角平分线定理电子教案

合集下载

八年级数学下册《角平分线的性质》教案、教学设计

八年级数学下册《角平分线的性质》教案、教学设计
3.小组合作完成的作业,需注明组员姓名,确保分工明确。
4.作业完成后,认真检查,确保答案正确。
4.布置课后作业,要求学生巩固所学知识,并进行适当的拓展延伸。
五、作业布置
为了巩固学生对角平分线性质的理解和应用,提高学生的解题能力,特布置以下作业:
1.请同学们完成课本第chapter页的练习题,重点关注以下题目:
(1)题目编号A:运用角平分线性质解决实际问题。
(2)题目编号B:证明角平分线上的点到角两边的距离相等。
在教学过程中,教师应关注学生的学习状况,及时调整教学策略,使学生在轻松愉快的氛围中掌握角平分线的性几何图形观察能力,掌握了基本的几何概念和性质,能够运用简单的逻辑推理进行问题分析。在此基础上,学生对角平分线的性质的学习将更为顺利。然而,学生在空间想象、逻辑推理和问题解决方面仍存在一定的困难,需要教师在教学过程中给予关注和引导。
2.学生在运用角平分线性质解决具体问题时,是否能够熟练运用。
3.学生在团队合作中,能否主动发表自己的观点,倾听他人意见。
4.学生在遇到困难时,是否具备寻求帮助和解决问题的能力。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握角平分线的定义及性质。
2.学会运用角平分线的性质解决实际问题。
3.培养学生的逻辑思维能力和空间想象力。
3.教师针对学生的错误,进行讲解,帮助学生查漏补缺。
4.教师挑选部分优秀作业进行展示,让学生互相学习,共同提高。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结角平分线的性质及解题方法。
2.学生分享学习心得,教师点评并给予鼓励。
3.教师强调角平分线在实际问题中的应用价值,激发学生学习数学的兴趣。

(完整版)角平分线的性质教案.doc

(完整版)角平分线的性质教案.doc

第十一章角平分线的性质一学习目标1.了解角是轴对称图形和角平分线的定义,会用尺规作一个角的平分线;2.掌握角平分线的性质和判定;3.综合应用角的平分线的性质和判定解决相关问题。

二重点、难点重点:角平分线的性质和判定。

难点:角平分线的性质和判定的综合应用。

三考点分析对角平分线的定义及角平分线的作法进行单独命题在中考中是比较少见的,但这两个知识点属于基础知识,出题者往往将其与线段的垂直平分线、等腰三角形、四边形等知识综合在一起进行命题,题型多为作图题,属中档难度题。

角平分线的性质是本章的重要内容,它是除了用三角形全等证明线段相等之外的又一个证明线段相等的重要方法。

中考命题中,多将角平分线的作法及性质与其他知识点结合在一起进行考查,题型多为选择、填空、作图题,分值在 3~6 分。

这就要求学生必须熟练掌握用尺规作图法作角平分线的要领,并会应用角平分线的定义、性质解决相关问题。

四课时安排安排一小时五教学方法探究归纳法,实践法六教学过程1.知识梳理1)角平分线的定义2)角平分线的尺规作法3)角平分线的性质4)角平分线的判定2.新授知识点一作角平分线例 1:如图,已知点 C 为直线 AB 上一点,过 C 作直线 CM ,使 CM AB 于 C 。

思路分析:由于AB是直线,要求作CM AB ,实际上就是要作平角ACB 的平分线。

根据角平分线的尺规作图法就可以作出直线CM 。

解答过程:作法:1、以 C 为圆心,适当的长为半径画弧,与CA 、 CB 分别交于点D、 E;2、分别以 D 、E 为圆心,大于1 DE 的长为半径画弧,使两弧交于点M ;23、作直线CM 。

所以,直线CM 即为所求。

解题后的思考:此题要求“大于1 1DE 的长为半径”的理由是:半径如果小于DE ,则两弧无法相交;而半径如果等2 2于1DE ,则两弧交点位于 C 点处,无法作出直线 CM 。

2在数学学习中,不光要知道怎么做题,还要知道为什么要这样做。

角平分线的性质定理及其逆定理(公开课)

角平分线的性质定理及其逆定理(公开课)

求证:BC=CD
如图,四边形ABCD中, AC平分∠BAD, ∠B+∠D=180°,
老师总结了如下解题规律,有关角平分线证边角等量关 系的题:
(1)首先想角平分线定理,一条角平分线用一次, 两条用两次,三条用三次; (2)其次站在轴对称的高度,构造全等三角形,再 利用全等三角形转移边角等量关系。
从直线外一点到这条 直线的垂线段的长度,

叫做点到
直线的距
离。
二、探究导学
1、做一做:大家来猜想一下有什么样的结论成立?
角平分线的性质定理
角平分线上的点到这个角的两边的距离相等
已知:如图,OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA, PE⊥OB,垂足分别是D,E. 求证:PD=PE.
证明: ∵ PDOA,PEOB
P到OM距离是多少? PQ的最小值为多少?
如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC 于点D,AB=10,S△ABD=15,则CD的长为多少?
3、如图,△ABC中,∠C=90°,AC=CB,AD为 ∠BAC的平分线,DE⊥AB于点E。 求证:△DBE的周长等于线段AB的长。
C
D
A
E
B
3、如图,直线a,b,c表示三条互相交叉的公路。现在要建一个货 物中转站,要求它到三条公路的距离相等,则可供选择的地址有 ( )处。
△ABC内角平分线的交点到三角形三边 的距离相等,满足这个条件的点有1个。
△ABC两条外角平分线的交点到其三边的 距离也相等,满足这个条件的点有3个。
综上,到三条公路的距离相等的点有4个。
P
E
B
∴PD=PE (角平分线上的点 到这个角的两边的距离相等)

角平分线定理教案

角平分线定理教案

角平分线定理教案教案标题:角平分线定理教案一、教学目标:1. 理解角平分线定理的概念和原理。

2. 能够应用角平分线定理解决相关问题。

3. 培养学生的逻辑思维和推理能力。

二、教学内容:1. 角平分线定理的定义和表述。

2. 角平分线定理的证明。

3. 角平分线定理的应用。

三、教学过程:1. 导入(5分钟):引导学生回顾并复习角的概念,以及如何用直尺和量角器测量角的大小。

2. 角平分线定理的定义和表述(10分钟):通过示意图向学生展示角平分线的概念,并引导学生总结角平分线定理的定义和表述。

3. 角平分线定理的证明(20分钟):介绍角平分线定理的证明思路,引导学生根据已有的知识和定理进行推理和证明,最终得出结论。

提示学生注意证明过程中的关键步骤和逻辑推理。

4. 角平分线定理的应用(15分钟):通过一些具体的问题和例子,引导学生应用角平分线定理解决相关问题,培养学生的问题解决能力和推理能力。

5. 拓展与巩固(10分钟):给学生提供一些拓展题目,让他们进一步巩固和应用所学的知识。

6. 总结与归纳(5分钟):总结角平分线定理的内容和应用,并强调其在几何学中的重要性。

四、教学资源:1. 教科书和课本2. 示例图和示意图3. 直尺、量角器等绘图工具4. 课堂练习题和拓展题目五、教学评估:1. 课堂练习题的完成情况和答案的正确性。

2. 学生对角平分线定理的理解和应用能力的表现。

3. 学生的课堂参与和互动情况。

六、教学反思:根据学生的学习情况和反馈,及时调整教学策略,帮助学生更好地理解和应用角平分线定理。

同时,鼓励学生积极思考和提问,促进课堂互动和合作。

角平分线的性质教案

角平分线的性质教案

角平分线的性质教案一、教学目标1. 知识与技能:(1)理解角平分线的定义;(2)掌握角平分线的性质及其推论;(3)学会运用角平分线解决几何问题。

2. 过程与方法:(1)通过观察、分析、推理等过程,探索角平分线的性质;(2)运用角平分线性质解决实际问题,提高解决问题的能力。

3. 情感态度与价值观:(1)培养学生的观察能力、思考能力和创新能力;(2)激发学生对几何学的兴趣,培养学生的学习积极性。

二、教学内容1. 角平分线的定义:从角的顶点引出一条射线,使得这条射线把角分成两个相等的角,这条射线称为这个角的平分线。

2. 角平分线的性质:(1)角的平分线上的点到角的两边的距离相等;(2)角的平分线与角的两边构成等腰三角形;(3)角的平分线垂直平分角的两边。

三、教学重点与难点1. 教学重点:(1)角平分线的定义;(2)角平分线的性质及其推论。

2. 教学难点:(1)角平分线性质的证明;(2)运用角平分线解决实际问题。

四、教学准备1. 教具:(1)三角板;(2)直尺;(3)圆规。

2. 学具:(1)三角板;(2)直尺;(3)圆规;(4)练习本。

五、教学过程1. 导入:(1)复习相关知识:角的定义、射线的性质;(2)提出问题:如何找到一个角的平分线?2. 新课讲解:(1)介绍角平分线的定义;(2)引导学生观察、分析角平分线的性质;(3)证明角平分线的性质。

3. 课堂练习:(1)让学生运用角平分线的性质解决问题;(2)引导学生发现角平分线与等腰三角形的关系。

4. 拓展与应用:(1)引导学生思考:角平分线在实际生活中的应用;(2)举例说明角平分线在几何中的应用。

(1)回顾本节课所学内容;(2)强调角平分线的性质及其重要性。

6. 作业布置:(1)运用角平分线性质解决几何问题;(2)绘制角的平分线示意图。

六、教学评价1. 评价目标:(1)了解学生对角平分线定义和性质的理解程度;(2)评估学生运用角平分线解决几何问题的能力;(3)考察学生的观察能力、思考能力和创新能力。

1.4角平分线(教案)

1.4角平分线(教案)

同学们,今天我们将要学习的是《角平分线》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将角平均分成两个相等角的情况?”比如,在剪纸或拼图时,我们可能需要这样的技巧。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索角平分线的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角平分线的基本概念。角平分线是通过角的顶点,将角分成两个相等角的射线。它在几何图形的分割和证明中有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用角平分线来解决实际问题,以及它如何帮助我们解决几何问题。
3.重点难点解析:在讲授过程中,我会特别强调角平分线的定义和性质这两个重点。对于难点部分,比如性质的应用,我会通过具体例题和图示来帮助大家理解。
此外,课后我对学生的作业进行了批改,发现他们在解题过程中对角平分线的应用还不够熟练。为了帮助他们巩固知识点,我计划在下一节课开始时,对一些典型的错误进行讲解,让学生明白自己错在哪里,如何改正。
另外,小组讨论环节,我发现有些学生参与度不高,可能是因为他们对讨论主题不够感兴趣或者不知道如何表达自己的观点。针对这个问题,我打算在下次课中尝试引入一些生活化的例子,激发学生的兴趣,并引导他们如何进行有效讨论。同时,我也会鼓励学生多与同伴交流,培养他们的团队协作能力。
在学生小组讨论的引导过程中,我意识到提问技巧的重要性。提出的问题既要能够启发学生思考,又要具有一定的开放性,让学生有足够的空间发挥。在今后的教学中,我会更加注意问题的设计,努力提高学生的逻辑思维能力和解决问题的能力。
首先,我意识到在讲解角平分线性质时,需要更多地结合实际例子来帮助学生理解。例如,在证明角平分线上的点到角的两边距离相等时,我可以准备一些具体的图形,让学生观察、测量并自己推导出这个性质。这样既能提高他们的几何直观能力,也能加深对性质的理解。

八年级数学上册《角平分线的性质和判定定理》教案、教学设计

八年级数学上册《角平分线的性质和判定定理》教案、教学设计
3.思考题:
-如果一个角的平分线同时也是这个角的垂直平分线,那么这个角有什么特殊的性质?请给出证明;
-如果一个角的平分线同时也是另一个角的平分线,那么这两个角之间有什么关系?请给出证明。
4.实践活动:
-与同学合作,设计一个关于角平分线的数学小报,内容包括定义、性质、判定定理以及生活中的应用等;
-利用所学知识,尝试解决实际生活中的问题,如测量角度、划分土地等,并撰写解题报告。
2.学生在运用角平分线判定定理解决问题时的逻辑思维能力和解题技巧;
3.学生在合作交流、动手操作等方面的学习习惯和团队协作能力。
针对学情,教师应采取以下策略:
1.设计富有启发性的问题,引导学生主动探究角平分线的性质;
2.创设生活情境,让学生在实际问题中体会角平分线判定定理的应用;
3.注重个体差异,给予学生个性化的指导,提高学生的自主学习能力;
4.加强课堂讨论与交流,培养学生的团队合作意识和解决问题的能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:角平分线的性质及其应用,角平分线的判定定理。
2.难点:理解并灵活运用角平分线的性质和判定定理解决实际问题。
(二)教学设想
1.创设情境,激发兴趣:
-通过引入生活中的实例,如折纸、剪纸等,让学生感受角平分线的存在和应用,激发学生的学习兴趣;
作业要求:
1.请同学们认真完成作业,书写规范,保持卷面整洁;
2.作业完成后,进行自查,确保解题过程和答案正确;
3.遇到问题时,与同学讨论,或向老师请教,及时解决疑问;
4.作业提交时间:课后第二天。
二、学情分析
八年级学生在前期的数学学习中,已经掌握了角的初步知识,如角的分类、角的度量等。在此基础上,学生对角平分线的性质和判定定理的学习具备了一定的基础。然而,由于学生的认知水平和思维能力存在差异,部分学生可能在理解角平分线的性质和判定定理方面存在困难。

角的平分线的性质教案多篇

角的平分线的性质教案多篇

角的平分线的性质教案多篇角的平分线的性质教案1一、教学目标【知识与技能】了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明与计算。

【过程与方法】在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力。

【情感态度与价值观】在主动参与数学活动的过程中,增强探究问题的兴趣、有合作交流的意识、动手操作的能力与探索精神,获得解决问题的成功体验。

二、教学重难点角的平分线的性质的证明及应用。

角的平分线的性质的探究。

三、教学过程(一)导入新课1.复习角平分线的画法2.利用PPT创设情景:如图是小明制作的风筝,他根据AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?(二)生成新知探究做一做(学生独立完成,同组同学交流,找学生到黑板上板演.教师纠正答案)如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开.观察两次折叠形成的三条折痕,你能得出什么结论?试着证明你的结论.0011.jpg∴△PDO≌△PEO(AAS)∴PD=PE.(三)深化新知思考:角的平分线的性质在应用时应该注意什么问题?(由学生讨论汇报)(四)应用新知1.例题:解决导入中PPT的问题2.练一练:(1) 下面四个图中,点P都在∠AOB的平分线上,则图形_____ 中PD=PE.0012.jpg(五)小结作业小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?作业:必做题,选做题,思考题:角平分线性质的逆命题并证明。

角的平分线的性质教案2一、教学目标【知识与技能】进一步了解角平分线的性质和判定,能够证明角平分线的性质和判定定理并且会运用角平分线性质去解决问题。

【过程与方法】通过对“角平分线性质”的探究,提高分析问题、解决问题的能力。

【情感态度与价值观】通过一系列的证明过程,体验数学活动充满着探索性和创造性,增强学习数学的兴趣和勇于创新的精神。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角平分线定理
角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。

■ 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。

【注】三角形的角平分线不是角的平分线,是线段。

角的平分线是射线。

■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。

■定理1:在角平分线上的任意一点到这个角的两边距离相等。

■逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。

■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,
如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC
提供四种证明方法:
已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC
已知和证明1图
证明:方法1:(面积法)
S△ABM=(1/2)·AB·AM·sin∠BAM,
S△ACM=(1/2)·AC·AM·sin∠CAM,
∴S△ABM:S△ACM=AB:AC
又△ABM和△ACM是等高三角形,面积的比等于底的比,
证明2图
即三角形ABM面积S:三角形ACM面积S=BM:CM ∴AB/AC=MB/MC
方法2(相似形)
过C作CN‖A B交AM的延长线于N
则△ABM∽△NCM
∴AB/NC=BM/CM
又可证明∠CAN=∠ANC
∴AC=CN
∴AB/AC=MB/MC
证明3图
方法3(相似形)
过M作MN‖AB交AC于N
则△ABC∽△NMC,
∴AB/AC=MN/NC,AN/NC=BM/MC
又可证明∠CAM=∠AMN
∴AN=MN
∴AB/AC=AN/NC
∴AB/AC=MB/MC
方法4(正弦定理)
作三角形的外接圆,AM交圆于D,
由正弦定理,得,
证明4图
AB/sin∠BMA=BM/sin∠BAM,
∴AC/sin∠CMA=CM/sin∠CAM
又∠BAM=∠CAM,∠BMA+∠AMC=180°
sin∠BAM=sin∠CAM,sin∠BMA=sin∠AMC, ∴AB/AC=MB/MC。

相关文档
最新文档