角平分线定理的巧妙应用

合集下载

第3节 角平分线的性质及应用

第3节  角平分线的性质及应用

第三节角平分线的性质及应用一、课标导航二、核心纲要1.角平分线的性质定理角的平分线上的点到角的两边的距离相等.如下左图所示:∵OC平分∠AOB,CD⊥OA,CE⊥OB,∴CD=CE.注:考查点到线的距离相等时,可以考虑角平分线的性质.2.角平分线的判定定理到角的两边距离相等的点在角的平分线上.如下中图所示:∵CD⊥OA,CE⊥OB,CD=CE,∴OC平分∠AO B.注:用来证明一条线是一个角的平分线.3.角平分线的画法如下右图所示,已知:∠AO B.作法;(1)以O为圆心,适当长为半径作弧,交OA于点M,交OB于点N.(2)分别以M、N为圆心,大于12MN的长为半径作弧,两弧在∠AOB的内部交于点C.(3)作射线O C.∴射线OC即为所求.4.三角形的角平分线三角形的三个内角的角平分线交于一点,且到三边的距离相等.5.与角平分线有关的辅助线模型(1)在角的平分线上取一点向角的两边作垂线.(点垂线,垂两边,线等全等都出现)如下左图所示,过点C作CD⊥OA,CE⊥OB,则CD=CE,△OCD≌△OCE.(2)在角两边截取相等的线段,构造全等三角形.(角分线,分两边,对称全等要记全)如下图所示:在OA、OB上分别截取OD=OE,连接CD、CE,则△OCD≌△OCE.(3)角平分线+垂线,全等必出现.如下右图所示:延长DC交OB于点E,则△OCD≌△OCE.本节重点讲解:两个定理,两个作法(角平分线的作法和与角平分线有关的辅助线).三、全能突破基础演练1.如图12-3-1所示,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为().A.4cm B.5cm C.6cm D.8cm2.如图12-3-2所示,OP平分∠AOB,P A⊥OA,PB⊥OB,垂足分别为A、B.下列结论中不一定成立的是()A.P A=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP 3.如图12-3-3所示,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为().A.3:2 B.9:4 C.2:3 D.4:94.如图12-3-4所示,在Rt△ABC中,∠C=90°,BD是∠ABC的平分线,交AC于点D,若CD=n,AB=m,则△ABD的面积是.5.如图12-3-5所示,BD是∠ABC的平分线,AB=CB,点P在BD的延长线上,PM⊥AD,PN ⊥CD,垂足分别是点M、N,求证:PM=PN.6.如图12-3-6所示,在四边形ABCD中,BC>AB,AD=DC,DF⊥BC,BD平分∠AB C.(1)求证:∠BAD+∠BCD=180°.(2)若DF=3,BF=6,求四边形ABCD的面积.7.如图12-3-7所示,D、E、F分别是△ABC的三边上的点,CE=BF,△DCE和△DBF的面积相等,求证:AD平分∠BA C.能力提升8.如图12-3-8所示,∠AOB和一条定长线段a,在∠AOB内找一点P,使点P到OA、OB的距离都等于a,作法如下:(1)作OB的垂线NH,使NH=a,点H为垂足;(2)过点N作NM∥OB;(3)作∠AOB的平分线OP,与NM交于点P;(4)点P即为所求.其中(3)的依据是().A.平行线之间的距离处处相等B.到角的两边距离相等的点在角的平分线上C.角的平分线上的点到角的两边的距离相等D.到线段的两个端点距离相等的点在线段的垂直平分线上9.如图12-3-9所示,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S.若AQ=PQ,PR=PS,QD⊥AP,下列结论:①AS=AR;②AP平分∠BAC;③△BRP≌△CSP;④PQ∥AR.其中正确的是().A.①③B.②③C.①②④D.①②③④10.如图12-3-10所示,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()处.A.1 B.2 C.3D.411.如图12-3-11所示,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC 的延长线于F,E为垂足.则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE,其中正确结论的个数是().A.1 B.2 C.3 D.412.如图12-3-12所示,已知AB平行CD,∠CAB,∠ACD的平分线交于点O,OE⊥AC,且OE=2,则两平行线AB、CD之间的距离等于.13.(1)如图12-3-13所示,△ABC的三边AB、BC、CA长分别是20、30、40,三条角平分线将△ABC分成三个三角形,则S△ABO:S△BCO:S△CAO等于.(2)如图12-3-14所示,已知△ABC的周长是18cm,OB、OC分别平分∠ABC和∠ACB,OD ⊥BC于点D,若△ABC的面积为54cm2,则OD= .14.如图12-3-15所示,∠B=∠C=90°,M是BC中点,AM平分∠DAB,求证:DM平分∠AD C.15.如图12-3-16所示,在河中有座水文观测台O,它到河岸以及河上大桥AB的距离相等,一水文数据记录员站在台上,发现桥上有辆漂亮的彩车,从桥头A走到桥头B,问记录员的视线转过多大角度?16.如图12-3-17所示,在△ABC中,PB、PC分别是△ABC的外角的平分线,求证:∠1=∠2.17.已知,如图12-3-18所示,在△ABC和△DCE中,BC=AC,DC=EC,∠ACB=∠DCE,B、C、E三点在一条直线上,A、B、C、D、E、F、G、O为“公交停靠点”,甲公共汽车从A站出发,按照A、F、G、E、C、F的顺序达到F站,乙公共汽车从B哦出发,按照BOFDGDF的顺序达到F站,(1)如果甲乙两公共汽车分别从AB站出发,在各站耽误的时间相同,两车的速度也相同,试问哪一辆公共汽车先达到指定站点?为什么?(2)求证:①∠AFB=∠CDE;②CF平分∠BFE.18.如图12-3-19所示,在△ABC中,BD是∠ABC的平分线,AD⊥BD,垂足为点D,(1)求证:∠2=∠1+∠C;(2)若ED∥BC,∠ABD=28°,求∠ADE的度数.19.如图12-3-20所示,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点.求证:AB-AC>PB-P C.20.如图12-3-21所示,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.中考链接21.(2011·浙江衢州)如图12-3-22所示,OP平分∠MON,P A⊥ON于点A,点Q是射线OM 上的一个动点,若P A=2,则PQ的最小值为().A.1 B.2 C.3 D.422.(2010·青海西宁)八(1)班同学上数学活动课,利用角尺平分一个角(如图12-3-23所示)设计了如下方案:(I)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(II)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P 的射线OP就是∠AOB的平分线.(1)方案(I)、方案(II)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(I)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥O B.此方案是否可行?请说明理由.巅峰突破23.如图12-3-24所示,在Rt△ABC中,∠ACB=90°,∠CAB=60°,∠ACB的平分线与∠ABC 的外角平分线交于点E,则∠AEB=().A.50° B.45° C.40°D.35°24.如图12-3-25所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,AE=12BD,求证:BD是∠ABC的平分线.。

三角形的角平分线与垂直平分线

三角形的角平分线与垂直平分线

三角形的角平分线与垂直平分线角平分线与垂直平分线是三角形中重要的几何概念。

它们可以帮助我们研究三角形的性质和推导出一些有用的结论。

本文将详细介绍角平分线与垂直平分线的定义、性质和应用。

一、角平分线角平分线定义为从一个角的顶点出发,将这个角分成两个相等的角的线段。

以三角形ABC为例,假设角A的角平分线为AD,则角BAD 与角DAC是相等的。

这一定义可以推广到任意三角形中的任意角。

角平分线具有以下性质:1. 一个角的两条平分线相交于该角的顶点,并将该角平分成两个相等的角。

2. 三角形的内角平分线三条相交于一点,称为内心。

这个点到三角形三边的距离相等,可以证明是三角形内接圆的圆心。

3. 三角形的外角平分线三条相交于一点,称为外心。

这个点到三角形的顶点的距离相等,可以证明是三角形外接圆的圆心。

4. 三角形的角平分线分割对边成比例,即根据角平分线定理可得:AB/BC=AD/DC。

角平分线的应用广泛,特别是在证明三角形的性质和推导结论时非常有用。

例如,可以利用角平分线证明角的等分性质、三角形的相似性质、垂心定理等。

二、垂直平分线垂直平分线定义为从一个线段的中点出发,与该线段垂直且将该线段平分为两段相等的线段。

以三角形ABC为例,假设AB的垂直平分线为DE,则AD=BD=BE=CE=CD。

这一定义可以推广到任意线段。

垂直平分线具有以下性质:1. 一个三角形的三条垂直平分线交于一点,称为垂心。

这个点到三角形三顶点的距离相等,可以证明是三角形外接圆的圆心。

2. 一个角的垂直平分线经过角的顶点,并将该角平分成两个相等的角。

3. 垂直平分线等分线段,即对于一个线段AB,若点D是其垂直平分线的交点,则AD=DB。

垂直平分线也有许多应用,特别是在几何证明中常常能发挥关键作用。

例如,可以利用垂直平分线证明角的等分性质、直角三角形的性质、垂心定理等。

总结:角平分线与垂直平分线是三角形中重要的概念,它们有着许多有用的性质和应用。

三角形的角平分线与相似三角形综合

三角形的角平分线与相似三角形综合

三角形的角平分线与相似三角形综合三角形是几何学中重要的概念,它具有许多特性和性质。

本文将探讨三角形中的角平分线和相似三角形之间的关系以及其综合应用。

一、角平分线的概念和性质角平分线是指从一个角的顶点出发,将该角分成两个相等的角的线段。

在三角形中,角平分线有如下性质:1. 角平分线将角分为两个相等的角:设三角形ABC中,∠BAC的角平分线交边BC于点D,则∠BAD = ∠DAC。

2. 角平分线与对边的关系:设三角形ABC中,∠BAC的角平分线交边BC于点D,则BD/DC = AB/AC。

3. 角平分线的唯一性:在一个三角形中,每个角都有唯一的角平分线。

二、相似三角形的概念和性质相似三角形是指具有相同形状但可能不同大小的三角形。

在相似三角形中,角度相等且对应边的比例相等。

相似三角形的性质如下:1. AAA相似定理:如果两个三角形的对应角度相等,那么它们相似。

2. AA相似定理:如果两个三角形的两个对应角度相等,那么它们相似。

3. SSS相似定理:如果两个三角形的对应边的比例相等,那么它们相似。

三、角平分线与相似三角形的关系在三角形中,角平分线与相似三角形之间存在一定的关系。

具体如下:1. 角平分线分割相似三角形:设三角形ABC中,∠BAC的角平分线交对边BC于点D,令AD与角平分线交BC的延长线于点E。

则有∆ABD ∼ ∆ACE。

2. 相似三角形的角平分线:设∆ABD ∼ ∆ACE,∠BAD的角平分线交BD于点F,∠CAE的角平分线交CE于点G。

则有∆ABF ∼∆ACG。

通过以上关系,我们可以在解决三角形相关问题时应用角平分线和相似三角形的知识。

四、综合应用1. 证明角平分线的长度关系:设三角形ABC中,∠BAC的角平分线交对边BC于点D。

通过角平分线与对边的关系可得BD/DC =AB/AC。

进一步利用相似三角形的性质,我们可以得到如下结论:AD/DC = AB/BC。

2. 判断角平分线存在问题:当一个三角形的三个内角都被其角平分线平分时,可以推断该三角形是等边三角形。

角平分线定理及其应用

角平分线定理及其应用

从这个结果出发,你还能联想到什么?
做一做
用尺规作角的平分线.
已知:∠AOB,如图. 求作:射线OC,使∠AOC=∠BOC. E 作法: 1.在OAT和OB上分别截取OD,OE,使OD=OE.
A
C
2.分别以点D和E为圆心,以大于DE/2长 为半径作弧,两弧在 ∠AOB内交于点C. O
3.作射线OC.

课本:P32 1、2
堂堂清:

课本:P34 2
鲁教版课标九上
6.5 角平分线
回顾与思考 你还能利用折纸的方法得到角平分线及角平分线上的点吗? 你还记得角平分线上的点有什么性质吗? 你能证明这一结论吗? 角平分线上的点到这个角的两边距离相等. 已知:如图,OC是∠AOB的平分线,P是OC上任意一,PD⊥OA, PE⊥OB,垂足分别是D,E.求证:PD=PE. A D 分析:要证明PD=PE,只要证明它们 所在的△OPD≌△OPE. 1 P O 2 C 而△OPD≌△OPE的条件由已 知易知它满足公理(AAS). E B 故结论可证.
D
B
则射线OC就是∠AOB的平分线. 请你说明OC为什么是∠AOB的平分线,并与同伴进行交流.
老师提示:
作角平分线是最基本的尺规作图,这种方法要确实掌握.
课内练习
1.如图,AD,AE分别是△ABC中∠A的内角平分线和外 角平分线,它们有什么关系?
C
E D
B
A
F
老师期望:
你能说出结论并能证明它.
随堂练习:
C
分析:要证明点P在∠AOB的平分线上, 可以先作出过点P的射线OC,然后证明 ∠1=∠2. 老师期望:你能写出规范的证明过程.
E B
Hale Waihona Puke 动手练一练逆定理 在一个角的内部,且到角的两边距离相等的 点,在这个角的平分线上. 如图, A ∵PA=PB, PD⊥OA,PE⊥OB,垂足 D 分别是D,E(已知), 1 P ∴点P在∠AOB的平分线上.(在一 O 2 C 个角的内部,且到角的两边距离相 等的点,在这个角的平分线上). E B 老师提示:这个结论又是经常用 来证明点在直线上(或直线经过某一 点)的根据之一.

角平分线的性质的应用

角平分线的性质的应用

第8 周第3课时总第课时时间备课人:审核:准核:班级:学生姓名:课题角平分线的性质的应用
1.深入理解角平分线的性质和判定定理;
教学目标
2.提高角平分线的性质和判定定理的应用能力
教学重点角平分线的性质和判定定理的理解
教学难点角平分线的性质和判定定理的应用能力
一、知识回顾
1.角平分线的性质:
∵OC是∠AOB的平分线,且PD⊥OA,

2.角平分线的判定:
∵且PD⊥OA,

二,题型讲解
①角平分线的性质的应用:
例题如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB、DF⊥AC,
垂足为E、F,求证:EB=FC.
分析:①若想证明EB=FC,则首先要证明;
证明条件是否满足?
②根据角平分线的性质,可知。

第8 周第3课时总第课时时间备课人:审核:准核:班级:学生姓名:
变式:
如图,∠1=∠2,AE⊥OB于点E,BD⊥OA于点D.AE,BD交于点C,
求证:AC=BC
②角平分线判定定理的应用:
例题如图,在△ABC中,D是BC的中点,垂足分别
为E,F,BE=CF。

求证:AD是△ABC的角平分线
分析:根据角平分线的判定定理,可通过证明,从而证明AD是△
ABC的角平分线。

变式:
已知:如图所示,∠C=∠C′=90°,AC=AC′.
求证:(1)∠ABC=∠ABC′;
(2)BC=BC′(要求:不用三角形全等判
定).
第8 周第3课时总第课时时间备课人:审核:准核:班级:学生姓名:
五,课堂作业:
P51 习题12.3 第5,7题。

角平分线的拓展应用

角平分线的拓展应用

角平分线的拓展应用我们学习角平分线的概念及角平分线的性质和判定,在解答相关题目时,经常用到上述知识.不过有时遇到一些相关的题型时,只用上面的知识有时并不能解决问题,还需要借助一些其他的相关知识,比如有时需借助三角形的内角和定理,三角形的外角定理,中垂线的性质,垂直的性质等等.1.如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC =3,求BE.分析:首先连接CD,BD,由∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD,DF=DE,继而可得AF=AE,易证得Rt△CDF≌Rt△BDE,则可得BE =CF,继而求得答案.解:连接CD,BD,∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,∴AE=AF,∵DG是BC的垂直平分线,∴CD=BD,在Rt△CDF和Rt△BDE中,,∴Rt△CDF≌Rt△BDE(HL),∴BE=CF,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,∵AB=6,AC=3,∴BE=1.5.2.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=700,∠D=100,求∠P的度数.分析:延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=(∠A﹣∠D),然后代入数据计算即可得解.解:如图,延长PC交BD于E,∵BP、CP分别平分∠ABD、∠ACD,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△BCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=(∠A﹣∠D),∵∠A=700,∠D=100,∴∠P=(700﹣100)=300.3.已知:如图,在△ABC中,∠C>∠B,AD⊥BC交于点D,AE平分∠BAC,试说明:∠EAD=(∠C﹣∠B).分析:由图不难发现∠EAD=∠EAC﹣∠DAC,再根据三角形的内角和定理及其推论结合角平分线的定义分别用结论中出现的角替换∠EAC和∠DAC.解:∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC∵∠BAC=1800﹣(∠B+∠C),∴∠EAC=[1800﹣(∠B+∠C)],∵AD⊥BC,∴∠ADC=900,∴∠DAC=1800﹣∠ADC﹣∠C=900﹣∠C,∵∠EAD=∠EAC﹣∠DAC,∴∠EAD=[1800﹣(∠B+∠C)]﹣(900﹣∠C)=(∠C﹣∠B).4.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P .(1)延长BA 至点E ,求证:PA 平分∠CAE ;(2)若∠BPC =40°,求∠CAP 的度数.分析:(1)如图,作辅助线;证明PE =PF ,即可解决问题.(2)如图,设∠ABC =2α,∠ACD =2β;证明β=α+∠BPC ,而β=,得到∠BAC =2∠BPC ,即可解决问题.解:(1)如图,过点P 作PD ⊥BD 、PE ⊥BE 、PF ⊥AC ;∵∠ACD 的平分线CP 与∠ABC 平分线BP 交于点P ,∴PD =PE ,PD =PF ,∴PE =PF ,∴PA 平分∠CAE .(2)设∠ABC =2α,∠ACD =2β;∵∠ACD 的平分线CP 与∠ABC 平分线BP 交于点P ,∴β=α+∠BPC ,而β=,∴∠BAC =2∠BPC =800,∴∠CAP ==500.5.在△ABC 中,∠ABC 、∠ACB 的外角平分线BP 、CP 交于点P .(1)求证:P 在∠A 的平分线上;(2)若AB+AC ﹣BC =l ,△ABC 的面积为S ,点P 到BC 的距离为d ,试探索s 、l 、d 之间的关系.分析:(1)如图,作辅助线,证明PM =PQ ,即可解决问题;(2)首先把S 表示为边长和d 的代数式的形式,化简、整理即可解决问题.解:(1)如图,过点P 作PM ⊥BD 、PN ⊥BC 、PQ ⊥CE ,垂足分别为M 、N 、Q ;∵∠ABC 、∠ACB 的外角平分线BP 、CP 交于点P .∴PM =PN ,PQ =PN ,∴PM =PQ ,∴P 在∠A 的平分线上.(2)由题意得:=(AB+AC ﹣BC ),而AB+AC ﹣BC =l ,∴S= d..6.如图,在△ABC 中,AB >AC ,∠1=∠2, EG ⊥AD 于M ,交BC 的延长线于G ,分别交AB 、AC 于E 、F ,求证: ∠G=21(∠ACB-∠ABC ) 证明:过C 作CN ∥EG 交AB 于N ,∵∠1=∠2,EG ⊥AD ,∴AN=AC ,∴∠ANC=∠ACN ,∵∠ANC=∠BCN+∠ABC, ∠BCN=∠G,∴∠ANC=∠G+∠ABC,∵∠ANC=∠ACB-∠NCB=∠ACB-∠G,∴∠ACB-∠G=∠G+∠ABC,∴∠G=21(∠ACB-∠ABC )1.已知:如图,∠BAC的平分线与BC的垂直平分线交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:BE=CF;(2)若AB=15,AC=9,求CF的长.2.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=55°,∠D=15°,求∠P的度数3.在△ABC中,∠ABC和∠ACB的外角平分线BP,CP交于点P,PE⊥AC于点E,若S△BPC=3、PE=2,S△ABC=5,求△ABC的周长.4.如图,在△ABC中,AE平分∠BAC交BC于E,AD⊥BC于D,若∠B=400,∠C=800,求∠EAD的度数.5.如图,在△ABC中,∠B=2∠C,AE平分∠BAC交BC于E.(1)若AD⊥BC于D,∠C=40°,求∠DAE的度数;(2)若EF⊥AE交AC于F,求证:∠C=2∠FEC.6.如图,△ABC的外角平分线CP和内角平分线BP相交于点P,若∠BPC=250,求∠CAP的度数.1.(1)证明:作DK⊥BC于K.∵DK垂直平分线段BC,∴BD=DC,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,∵∠DAE=∠DAF,AD=AD,∴△EAD≌△FAD(AAS),∴DE=DF,AE=AF,∵∠DEB=∠DFC=90°,∴Rt△DEB≌Rt△DFC(HL),∴BE=CF,(2)∵AB+AC=AE+BE+AF﹣CF=2AE=15+9=24,∴AE=AF=12,∴CF=AF﹣AC=12﹣9=3.2.解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=(∠A﹣∠D),∵∠A=55°,∠D=15°,∴∠P=(55°﹣15°)=20°.3.解:如图,过点P作PF⊥BC于F,作PG⊥AB于G,连接AP,∵∠ABC和∠ACB的外角平分线BP、CP交于P,∴PF=PG=PE=2,∵S△BPC=3,∴BC•2=3,解得BC=3,∵S△ABC=S△ACP+S△ABP﹣S△BCP,=×(AB+AC)×2﹣3=5,∴AB+AC=8,∴△ABC的周长=11.4.解:∵∠B=400,∠C=800,∴∠BAC=1800﹣∠B﹣∠C=1800﹣400﹣800=600,∵AE平分∠BAC交BC于E,∴∠BAE=∠BAC=×600=300,∵∠B=400,AD⊥BC,∴∠BAD=900﹣∠B=900﹣400=500,∴∠EAD=∠BAD﹣∠BAE=500﹣300=200.5.(1)解:∵∠C=40°,∠B=2∠C,∴∠B=80°,∴∠BAC=60°,∵AE平分∠BAC,∴∠EAC=30°,∵AD ⊥BC,∴∠ADC=90°,∴∠DAC=50°,∴∠DAE=50°﹣30°=20°;(2)证明:∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC,∵AE平分∠BAC,∴∠EAC=∠BAC=(180°﹣∠B﹣∠C)=(180°﹣3∠C)=90°﹣∠C,∵∠DAE=∠DAC﹣∠EAC,∴∠DAE=∠DAC﹣(90°﹣∠C)=90°﹣∠C﹣90°+∠C=∠C,∴∠FEC=C,∴∠C=2∠FEC.6.解:延长BA,作PN⊥BD于点N,PF⊥BA于点F,PM⊥AC于点M,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=25°,∴∠ABP=∠PBC =(x﹣25)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣25°)﹣(x°﹣25°)=50°,∴∠CAF=130°,在Rt△PFA和Rt△PMA中,,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=650.。

角平分线的应用

角平分线的应用
且点P到∠AOB的两边的距离相等.
B
D●
O
C● A
3.已知:如图,∠C=900, ∠B=300,
AD是Rt△ABC的角平分线.
求证:BD=2CD.
A
B
D
C
延伸训练
1、如图,在△ABC中,已知 AC=BC,∠C=900,AD是 △ABC的角平线,DE⊥AB, 垂足为E.
A
E C D B
(1)如果CD=4cm, 求AC的长; (2)求证:AB=AC+CD.
∴ BE+PF>PB.
图1-30
三.尺规作图 角平分线的作法
用尺规作角的平分线.
已知:∠AOB,如图.
求作:射线OC,使∠AOC=∠BOC
作法:
A
O
B
1.以O为圆心,以任意长为半径画弧交OA、OB
于点E、D 2.分别以点D和E为圆心,以大于DE/2长为 半径作弧,两弧在∠AOB内交于点C
2: 已知:如图所示:PA,PC分别是 ⊿ABC外角∠MAC与∠NCA平分线,它 们交于P,PD⊥BM于M,PF⊥BN于F 求证: 点P在∠MBN的平分线上
D A P E M
B
C
F
N
3、已知:如图,∠B= ∠C=90°,M是 BC的中点,DM平分∠ ADC
求证:AM平分∠DAB。
E
4、已知:△MON中,MP平分 ∠OMN,OP平分∠MON,且 PD⊥MN,PE⊥ON,垂足分别为 点D、E 求证:点P在∠MNO的平分线上
证明 作CM⊥AB于点M. M
∵ AC,BC 分别平分∠BAD,∠ABE,
∴ CD = CM,CE = CM. 在Rt△ACD和Rt△ACM中, ∵ CM = CD,AC = AC, ∴ Rt△ACD ≌Rt△ACM. ∴ AD = AM. . 同理, BE = BM.

角平分线定理的巧妙应用

角平分线定理的巧妙应用

Go thedistance 浅谈角平分线定理的巧妙应用吉林省磐石市第一中学:周喜瑞 定理:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例, 即在△ABC 中,BD 平分∠ABC,则AD :DC=AB :BC (注:定理的逆命题也成立) 这是初中和高中都没有直接给出的重要定理,而它的应用却是那么的广泛,令很多老师学生望而生畏,下面就其三个方面的应用作以详细的介绍,仅供参考:应用1:半角与倍角这是在人教A 版必修Ⅱ练习册中出现的习题,而此时还没有学习三角函数的半角与倍角公式,因此很多教师把这样的习题都删了。

笔者认为放在这里自有它的作用,通过平面几何知识可以巧妙地解决此类问题。

例题1、已知两点()10,2--A ,()4,6-B ,直线l 的倾斜角是直线AB 的倾斜角的一半,求直线l 的斜率。

解析:43=AB k ,如图:作直角三角形ACB ,AD 是角A 的平分线 由角平分线定理得DBCD AB AC =,又由勾股定理得5=AB x x -=∴354,解得34=x ,因此31=AC DC ,31=l k 例题2、一条直线l 经过点()1,2P ,并且满足倾斜角是直线1l :034=+-y x 的倾斜角的两倍;求直线l 方程。

解析:411=l k ,如图:作直角三角形ACB ,AD 是角A 的平分线 由角平分线定理得DBCD AB AC =,又由勾股定理得 ()()222144++=x x ,解得1517=x 或1-=x (舍), 因此158415171=+=AC BC ,158=l k ,所以直线l 的方程为01158=--y x 应用2:求轨迹方程我们知道动点P 与两个定点A ,B 的距离的比为定值λ,若1=λ,则动点P 的轨迹是线段AB 的垂直平分线。

若1≠λ,则动点P 的轨迹是圆。

我们可以通过建立适当的坐标系,用坐标法求出动点P 的轨迹方程,进而说明轨迹形状。

下面用另一种方法,从几何角度求出动点P 的轨迹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Go the
distance 浅谈角平分线定理的巧妙应用
吉林省磐石市第一中学:周喜瑞 定理:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例, 即在△ABC 中,BD 平分∠ABC,则AD :DC=AB :BC (注:定理的逆命题也成立) 这是初中和高中都没有直接给出的重要定理,而它的应用却是那么的广泛,令很多老师学生望而生畏,下面就其三个方面的应用作以详细的介绍,仅供参考:
应用1:半角与倍角
这是在人教A 版必修Ⅱ练习册中出现的习题,而此时还没有学习三角函数的半角与倍角公式,因此很多教师把这样的习题都删了。

笔者认为放在这里自有它的作用,通过平面几何知识可以巧妙地解决此类问题。

例题1、已知两点()10,2--A ,()4,6-B ,直线l 的倾斜角是直线AB 的倾斜角的一半,求直线l 的斜率。

解析:4
3=
AB k ,如图:作直角三角形ACB ,AD 是角A 的平分线 由角平分线定理得DB
CD AB AC =,又由勾股定理得5=AB x x -=∴354,解得34=x ,因此31=AC DC ,31=l k 例题2、一条直线l 经过点()1,2P ,并且满足倾斜角是直线1l :034=+-y x 的倾斜角的两倍;求直线l 方程。

解析:4
11=
l k ,如图:作直角三角形ACB ,AD 是角A 的平分线 由角平分线定理得DB
CD AB AC =,又由勾股定理得 ()()222144++=x x ,解得15
17=x 或1-=x (舍), 因此158415171=+=AC BC ,158=l k ,所以直线l 的方程为01158=--y x 应用2:求轨迹方程
我们知道动点P 与两个定点A ,B 的距离的比为定值λ,若1=λ,则动点P 的轨迹是线段AB 的垂直平分线。

若1≠λ,则动点P 的轨迹是圆。

我们可以通过建立适当的坐标系,用坐标法求出动点P 的轨迹方程,进而说明轨迹形状。

下面用另一种方法,从几何角度求出动点P 的轨迹。

例题3、已知定点()0,2-A ,()0,1B ,动点P 与A ,B 两点的距离的比为2:1,求动点P 的
Go the
distance 轨迹方程。

解析:如图:1
2==BO AO BP AP ,所以PO 是APB ∠的平分线。

取AP 中点为M ,易证三角形POM 与三角形POB 全等,所以1==OB OM ,取点()0,2N ,
连接PN ,则在三角形APN 中,OM 是中位线,所以22==OM PN , 因此P 的轨迹是以N 为圆心,2为半径的圆,所以动点P 的轨迹方
程为:()4222=+-y x
应用3:三角形内心的向量式的充分性的证明
例题4设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 O 为ABC ∆的内心0aOA bOB cOC ⇔++=.下面用角平分线定理证明充分性 证明:如图所示:O 为ABC ∆的内心
b OA DO =
c OA DO
=
又c b a
+===
c b a
OA DO +===
()()()BO DB c b DO c b OA a ++=+=∴
()()⎥⎦⎤
⎢⎣⎡++-+=BO c b c OC OB c b BO c BO b OC c OB c ++-=0=++∴OC c OB b OA a 同理ABC ∆的旁心是两条外角平分线和一条内角平分线的交点
结论:O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+的充分性也可以证明。

相关文档
最新文档