面涂色的有12个;各面都没有涂色的有1个,故答案为:8,12,1;(2)根据正方体的棱三等分时三面被涂色的有8个,有1个是各个面都没有涂色的,正方体的棱四等分时三面被涂色的有8个,有8个是各个面都没有涂色的,∴正方体的棱n等分时三面被涂色的有8个,有(n﹣2)3个是各个面都没有涂色的,故答案为:8,(n﹣2)3;(3)由(2)得将这个正方体的棱n等分,有(n﹣2)3个是各个面都没有涂色的,即(n﹣2)3=125,n﹣2=5,n=7,故答案为7.22.解:(1)∵AC=6cm,BC=14cm,点M、N分别是AC、BC的中点,∴MC=3cm,NC=7cm,∴MN=MC+NC=10cm;第12 页共33 页(2)MN=(a+b)cm.理由是:∵AC=acm,BC=bcm,点M、N分别是AC、BC的中点,∴MC=cm,NC=cm,∴MN=MC+NC=(a+b)cm.23.解:每对一问得(3分)如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(3分)(2)过点P作PR⊥CD,垂足为R.(6分)24.解:(1)①∵∠MOC=∠AOC,∠NOC=∠BOC,∴∠MON=∠MOC+∠NOC=∠AOC+∠BOC=∠AOB,当∠AOB=60°时,∠MON=×60°=30°,当∠AOB=90°时,∠MON=×90°=45°,当∠AOB=120°时,∠MON=×120°=60°;②由①知,∠MON=∠AOB,故答案为:①30°,45°,60°;②;第13 页共33 页(2)由(1)②知,∠MON=∠AOB,∴∠MON=α;(3)∵A点落在E点处,BC为折痕,∴∠CBA=∠CBE=∠ABE,∵D是∠EBM的平分线,∴∠EBD=∠DBM=∠MBE,∴∠CBE+∠EBD=(∠ABE+∠MBE)=∠ABM=×180°=90°.第14 页共33 页第 15 页 共 33 页人教版七年级上册第四章几何图形初步单元检测试题(含答案)一、单选题(共10题;共30分)1.如图,图中的长方形共有( )个.A. 9B. 8C. 5D. 4 2.如图所示几何图形中,是棱柱的是( )A. B. C. D.3.如图,是一个几何体的表面展开图,则该几何体是( ) A. 正方体 B. 长方体 C. 三棱柱 D. 四棱锥4.如图,∠AOC >∠BOD ,则( )A. ∠AOB >∠CODB. ∠AOB=∠CODC. ∠AOB <∠CODD. 以上都有可能5.如图所示,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC 的度数为( )A. 30°B. 40°C. 50°D. 60°6.如图,线段CD 在线段AB 上,且CD=2,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A. 28B. 29C. 30D. 317.将一个圆分割成四个大小相同的扇形,则每个扇形的圆心角是( )度. A.45 B.60 C.90 D.1208.若∠AOB=90°,∠BOC=40°,则∠AOC 的度数为( )A. 50°B. 50° 或120°C. 50°或130°D. 130° 9.直棱柱的侧面都是( )A. 正方形B. 长方形C. 五边形D. 菱形 10.如果时钟上的时针、分针和秒针都是匀速地转动,那么从3时整(3:00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有 ( ) A. 1次 B. 2次 C. 3次 D. 4次二、填空题(共8题;共24分)11.已知∠α=36°14′25″,则∠α的余角的度数是________.12.如果一个六棱柱的一条侧棱长为5cm ,那么所有侧棱之和为________ cm13.(1)102°43′32″+77°16′28″=________;(2)98°12′25″÷5=________.14.如图,∠AOB 中,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,若∠AOB=135°,则∠EOD=________°.15.(1)32°43′30″=________°;(2)86.47°=________ °________′________″16.已知:点A、B、C在同一直线上,若AB=12cm,BC=4cm,且满足D、E分别是AB、BC的中点,则线段DE的长为________cm.17.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露.的面涂上颜色,那么涂颜色面的面积之和是________cm218.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B(________);C(________);D(________);E(________).三、解答题(共6题;共42分)19.如图,OC平分∠BOD,∠AOD=110°,∠COD=35°,求∠AOB的度数.20.直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2与∠3的度数。
人教版数学七年级上册第4章《几何图形初步》单元同步检测试题(含答案)

第4章【几何图形初步】单元检测题题号一二三总分16 17 18 19 20分数一.选择题1.圣诞帽类似于几何体()A.圆锥B.圆柱C.球D.棱柱2.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′3.如果一个正方体棱长扩大到原来的2倍,则表面积扩大到原来的()A.2倍B.4倍C.8倍D.16倍4.如图是一个正方体的表面展开图,则这个正方体是()A.B.C.D.5.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°6.下列4个生产、生活现象中,可用“两点之间线段最短”来解释的是()A.用两根钉子就可以把木条固定在墙上B.植树时,只要选出两棵树的位置,就能确定同一行树所在的直线C.把弯曲的公路改直,就能缩短路程D.砌墙时,经常在两个墙角的位置分别插一根木桩拉一条直的参照线7.在以下三个图形中,根据尺规作图的痕迹,不能判断射线AD平分∠BAC的是()A.图2B.图1与图2C.图1与图3D.图2与图38.已知矩形两边长为2cm与3cm,绕长边旋转一周所得几何体的体积为()A.3πcm3B.4πcm3C.12πcm3D.18πcm39.已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC=∠AOBA.1个B.2个C.3个D.4个10.如图所示,在Rt△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心,以小于AC的长为半径作弧,分别交AC、AB于点M,N;②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点O;③作射线OA,交BC于点E,若CE=6,BE=10.则AB的长为()A.11B.12C.18D.20二.填空题11.若∠A=25°,则它的补角是°.12.张雷同学从A地出发沿北偏东60°的方向行驶到B地,再由B地沿南偏西35°的方向行驶到C 地,则∠ABC=度.13.一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是立方厘米.(结果保留π)14.已知点A、B、C在同一直线上,若AB=10cm,AC=16cm,点M、N分别是线段AB、AC中点,则线段MN的长是.15.已知△ABC,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交直线AB于点D,连接CD.若∠ABC=40°,∠ACD=30°,则∠BAC的度数为.三.解答题16.计算:(1)131°28′﹣51°32′15″(2)58°38′27″+47°42′40″(3)34°25′×3+35°42′17.如图,点B,D都在线段AC上,AB=12,点D是线段AB的中点,BD=3BC,求AC的长.18.如图,已知∠AOB=128°,OC平分∠AOB,请你在∠COB内部画射线OD,使∠COD和∠AOC 互余,并求∠COD的度数.19.如图,在△ABC中,D是AB边上的一点.请用尺规作图法,在△ABC内,作出∠ADE,使∠ADE=∠B,DE交AC于点E.(保留作图痕迹不写作法)20.在一个圆柱形水桶里,垂直放入一段半径是3cm的圆柱形钢材.如果把钢材全部侵入水中,桶里的水面上升10cm;如果再把钢材垂直露出水面6cm,桶里的水面下降4cm.(π取3.14)(1)整段钢材的体积是多少?(2)若把整段钢材全部用来锻造底面直径为2cm,高为3cm的圆锥形零件,一共可以锻造多少个这样的圆锥形零件?(假定锻造过程中无任何损耗)参考答案一.选择题1.解:圣诞帽的形状上面尖尖的,下面是圆形的,类似于圆锥体,故选:A.2.解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.3.解:设原来的正方体的棱长为a,则变化后的正方体的棱长为2a,原来的表面积:a×a×6=6a2,变化后的表面积:2a×2a×6=24a2,而24a2÷6a2=4,故选:B.4.解:“面A“的字母与上面的“横线”方向不对,因此选项A不符合题意;有三个“空白”的面,其中的两个“空白”的面是对面,因此选项D不符合题意,由“面A”的对面和邻面是标有“横线”的面,因此选项C不符合题意;故选:B.5.解:射线OA表示的方向是南偏东65°,故选:C.6.解:A、用两根钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;B、植树时,只要选出两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;C、把弯曲的公路改直,就能缩短路程,可用“两点之间线段最短”来解释,符合题意;D、砌墙时,经常在两个墙角的位置分别插一根木桩拉一条直的参照线,利用的是两点确定一条直线,故此选项不合题意;故选:C.7.解:在图1中,利用基本作图可判断AD平分∠BAC;在图2中,利用基本作图得到D点为BC的中点,则AD为BC边上的中线;在图3中,利用作法得AE=AF,AM=AN,则可判断△ADM≌△ADN,所以∠AMD=∠AND,则可判断△MDE≌△NDF,所以D点到AM和AN的距离相等,则可判断AD平分∠BAC.故选:A.8.解:将长方形纸片绕长边所在直线旋转一周,得到的几何体是底面半径为2cm,高为3cm的圆柱体,所以:体积为:π×22×3=12π(cm3),故选:C.9.解:①由∠AOC=∠BOC能确定OC平分∠AOB;②如图1,∠AOB=2∠AOC所以不能确定OC平分∠AOB;③∠AOC+∠COB=∠AOB不能确定OC平分∠AOB;④如图2,∠BOC=∠AOB,不能确定OC平分∠AOB;所以只有①能确定OC平分∠AOB;故选:A.10.解:过点E作DE⊥AB于点D,由作图知AO平分∠BAC,∵∠C=∠ADE=90°,∴CE=DE=6,∵BE=10,∴BD=8,∵AD=AC,CE=DE,∴Rt△ACE≌Rt△ADE(HL),∴AC=AD,设AC=AD=x,由AC2+BC2=AB2得x2+162=(x+8)2,解得:x=12,即AC=12,∴AB=20,故选:D.二.填空题11.解:∵∠A=25°,∴∠A的补角是180°﹣∠A=180°﹣25°=155°.故答案为:155.12.解:如图所示,∵AD∥BE,∠1=60°,∴∠ABE=∠DAB=60°,又∵∠CBE=35°,∴∠ABC=60°﹣35°=25°.故答案为:25.13.解:绕它的直角边所在的直线旋转所形成几何体是圆锥,①当绕它的直角边为3cm所在的直线旋转所形成几何体的的体积是:π×32×4=12π,②当绕它的直角边为4cm所在的直线旋转所形成几何体的的体积是:π×42×3=16π,故答案为:12π或16π.14.解:(1)如图1,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AM+AN=5+8=13(cm)(2)如图2,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AN﹣AM=8﹣5=3(cm),综上,线段MN的长是13cm或3cm.故答案为:13cm或3cm.15.解:由题意得,直线MN是线段BC的垂直平分线,∴BD=CD,∴∠BCD=∠B=40°,∵∠ACD=30°,如图1,∴∠ACB=40°+30°=70°,∴∠BAC=180°﹣70°﹣40°=70°;如图2,∴∠ACB=40°﹣30°=10°,∴∠BAC=180°﹣10°﹣40°=130°,综上所述,∠BAC的度数为70°或130°,故答案为:70°或130°.三.解答题16.解:(1)131°28′﹣51°32′15″=79°55′45″;(2)58°38′27″+47°42′40″=106°21′7″;(3)34°25′×3+35°42′=103°15′+35°42′=138°57′.17.解:∵AB=12,点D是线段AB的中点,∴BD=12÷2=6;∵BD=3BC,∴BC=6÷3=2,∴AC=AB+BC=12+2=14.18.解:作OD⊥OA,则∠COD和∠AOC互余,如图所示.∵∠AOB=128°,OC平分∠AOB,∴∠AOC=∠AOB=64°,∵∠COD和∠AOC互余,∴∠COD=90°﹣∠AOC=26°.19.解:如图,∠ADE即为所求.20.解:(1)整段钢材的高为:10×(6÷4)=15(cm),整段钢材的体积为:3.14×32×15=423.9(cm3),答:整段钢材的体积是423.9立方厘米;(2)每个圆锥形零件的体积为,锻造锥形零件的个数为:423.9÷3.14=135(个).答:一共可以锻造135个这样的圆锥形零件.。
人教版七年级数学第四章《几何图形初步》单元测试带答案解析

【点睛】考查正方体的展开图的特征,“一线不过四,田凹应弃之”应用比较广泛简洁.
4.C
【分析】根据正方体表面展开图的特征进行判断即可.
【详解】解:由正方体表面展开图.
【点睛】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.
分两种情况:
当点P在点B的右侧,
∵M,N分别为AP,BP的中点,
∴ , ,
∴ ,
当点P在点B的左侧,
∵M,N分别为AP,BP的中点,
, ,
∴ ,
∴在点P的运动过程中,线段MN的长度不变,故④正确.
所以,上列结论中正确的是②④.
故选:D.
【点睛】本题考查了数轴,根据题目的已知条件并结合图形分析是解题的关键.
A.长方体B.圆柱C.圆锥D.正方体
3.下列图形是正方体展开图的个数为()
A.1个B.2个C.3个D.4个
4.如图是正方体的表面展开图,则与“话”字相对的字是( )
A.跟B.党C.走D.听
5.如图,把一个高6分米的圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个与它等底等高的近似长方体,它的表面积比圆柱体的表面积增加了36平方分米.原来这个圆柱的体积是( )立方分米.
20.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.
(1)请你帮小华分析一下拼图是否存在问题,若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;
(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,求出修正后所折叠而成的长方体的体积.
故选:D.
【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章《几何图形初步》单元测试卷
班级: 姓名: 座号: 评分:
一、选择题(每小题3分,共30分)
1.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( )
A. 正方体、圆柱、三棱柱、圆锥
B. 正方体、圆锥、三棱柱、圆柱
C. 正方体、圆柱、三棱锥、圆锥
D. 正方体、圆柱、四棱柱、圆锥 2.如下图,该物体的俯视图是( )
3.把弯曲的河道改直,能够缩短船舶航行的路程,这样做的道理是( ) A. 垂线段最短 B. 两点确定一条直线 C. 两点之间,直线最短 D. 两点之间,线段最短
4.下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个角的是( )
第4题图 第5题图
5.如图,点C 是线段AB 的中点,点D 是线段CB 的中点,下列说法错误的是( )
A .CD =AC -BD
B .CD =12AB -BD
C .AC +B
D =BC +CD D .CD =12
AB
6.用一副三角板不能画出( )
A.75°角
B.135°角
C.160°角
D.105°角 7.如图,钟表8时30分时,时针与分针所成的角的度数为( ) A. 90° B.75° C. 60° D. 30° 8.如图,长度为18cm 的线段AB 的中点为M ,点C 是线段MB 的一个三等分点,则线段AC 的长为( )
A. 12cm
B. 6cm
C. 9cm
D. 3cm 9.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为( )
A .140°
B .160°
C .170°
D .150°
10.已知在线段上依次添加1个点,2个点,3个点,……, 原线段上所成线段的总条数如下表:若在原线段上添加n 个点,则原线段上所有线段总条数为( ) A .n +2 B .1+2+3+…+n +n +1
C .n +1 D.
二、填空题(每小题3分,共24分)
11.计算:(1) 90°-78°19′40″= (2) )11°23′26″×3= 12.已知∠α与∠β互余,且∠α=40°,则∠β
13.已知线段AB =8 cm ,在直线AB 上画线段BC 使BC =3 cm ,则线段 AC = .
14. 如图,OA 的方向是北偏东15°,OC 的方向是北偏西40°,若∠AOC =∠AOB ,则OB 的方向是__ .
添加点数
1
2 3 4 线段总条数 3
6
10
15
14题图 15题图 16题图
15.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOD=120°,则∠DOE=,∠COE=.
16.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是_______cm2.
三、解答题(共46分)
17.已知:如图,线段,;请按下列步骤画图:(用圆规和直尺画图,不写画法、保留作图痕迹)(10分)
①画线段BC,使得BC= ;
②在直线BC外任取一点A,画直线AB和射线AC.
18.一个角的补角比它的余角的3倍小20°,求这个角的度数.(8分)
19.如图,点M是线段AC的中点,点B在线段AC上,且AB=4 cm,BC=2AB,
求线段MC和线段BM的长.(8分)
20.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长(8分).
21.如图,O是直线AB上一点,OD平分∠AOC.(12分)
(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.
(2)若∠AOD和∠DOE互余,且∠AOD=1
3
∠AOE,请求出∠AOD和∠COE的度
数.
四.附加题(20分)
1.(1)如图,已知点C在线段AB上,AC=6 cm,且BC=4 cm,M,N分别是AC,BC的中点,求线段MN的长度;
(2)在(1)题中,如果AC=a cm,BC=b cm,其他条件不变,你能猜出MN的长度吗?请你用一句简洁的话表述你发现的规律;
(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6 cm,BC=4 cm,点C在直线AB上,M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.
2.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.
(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?
(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;
(3)如图③,当∠AOB=α,∠BOC=β时,猜想∠MON与α,β有数量关系吗?如果有,写出你的结论,并说明理由.。