开关电源-高频-变压器计算设计
开关电源 高频变压器 计算

开关电源高频变压器计算开关电源是一种将交流电转换为直流电的电源设备,广泛应用于各种电子设备中。
而高频变压器则是开关电源中的关键组件之一,用于实现电压的变换和隔离。
本文将从开关电源和高频变压器的工作原理、计算方法以及应用领域等方面进行介绍。
一、开关电源的工作原理开关电源通过不断开关的方式将输入的交流电转换为高频的脉冲电流,再经过整流、滤波等环节得到稳定的直流电。
其主要由输入端的滤波电容、整流桥、开关管、变压器、输出端的滤波电容和稳压电路等组成。
其中,开关管的开关频率决定了开关电源的工作频率,一般为几十kHz到几百kHz不等。
二、高频变压器的工作原理高频变压器是开关电源中的关键元件,主要用于实现输入端与输出端的电压变换和隔离。
其工作原理基于电磁感应定律,通过输入端的脉冲电流在变压器的磁场作用下产生电磁感应,从而实现电压的变换。
高频变压器通常由高导磁率的铁芯和绕组组成,绕组的匝数比决定了输入端与输出端的电压变换比。
三、高频变压器的计算方法在设计高频变压器时,需要根据具体的输入输出电压要求和功率需求进行计算。
一般来说,高频变压器的计算主要包括以下几个方面:1. 输入电压和输出电压:根据实际需求确定输入端和输出端的电压值。
2. 输入功率和输出功率:根据实际需求确定输入端和输出端的功率值。
3. 变压器的变比:根据输入端和输出端的电压值计算变压器的变比,即输入匝数与输出匝数的比值。
4. 变压器的铁芯截面积:根据输入功率和开关频率计算变压器的铁芯截面积,以满足工作时的磁通密度要求。
5. 绕组的匝数和线径:根据变压器的变比和输入、输出功率计算绕组的匝数和线径,以满足工作时的电流和功率要求。
四、开关电源和高频变压器的应用领域开关电源和高频变压器广泛应用于各种电子设备中,包括电脑、手机、通信设备、工控设备、医疗仪器等。
其优势在于体积小、效率高、稳定性好,能够满足现代电子设备对电源的高要求。
总结:开关电源和高频变压器作为现代电子设备中不可或缺的组件,通过将交流电转换为直流电并实现电压变换和隔离,为电子设备提供了稳定的电源供应。
开关电源 高频 变压器计算设计

要制造好高频变压器要注意两点:一就是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便就是高频交流电只沿导线的表面走,而导线内部就是不走电流的实习就是越挨近导线中轴电流越弱,越挨近导线表面电流越强。
选用多股细铜线并在一同绕,实习便就是为了增大导线的表面积,然后更有效地运用导线。
二就是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的就是削减高频漏感与降低分布电容。
1、次级绕组:初级绕组绕完,要加绕(3~5层绝缘垫衬再绕制次级绕组。
这样可减小初级绕组与次级绕组之间分布电容的电容量,也增大了初级与次级之间的绝缘强度,契合绝缘耐压的需求。
减小变压器初级与次级之间的电容有利于减小开关电源输出端的共模打扰。
若就是开关电源的次级有多路输出,而且输出之间就是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。
若就是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍就是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。
其她次级绕组严密的绕在这个次级绕组的上面。
当开关电源多路输出选用共地技能时,处置方法简略一些。
次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。
2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。
通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。
初级绕组放在最里边,使初级绕组得到其她绕组的屏蔽,有助于减小变压器初级绕组与附近器材之间电磁噪声的相互耦合。
初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其她有些电磁打扰的耦合。
3、偏压绕组:偏压绕组绕在初级与次级之间,仍就是绕在最外层,与开关电源的调整就是依据次级电压仍就是初级电压进行有关。
开关电源高频变压器AP法计算方法

AP表示磁心有效截面积与窗口面积的乘积。
计算公式为AP=AwAe式中,AP的单位是cm4;Aw为磁心可绕导线的窗口面积(cm2) Ae为磁心有效截面积(cm2),Ae≈Sj=CD,Sj为磁心几何尺寸的截面积,C 为舌宽,D为磁心厚度。
根据计算出的AP值,即可查表找出所需磁心型号。
下面介绍将AP法用于开关电源高频变压器设计时的公式推导及验证方法。
1 高频变压器电路的波形参数分析开关电源的电压及电流波形比较复杂,既有输入正弦波、半波或全波整流波,又有矩形波(PWM波形)、锯齿波(不连续电流模式的一次侧电流波形)、梯形波(连续电流模式的一次侧电流波形)等。
高频变压器电路中有3个波形参数:波形系数(Kf),波形因数(kf),波峰因数(kP)。
1)波形系数Kf为便于分析,在不考虑铜损的情况下给高频变压器的输入端施加交变的正弦电流,在一次、二次绕组中就会产生感应电动势e。
根据法拉第电磁感应定律,e=dΦ/dt=d( NABsinωt)/dt=NABoωcosωt其中N为绕组匝数,A为变压器磁心的截面积,B为交变电流产生的磁感应强度,角频率ω=2Πf。
正弦波的电压有效值为在开关电源中定义正弦波的波形系数Kf=√2*Π=4.44利用傅里叶级数不难求出方波的波形系数。
2)波形因数kf为便于对方波、矩形波、三角波、锯齿波、梯形波等周期性非正弦波形进行分析,需要引入波形因数的概念。
在电子测量领域定义的波形因数与开关电源波形系数的定义有所不同,它表示有效值电压压(URMS)与平均值电压之比,为便于和Kf区分,这里用小写的kf表示,有公式以正弦波为例,这表明,Kf=4kf,二者相差4倍。
开关电源6种常见波形的参数见表1。
因方波和梯形波的平均值为零,故改用电压均绝值来代替。
对于矩形波,表示脉冲宽度,丁表示周期,占空比D=t/T。
2 用AP法( 面积乘积法)选择磁心的公式推导令一次绕组的有效值电压为U1,一次绕组的匝数为NP,所选磁心的交流磁通密度为BAC,磁通量为Φ,开关周期为T,开关频率为f,一次侧电流的波形系数为Kf,磁心有效截面积为Ae(单位是cm2),有关系式考虑Kf=4kf关系式之后,可推导出同理,设二次绕组的有效值电压为US,二次绕组的匝数为NS,可得设绕组的电流密度为(单位是A/cm2),导线的截面积为S=I/J。
开关电源高频变压器AP法计算方法

开关电源高频变压器AP法计算方法开关电源的高频变压器在设计和计算时,常采用AP法(Amplitude and Phase Method),即幅相法。
该方法可以使计算过程更简洁,且准确度较高。
以下是使用AP法计算开关电源高频变压器的方法及步骤。
1.确定设计要求:- 输入电压:Vin- 输出电压:Vout- 输出功率:Pout- 输入频率:Fin- 输出频率:Fout-漏感相对占空比:D-反馈变压器线匝比:Np/Ns2.计算输出电流:输出电流Iout = Pout / Vout3.计算输入电流:输入电流Iin = Pout / Vin4.计算变压器线圈匝数:输入线圈匝数Np = Ns * Vin / Vout5.设计漏感:选择适当的漏感系数k,一般为0.3到1之间。
漏感Lp = k * (Np)^2 / Fin6.计算变压器参考电流:变压器参考电流Ir = Iout * Vin / Vout7.计算变压器参考电压:变压器参考电压Ur = Vout * (1 - D) * (Ns / Np)8.计算变压器的磁链:变压器的磁链Br = Ur / (Fout * A)其中,A为变压器的有效截面积,可根据铁心截面积和线圈层数来计算。
9.根据设计选取合适的磁芯材料:根据计算得到的磁链值Br,选择合适的磁芯材料,常见的磁芯材料有硅钢片、氧化锌和磁性体等。
10.计算变压器的磁芯截面积:由所选磁芯材料的B-H曲线,可以得到磁芯的饱和磁感应强度Bs,通过Ur和Fout的大小关系判断是否选择合适的磁芯尺寸。
11.计算变压器的线圈电流密度:线圈电流密度Jc=Ir/Ap其中,Ap为变压器的有效截面积。
12.计算变压器的线圈匝数:输出线圈匝数Ns = Ap * Jc / (2 * Iout)13.计算输入电压的有效值:输入电压的有效值Vin_rms = Vin / sqrt(2)14.计算输入电流的有效值:输入电流的有效值Iin_rms = Iin / sqrt(2)15.计算变压器的有效值电流密度:有效值电流密度J_rms = Iin_rms / Ap16.计算输入线圈匝数:输入线圈匝数Np = Ap * J_rms / (2 * Iin_rms)17.验证设计结果:使用计算得到的变压器参数进行实际设计和模拟验证,根据设计要求进行调整。
高频开关电源变压器设计

开关电源功率变压器的设计方法1开关电源功率变压器的特性功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。
不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位失真传输具有宽频带的脉冲能量。
图1(a)为加在脉冲变压器输入端的矩形脉冲波,图1(b)为输出端得到的输出波形,可以看出脉冲变压器带来的波形失真主要有以下几个方面:图1脉冲变压器输入、输出波形(a)输入波形(b)输出波形(1)上升沿和下降沿变得倾斜,即存在上升时间和下降时间;(2)上升过程的末了时刻,有上冲,甚至出现振荡现象;(3)下降过程的末了时刻,有下冲,也可能出现振荡波形;(4)平顶部分是逐渐降落的。
这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效电路。
图中:Rsi——信号源Ui的内阻Rp——一次绕组的电阻Rm——磁心损耗(对铁氧体磁心,可以忽略)T——理想变压器Rso——二次绕组的电阻RL——负载电阻C1、C2——一次和二次绕组的等效分布电容Lin、Lis——一次和二次绕组的漏感Lm1——一次绕组电感,也叫励磁电感n——理想变压器的匝数比,n=N1/N2图2脉冲变压器的等效电路将图2所示电路的二次回路折合到一次,做近似处理,合并某些参数,可得图3所示电路,漏感Li包括Lin和Lis,总分布电容C包括C1和C2;总电阻RS包括Rsi、RP和Rso;Lm1是励磁电感,和前述的Lm1相同;RL′是RL等效到一次侧的阻值,RL′=RL/n2,折合后的输出电压U′o=Uo/n。
经过这样处理后,等效电路中只有5个元件,但在脉冲作用的各段时间内,每个元件并不都是同时起主要作用,我们知道任何一个脉冲波形可以分解成基波与许多谐波的叠加。
开关电源之高频变压器设计

开关电源之高频变压器设计发表时间:2019-06-18T17:24:32.980Z 来源:《科技研究》2019年4期作者:张升[导读] 本文主要介绍高频变压器具体参数的确定、及其在设计过程应当注意的问题及并提出相应的解决办法。
(中山市木林森光电有限公司 528415)摘要:开关电源设计中的难点之一就是高频变压器的设计,由于高频变压器是开关电源中进行能量储存和能量传输的重要部件,其合理性与参数计算的正确性将直接影响到开关电源的整体性能。
而衡量高频变压器的好坏,除了要考虑一般变压器中涉及的效率、运行特性等方面,还要考虑到其交直流损耗、漏感、线圈本身分布参数等诸多方面影响。
本文主要介绍高频变压器具体参数的确定、及其在设计过程应当注意的问题及并提出相应的解决办法。
关键词:开关电源;高频变压器;设计要点1 开关电源之高频变压器的主要构成及分类从广义上来说,凡以半导体功率的开关器件为开关管,经对开关管进行高频开通以及关断控制,会将电能形态转化为其他电能形态装置,这就是所谓的开关转换器。
用开关转换器作为主要的组成部件,以闭环自动控制来稳定它的输出电压,并且在电路中增加保护环节电源,此为开关电源。
若用高频DC/DC 转换器作为开关电源工作时的开关转换器则就成为高频开关电源。
高频开关电源基本的路线是由开关型的功率变换器,整流滤波电路,交流直线转换电路以及控制电路组成。
高频开关电源变压器分类方式:(1)按照驱动方式的不同可以分为他激式和自激式;(2)按照电路的拓扑结构可以分为隔离式和非隔离式;前者包括正激式,反激式与半桥式,全桥式,推挽式;后者包括降压型与升压型等;(3)按照输出输入间是否有着电器隔离,可将其分为隔离式与非隔离式;(4)按照DC 转换器/DC 开关条件,可将其分为硬开关以及软开关。
2 开关电源之高频变压器的设计要点2.1 整体设计对于实用的可调开关电源,需能控制输出电压在合适的范围内调节,并且保证电流不超过所设计的最大值。
开关电源高频变压器的设计

01
04
02
03
功率变压器根据拓扑结构分为三大类:
反激式变压器;
正激式变压器;
推挽式变压器(全桥/半桥变换器中的变压器) 磁芯结构适合的拓扑结构形式如下页表所示:
磁芯结构
变换器电路类型
反激式
正激式
推挽式
E cores
+
+
0
Planar E Cores
-
+
0
EFD Cores
-
+
+
ETD Cores
变压器基础知识 1、变压器组成: 原边绕组(初级primary side ) 副边绕组(次级secondary side ) 原边电感(励磁电感)--magnetizing inductance 漏感---leakage inductance 副边开路或者短路测量原边 电感分别得励磁电感和漏感 匝数比:K=Np/Ns=V1/V2 2、变压器的构成以及作用: 1)电气隔离 2)储能 3)变压 4)变流
按照功率变压器的设计方法,用面积积AP法设计变压器的一般步骤: 1 .选择磁芯材料,计算变压器的视在功率; 2. 确定磁芯截面尺寸AP,根据AP值选择磁芯尺寸; 3. 计算原副边电感量及匝数; 4. 计算空气隙的长度; 5. 根据电流密度和原副边有效值电流求线径; 6. 求铜损和铁损是否满足要求(比如:允许损耗和温升)
线圈参数:
线圈参数包括:匝数,导线截面(直径),导线形式,
绕组排列和绝缘安排。
导线截面(直径)决定于绕组的电流密度。通常取J为2.5~4A/mm2。导线直径的选择还要考虑趋肤效应。如必要,还要经过变压器温升校核后进行必要的调整。
4.线圈参数: 一般用的绕组排列方式:原绕组靠近磁芯,副绕组反馈绕组逐渐向外排列。下面推荐两种绕组排列形式: 1)如果原绕组电压高(例如220V),副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排; 2)如果要增加原副绕组之间的耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的排列形式,这样有利于减小漏感。
开关电源变压器与设计变压器原理设计及感量计算变压器的基本工作原理和结构

I 2
I2 k
E2 kE2 E1 U2 kU2
r 2 k 2 r 2
x 2 k 2 x 2
Z
L
k 2Z
L
第三章 变压器
折算后的方程式为
U 1 E 1 I 1 R 1 j I 1 X 1 E 1 I 1 Z 1 U 2 E 2 I 2 R 2 j I 2 X 2 E 2 I 2 Z 2 I1I2 I0
线性关系。
当磁通按正弦规律
变化时,空载电流呈尖 顶波形。
t
3 21
i0
1
当空载电流按正弦规律变
2
化时,主磁通呈尖顶波形。
3
i0
实际空载电流为非正弦波,但为了分析、计算和测量的方便,在 相量图和计算式中常用正弦的电流代替实际的空载电流。
第三章 变压器
二、空载损耗
即 耗 变PF空 压 e和载 器 绕损 空 组耗 载 铜 I02R近 时 1损 。 耗 电 由 。似 一 耗 源 于 I0为 次 和 吸 R1铁 侧 均 收损 从 很 少 ,小 所 量 P0,供 以 有 P0 给 功 PF, e铁 功
一次侧的电动势平衡方程为
U 1 ( R m E j1 X m I)0Z I01( R 1jX 1)I0
空载时等效电路为
第三章 变压器
Rm,Xm,Zm励磁电阻、励磁电抗、励磁阻抗。由于磁路具有饱 和特性,所以ZmRm不j是Xm常数,随磁路饱和程度增大而减小。
由于 Rm R 1,Xm ,所 X 以1有时忽略漏阻抗,空载等效电路只是一个 元件的电Z 路m 。在 一定的情U况1 下, 大小取决于I 0 的大小。从Z运m 行角度讲,希望 越小越好,所I 以0 变压器常采用高导磁材料,增 大 ,减小 ,提高Z 运m 行效率I和0 功率因数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要制造好高频变压器要注意两点:一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。
选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。
二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。
1、次级绕组:初级绕组绕完,要加绕(3~5层绝缘垫衬再绕制次级绕组。
这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。
减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。
若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。
若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。
其他次级绕组严密的绕在这个次级绕组的上面。
当开关电源多路输出选用共地技能时,处置方法简略一些。
次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。
2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。
通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。
初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。
初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。
3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。
若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。
若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。
初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。
这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。
高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该如何来计算高频变压器的匝数,从而解决这个问题?接下来,晨飞电子就为大家介绍下匝数的计算方法:开关电源高频变压器参数计算高频变压器参数计算;一.电磁学计算公式推导:;1.磁通量与磁通密度相关公式:;Ф=B*S ⑴;Ф-----磁通(韦伯);B-----磁通密度(韦伯每平方米或高斯)1韦伯;S-----磁路的截面积(平方米);B=H*μ⑵;μ-----磁导率(无单位也叫无量纲);H-----磁场强度(伏特每米);H=I*N/l⑶;I-----电流强度(安培);N-----线圈匝数一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S ⑴Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ⑵μ ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l ⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:EL =⊿Ф / ⊿t * N ⑷EL = ⊿i / ⊿t * L ⑸⊿Ф ----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S 可得下式:N = ⊿i * L / ( B * S ) ⑹且由⑸式直接变形可得:⊿i = EL * ⊿t / L ⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2 ⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)3.电感中能量与电流的关系:QL = 1/2 * I2 * L ⑼QL -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D)) ⑽N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特)N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压: 200--- 340 V输出直流电压: 23.5V输出电流: 2.5A * 2输出总功率: 117.5W2.确定初次级匝数比:次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM * k / 2) ⑾N1 ----- 初级匝数 VIN(max) ------ 最大输入电压 k ----- 安全系数N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.63.计算功率场效应管的最高反峰电压:Vmax = Vin(max) + (Vo+Vd)/ N2/ N1 ⑿Vin(max) ----- 输入电压最大值 Vo ----- 输出电压Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V)4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd) ⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比 D≌ 0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。
那么计算初级电感量就可以只以PWM的一个周期来分析,这时可由⑼式可以有如下推导过程:(P/η)/ f = 1/2 * I2 * L ⒁P ------- 电源输出功率 (瓦特) η ---- 能量转换效率 f ---- PWM开关频率将⑺式代入⒁式:(P/η)/ f = 1/2 * (EL * ⊿t / L)2 * L ⒂⊿t = D / f (D ----- PWM占空比)将此算式代入⒂式变形可得:L = E2 * D2 *η/ ( 2 * f * P ) ⒃这里取效率为85%, PWM开关频率为60KHz.在输入电压最小的电感量为:L=2002* 0.4812 * 0.85 / 2 * 60000 * 117.5计算初级电感量为: L1 ≌ 558(uH)计算初级峰值电流:由⑺式可得:⊿i = EL * ⊿t / L = 200 * (0.481/60000 )/ (558*10-6)计算初级电流的峰值为: Ipp ≌ 2.87(A)初级平均电流为: I1 = Ipp/2/(1/D) = 0.690235(A)6.计算初级线圈和次级线圈的匝数:磁芯选择为EE-42(截面积1.76mm2)磁通密度为防治饱和取值为2500高斯也即0.25特斯拉, 这样由⑹式可得初级电感的匝数为:N1= ⊿i * L / ( B * S ) = 2.87 * (0.558*10-3)/0.25*(1.76*10-4)计算初级电感匝数: N1 ≌ 36 (匝)同时可计算次级匝数: N2 ≌ 5 (匝)7.计算次级线圈的峰值电流:根据能量守恒定律当初级电感在功率管导通时储存的能量在截止时在次级线圈上全部释放可以有下式:由⑻⑼式可以得到:Ipp2=N1/N2* Ipp ⒄Ipp2 = 7.6*2.87由此可计算次级峰值电流为:Ipp2 = 21.812(A)次级平均值电流为I2=Ipp2/2/(1/(1-D))= 5.7(A)6.计算激励绕组(也叫辅助绕组)的匝数:因为次级输出电压为23.5V,激励绕组电压取12V,所以为次级电压的一半由此可计算激励绕组匝数为: N3 ≌ N2 / 2 ≌ 3 (匝)激励绕组的电流取: I3 = 0.1(A)以上就是高频变压器匝数的计算方法步骤,按照以上的方法步骤来计算高频变压器的匝数,能够最快的让你学会匝数的计算,建议能够边操作边看。
7.高频变压器线径计算:高频变压器线径的确定根据公式D=1.13(I/J)^1/2可以计算出来,J是电流密度,不同的取值计算出的线径不同。
由于高频电流在导体中会有趋肤效应,所以在确定线经时还要计算不同频率时导体的穿透深度。
穿透深度公式:d=66.1/(f)^1/2如果计算出的线径D大于两倍的穿透深度,就需要采用多股线或利兹线。
例如:1A电流,频率100K.假设电流密度取4A/mm^2D=1.13*(1/4)^1/2=0.565mm Sc=0.25mm^2d=66.1/(f)^1/2=66.1/(100000)^1/2=0.209mm2d=0.418mm采用0.4mm的线,单根0.4的截面积Sc=0.1256mm^22根0.4的截面积Sc=0.1256*2=0.2512mm^2可以看出采用2*0.4的方案可以满足计算的要求。