分数拆项与裂项

合集下载

六年级奥数试题-分数裂项与分拆(教师版)

六年级奥数试题-分数裂项与分拆(教师版)

第十三讲 分数裂项与分拆1. “裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

①对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- ②对于分母上为3个或4个自然数乘积形式的分数,我们有:1111[]()(2)2()()(2)n n k n k k n n k n k n k =-⨯+⨯+⨯+++ 1111[]()(2)(3)3()(2)()(2)(3)n n k n k n k k n n k n k n k n k n k =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+③对于分子不是1的情况我们有:⎪⎭⎫ ⎝⎛+-=+k n n k n n k 11)( ()11h h n n k k n n k ⎛⎫=- ⎪++⎝⎭()()()()()21122k n n k n k n n k n k n k =-+++++ ()()()()()()()()31123223k n n k n k n k n n k n k n k n k n k =-++++++++ ()()()()()11222h h n n k n k k n n k n k n k ⎡⎤=-⎢⎥+++++⎣⎦()()()()()()()()11233223h h n n k n k n k kn n k n k n k n k n k ⎡⎤=-⎢⎥++++++++⎣⎦()()()221111212122121n n n n n ⎛⎫=+- ⎪-+-+⎝⎭ 2. 裂差型裂项的三大关键特征:①分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

常见裂项技巧

常见裂项技巧

常见裂项技巧一、什么是裂项?在数学中,裂项是指将一个求和式中的每一项拆分成两个或多个部分,然后通过重新排列这些部分以达到简化或变形的目的。

裂项技巧广泛应用于各个数学分支中,尤其在级数求和、极限计算、微积分等领域中常见。

二、为什么要使用裂项技巧?使用裂项技巧可以使原本复杂的求和式或极限计算变得更加简单,从而方便进行后续的推导和计算。

裂项技巧可以改变原始问题的形式,通过引入新的项或变量,将原问题转化为更易处理的形式。

此外,裂项技巧还可以帮助我们发现隐藏的规律和性质,从而得到更深入的数学理解。

三、常见的裂项技巧1. 二项式展开二项式展开是一种常见的裂项技巧,通过利用二项式系数的性质,将一个复杂的幂函数表达式展开成一个求和式。

二项式展开的公式如下:(a+b)n=C0n a n+C1n a n−1b+C2n a n−2b2+...+C n n b n其中,C k n表示第k个二项式系数,可以通过组合数的求解公式计算得到。

通过二项式展开,我们可以求解各种多项式的值,并且在某些情况下可以发现一些隐藏的数学规律。

2. 分数拆项分数拆项是一种常见的裂项技巧,通过将一个分数表达式拆分成两个或多个部分,从而使得求和或计算更为方便。

分数拆项常用的方法有部分分式分解、分子拆项和分母拆项等。

例如,我们可以将一个分数表达式拆分成若干简单的分数之和,然后进行逐项求和。

这样做的好处是将原本复杂的分数拆分成多个简单的分数,从而方便进行计算。

3. 周期性裂项周期性裂项是一种常用的裂项技巧,适用于一些具有周期性性质的数列或函数。

通过将周期性数列或函数拆分成多个部分,并利用其周期性特点,可以简化计算或得出结论。

例如,我们可以将一个周期性数列拆分成若干个重复的子序列,并通过观察子序列的性质得出整个数列的求和或极限等结果。

4. 分段函数裂项分段函数裂项是一种常见的裂项技巧,适用于一些具有分段定义的函数。

通过将分段函数拆分成多个部分,并分别考察每个部分的性质,可以方便地进行计算和推导。

奥数专题:分数的拆分及裂项综合运算(含解析)印刷版

奥数专题:分数的拆分及裂项综合运算(含解析)印刷版
奥数专题:分数的拆分及裂项综合运算
一.填空题(共 8 小题)
1.计算: ﹣ ﹣ ﹣ ﹣ =

2.
+
+
+…+


3.设 A、B 为自然数,并且满足 + = ,A+B=

4.我们把分子为 1 的分数称为“单位分数”,一个单位分数可以分成两个单位分数之和,例如

请将 分成两个分母不同的单位分数之和: =

答:这三个数的和为 15. 故选:B. 三.判断题(共 1 小题) 11. + = , + + = ,则 C=3 √ (判断对错)
【分析】把 + = 代入 + + = 中,可得 + = ,所以 = ﹣ = ,所以 C=3.
根据以上规律计算: (1) (2)
,…
五.解答题(共 5 小题) 21.在“括号”中填入同一个数,可使算式成立: + = 。
22. + + = .
23.请先阅读下列材料:因为 1﹣


所以:

,……
请你根据以上材料提供的信息,求
的值.
24.

3
25.阅读理解题:求
的值可用下面的两种方法:
方法一:
方法二:通过画图发现
【解答】解:1﹣


1﹣


1﹣



因为



因此

>=

7
所以



即 b>c>a. 故答案为:b,c,a. 二.选择题(共 2 小题) 9. + + + +……+ + =( )

分数拆项与裂项

分数拆项与裂项

分数的速算与巧算1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。

3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨 一、裂项综合 (一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。

(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

三、整数裂项(1) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+ (2) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+二、换元解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简. 三、循环小数化分数 1、循环小数化分数结论:0.9a =; 0.99ab =; 0.09910990ab =⨯=; 0.990abc =,…… 2、单位分数的拆分:例:110=112020+=()()11+=()()11+=()()11+=()()11+ 分析:分数单位的拆分,主要方法是: 从分母N 的约数中任意找出两个m 和n,有:11()()()()m n m n N N m n N m n N m n +==++++=11A B+ 本题10的约数有:1,10,2,5.。

裂项求和法的知识点总结

裂项求和法的知识点总结

裂项求和法的知识点总结一、裂项求和法的基本思想裂项求和法的基本思想是将原来的级数拆分成若干个部分,然后分别求解这些部分的和。

最后将这些部分的和相加得到原级数的和。

这种方法在求解级数时非常有效,可以将复杂的级数变成简单的级数来求解。

二、裂项求和法的常用技巧裂项求和法的常用技巧包括:拆项、分组求和、 Telescoping 等。

1. 拆项:拆项是裂项求和法中常用的一种技巧。

它可以将原级数中的每一项拆分成两个或多个部分,然后再进行求和。

拆项的目的是为了将原级数转化为一个更易求解的级数。

拆项的具体操作可以根据级数的特点来灵活运用。

2. 分组求和:分组求和是裂项求和法中常用的一种技巧。

它可以将原级数分成若干个相互独立的部分,然后分别求解这些部分的和。

最后将这些部分的和相加得到原级数的和。

分组求和的具体操作可以根据级数的特点和要求来选择合适的分组方法。

3. Telescoping:Telescoping 是裂项求和法中常用的一种技巧。

它可以将原级数中相邻的两项进行变形,从而使得这些项之间的差分项能够互相抵消,最终得到一个简单的级数。

Telescoping 的具体操作包括变形、抵消、整理等。

三、裂项求和法的应用范围裂项求和法在数学中有着广泛的应用范围,包括但不限于如下几个方面:1. 求解收敛级数:裂项求和法可以帮助我们求解各种类型的收敛级数,包括数值级数、幂级数、级数和等。

通过拆项、分组求和、 Telescoping 等技巧,可以将复杂的级数转化为简单的级数来求解。

2. 求解发散级数:裂项求和法也可以帮助我们对发散级数进行求解。

虽然发散级数本身没有定义和,但是通过一些技巧,可以使其在某种意义下有意义,从而得到发散级数的和。

3. 实际应用:裂项求和法在实际应用中也有着广泛的应用。

例如在物理、工程、经济等领域,经常需要求解各种级数,裂项求和法可以帮助我们快速、准确地求解这些级数,为实际问题的解决提供有力的支持。

四、裂项求和法的注意事项在使用裂项求和法时需要注意以下几个方面:1. 根据级数的特点选择合适的技巧:在使用裂项求和法时,需要根据级数的特点和要求来选择合适的技巧。

小学奥数教程-分数裂项计算 (含答案)

小学奥数教程-分数裂项计算 (含答案)

教师版
page 2 of 17
【考点】分数裂项
【难度】2 星
【题型】计算
【解析】 1 + 1 + 1 + + 1 = 1 × (1 − 1 + 1 − 1 + … + 1 − 1 )= 50
1×3 3×5 5× 7
99 ×101 2 3 3 5
99 101 101
【答案】 50 101
【巩固】 计算:
【考点】分数裂项
【难度】3 星
【题型】计算
【解析】原式 =1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + 1 = 1 2 5 5 7 7 11 11 16 16 22 22 29 29 2
【答案】 1 2
【例 4】 计算: (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 ) ×128 = 8 24 48 80 120 168 224 288
【答案】12
【巩固】 251 + 251 + 251 + + 251 + 251
4 × 8 8 ×12 12 ×16
2000 × 2004 2004 × 2008
【考点】分数裂项
【难度】2 星
【题型】计算
【关键词】台湾,小学数学竞赛,初赛
【解析】 原式
=251 16
×

1 1×
2
+
2
1 ×
裂差型裂项的三大关键特征:
(1)分子全部相同,最简单形式为都是 1 的,复杂形式可为都是 x(x 为任意自然数)的,但是只要将 x 提取出来即可转化为分子都是 1 的运算。

(完整word版)六年级奥数分数裂项

(完整word版)六年级奥数分数裂项

分数裂项计算教课目的本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,能够分为察看、改造、运用公式等过程。

好多时候裂项的方式不易找到,需要进行适合的变形,或许先进行一部分运算,使其变得更为简单了然。

本讲是整个奥数知识系统中的一个精髓部分, 列项与通项概括是密不行分的,因此先找通项是裂项的前提,是能力的表现,对学生要求较高。

知识点拨分数裂项一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这类拆项计算称为裂项法. 裂项分为分数裂项和整数裂项,常有的裂项方法是将数字分拆成两个或多个数字单位的和或差。

碰到裂项的计算题时,要认真的 察看每项的分子和分母,找出每项分子分母之间拥有的同样的关系,找出共有部分,裂项的题目无需复杂 的计算,一般都是中间部分消去的过程,这样的话, 找到相邻两项的相像部分,让它们消去才是最根本的。

(1) 关于分母能够写作两个因数乘积的分数,即 1 形式的, 这里我们把较小的数写在前方, 即 a b ,a b那么有1 1 1 1a b b a ()a b(2) 关于分母上为 3 个或 4 个连续自然数乘积形式的分数,即:1,1形式的,我们有:n ( n1) (n2)( n 1)( n 2)( n n 3)n ( n 1(n 2)1 [ 1 1) (n1 ] 1)2 n (n 1)(n 2) 11 [ 1 1n ( n 1) (n2) (n3) 3 (n 1) (n ]n 2) (n 1) (n 2) (n 3)裂差型裂项的三大重点特点:( 1)分子所有同样,最简单形式为都是 1 的,复杂形式可为都是 x(x 为随意自然数 ) 的,可是只需将 x提拿出来即可转变为分子都是1 的运算。

( 2)分母上均为几个自然数的乘积形式,而且知足相邻 2 个分母上的因数“首尾相接”( 3)分母上几个因数间的差是一个定值。

二、“裂和”型运算:( 1)a 2 2 2 2b ab1 1 ( 2)a ba bab a b a b a b b a a b a b a b b a裂和型运算与裂差型运算的比:裂差型运算的中心是“两两抵消达到化的目的” ,裂和型运算的目不有“两两抵消”型的,同有化“分数凑整”型的,以达到化目的。

奥赛小学数学竞赛:分数裂项.教师版解题技巧培优易错难

奥赛小学数学竞赛:分数裂项.教师版解题技巧培优易错难
1
18 2
90
1
3
7
3
4
3
5
5
7
9
13
3
7
1
1
1
1
1
1
1
4
6
1
1
2
3
3
5
7
9
12
13
3
46
3
1
8=23
24
4
2
9
36
【答案】23
36
【例7】计算:
1
2
1
1
4
1
L
20
1
1
6
3
20
2
12
420
【考点】分数裂项
【难度】3星
【题型】计算
【要点词】小数报,初赛
【分析】原式
123L 20
1
1
1
1
L
1
2
6
12
20
提拿出来即可转变为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,而且知足相邻2个分母上的因数“首尾相接”
(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:
常有的裂和型运算主要有以下两种形式:
(1)a
b
ab1
1
(2)a2
b2
a2
b2
a
b
a
b
a b a b b
a
a b
a b a b b
的计算, 一般都是中间部分消去的过程,
这样的话, 找到相邻两项的相像部分,
让它们消去才是最根本的。
(1)关于分母能够写作两个因数乘积的分数,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数的速算与巧算1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。

3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨一、裂项综合 (一)、“裂差”型运算 (1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。

(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

三、整数裂项(1) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+ (2) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+二、换元解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.三、循环小数化分数0.9a =; 0.99ab =; 0.09910990ab =⨯=; 0.990abc =,…… 2、单位分数的拆分:例:110=112020+=()()11+=()()11+=()()11+=()()11+ 分析:分数单位的拆分,主要方法是:从分母N 的约数中任意找出两个m 和n,有:11()()()()m n m n N N m n N m n N m n +==++++=11A B+ 本题10的约数有:1,10,2,5.。

例如:选1和2,有:11(12)12111010(12)10(12)10(12)3015+==+=++++ 本题具体的解有:1111111111011110126014351530=+=+=+=+例题精讲模块一、分数裂项【例 1】11111123423453456678978910+++⋅⋅⋅++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【解析】 原式111111131232342343457898910⎛⎫=⨯-+-++- ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭11131238910⎛⎫=⨯- ⎪⨯⨯⨯⨯⎝⎭1192160=【巩固】 333 (1234234517181920)+++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【解析】 原式11111113[(...)]3123234234345171819181920=⨯⨯-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯1131920111391231819201819206840⨯⨯-=-==⨯⨯⨯⨯⨯⨯ 【例 2】 计算:57191232348910+++=⨯⨯⨯⨯⨯⨯ .【解析】 如果式子中每一项的分子都相同,那么就是一道很常见的分数裂项的题目.但是本题中分子不相同,而是成等差数列,且等差数列的公差为2.相比较于2,4,6,……这一公差为2的等差数列(该数列的第n 个数恰好为n 的2倍),原式中分子所成的等差数列每一项都比其大3,所以可以先把原式中每一项的分子都分成3与另一个的和再进行计算. 原式32343161232348910+++=+++⨯⨯⨯⨯⨯⨯ 1111283212323489101232348910⎛⎫⎛⎫=⨯++++⨯+++⎪⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭111111111132212232334899102334910⎛⎫⎛⎫=⨯⨯-+-++-+⨯+++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭31111111122129102334910⎛⎫⎛⎫=⨯-+⨯-+-++- ⎪ ⎪⨯⨯⎝⎭⎝⎭3111122290210⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭7114605=-- 2315=也可以直接进行通项归纳.根据等差数列的性质,可知分子的通项公式为23n +,所以()()()()()()2323121212n n n n n n n n n +=+⨯+⨯++⨯+⨯+⨯+,再将每一项的()()212n n +⨯+与()()312n n n ⨯+⨯+分别加在一起进行裂项.后面的过程与前面的方法相同.【巩固】 计算:5717191155234345891091011⨯++++⨯⨯⨯⨯⨯⨯⨯⨯()【解析】 本题的重点在于计算括号内的算式:571719234345891091011++++⨯⨯⨯⨯⨯⨯⨯⨯.这个算式不同于我们常见的分数裂项的地方在于每一项的分子依次成等差数列,而非常见的分子相同、或分子是分母的差或和的情况.所以应当对分子进行适当的变形,使之转化成我们熟悉的形式.观察可知523=+,734=+,……即每一项的分子都等于分母中前两个乘数的和,所以571719234345891091011++++⨯⨯⨯⨯⨯⨯⨯⨯ 233491023434591011+++=+++⨯⨯⨯⨯⨯⨯ 111111342445*********=++++++⨯⨯⨯⨯⨯⨯ 111111344510112435911⎛⎫⎛⎫=+++++++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭11111111111111111344510112243546810911⎛⎫⎛⎫=-+-++-+⨯-+-+-++-+- ⎪ ⎪⎝⎭⎝⎭11111113112210311⎛⎫⎛⎫=-+⨯-+- ⎪ ⎪⎝⎭⎝⎭8128332533⎛⎫=+⨯+ ⎪⎝⎭3155=所以原式31115565155=⨯=.【巩固】 计算:3451212452356346710111314++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【解析】 观察可知原式每一项的分母中如果补上分子中的数,就会是5个连续自然数的乘积,所以可以先将每一项的分子、分母都乘以分子中的数.即:原式2222345121234523456345671011121314=++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 现在进行裂项的话无法全部相消,需要对分子进行分拆,考虑到每一项中分子、分母的对称性,可以用平方差公式:23154=⨯+,24264=⨯+,25374=⨯+……【解析】 原式2222345121234523456345671011121314=++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 154264374101441234523456345671011121314⨯+⨯+⨯+⨯+=++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 111123434545611121344441234523456345671011121314⎛⎫=++++ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎛⎫+++++ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭11111112233434451112121311111112342345234534561011121311121314⎛⎫=⨯-+-++- ⎪⨯⨯⨯⨯⨯⨯⎝⎭⎛⎫+-+-++- ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭111112231213123411121314⎛⎫⎛⎫=⨯-+- ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭ 111112212132411121314=-+-⨯⨯⨯⨯⨯1771811121314+=-⨯⨯⨯11821114=-⨯⨯11758308616=-=【例 3】 12349223234234523410+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 【解析】 原式12349223234234523410=+++++⨯⨯⨯⨯⨯⨯⨯⨯⨯ 21314110122323423410----=++++⨯⨯⨯⨯⨯⨯ 111111112223232342349234910=-+-+-++-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1362879912349103628800=-=⨯⨯⨯⨯ 【例 4】 111111212312100++++++++++ 【解析】 本题为典型的“隐藏在等差数列求和公式背后的分数裂差型裂项”问题。

此类问题需要从最简单的项开始入手,通过公式的运算寻找规律。

从第一项开始,对分母进行等差数列求和运算公式的代入有112(11)11122==+⨯⨯,112(12)212232==+⨯+⨯,……, 原式22221200992(1)1122334100101101101101=++++=⨯-==⨯⨯⨯⨯ 【巩固】 234501(12)(12)(123)(123)(1234)(12349)(12350)++++⨯++⨯++++⨯+++++++⨯++++原式=213⨯+336⨯+4610⨯+51015⨯+…+5012251275⨯=(11-13)+(13-16)+(16-110)+(11225-11275)=12741275【巩固】 2341001(12)(12)(123)(123)(1234)(1299)(12100)++++⨯++⨯++++⨯++++++⨯+++【解析】 2111(12)112=-⨯++,311(12)(123)12123=-+⨯+++++,……, 10011(1299)(12100)129912100=-+++⨯+++++++++,所以 原式1112100=-+++15049150505050=-=【巩固】 23101112(12)(123)(1239)(12310)----⨯++⨯++++++⨯++++()【解析】 原式234101()133********=-++++⨯⨯⨯⨯1111111113366104555⎛⎫=--+-+-++- ⎪⎝⎭11155⎛⎫=-- ⎪⎝⎭155= 【例 5】 22222211111131517191111131+++++=------ .【解析】 这题是利用平方差公式进行裂项:22()()a b a b a b -=-⨯+,原式111111()()()()()()24466881010121214=+++++⨯⨯⨯⨯⨯⨯1111111111111()244668810101212142=-+-+-+-+-+-⨯ 1113()214214=-⨯= 【巩固】 计算:222222223571512233478++++⨯⨯⨯⨯ 【解析】 原式22222222222222222132438712233478----=++++⨯⨯⨯⨯2222222111111112233478=-+-+-++-2118=-6364=【巩固】 计算:222222222231517119931199513151711993119951++++++++++=----- .【解析】 原式2222222222111113151711993119951⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭222997244619941996⎛⎫=++++ ⎪⨯⨯⨯⎝⎭111111997244619941996⎛⎫=+-+-++- ⎪⎝⎭1199721996⎛⎫=+- ⎪⎝⎭9979971996= 【巩固】 计算:22221235013355799101++++=⨯⨯⨯⨯ .【解析】 式子中每一项的分子与分母初看起来关系不大,但是如果将其中的分母根据平方差公式分别变为221-,241-,261-,……,21001-,可以发现如果分母都加上1,那么恰好都是分子的4倍,所以可以先将原式乘以4后进行计算,得出结果后除以4就得到原式的值了.原式22222222124610042141611001⎛⎫=⨯++++ ⎪----⎝⎭222211111111142141611001⎛⎫=⨯++++++++⎪----⎝⎭1111150413355799101⎛⎫=⨯+++++⎪⨯⨯⨯⨯⎝⎭111111111501423355799101⎡⎤⎛⎫=⨯+⨯-+-+-++- ⎪⎢⎥⎝⎭⎣⎦11150142101⎡⎤⎛⎫=⨯+⨯- ⎪⎢⎥⎝⎭⎣⎦150504101=⨯6312101= 【巩固】 224466881010133********⨯⨯⨯⨯⨯++++⨯⨯⨯⨯⨯ 【解析】 (法1):可先找通项222111111(1)(1)n n a n n n n ==+=+---⨯+ 原式11111(1)(1)(1)(1)(1)133********=+++++++++⨯⨯⨯⨯⨯11555(1)552111111=+⨯-=+=(法2):原式288181832325050(2)()()()()3355779911=-+-+-+-+-61014185065210453579111111=++++-=-=【例 6】 1113199921111111(1)(1)(1)(1)(1)223231999+++++⨯++⨯+⨯⨯+【解析】11211112()1112(1)(2)12(1)(1)(1)2312n n n n n n n n ++===⨯-++++++⨯+⨯⨯++ 原式=11111111()()()()223344519992000⎡⎤-+-+-++-⨯⎢⎥⎣⎦= 【巩固】 计算:111112123122007+++⋯+++++⋯ 【解析】 先找通项公式12112()12(1)1n a n n n n n ===-++⨯++原式11112(21)3(31)2007(20071)222=++++⨯+⨯+⨯+222212233420072008=++++⨯⨯⨯⨯ 200722008=⨯ 20071004= 【巩固】 111133535735721+++++++++++ 【解析】 先找通项:()()()1111352122132n a n n n n n ===+++++⨯++⨯,原式111111132435469111012=++++++⨯⨯⨯⨯⨯⨯ 111111133591124461012⎛⎫⎛⎫=+++++++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭11111121112212⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭ 175264=【例 7】 121231234123502232342350++++++++++⨯⨯⨯⨯++++++ 1000999100011=-【解析】 找通项(1)(1)2(1)(1)212n n nn n a n nn n +⨯⨯+==+⨯⨯+-- 原式2334455623344556410182814253647⨯⨯⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯,通过试写我们又发现数列存在以上规律,这样我们就可以轻松写出全部的项,所以有原式2334455648494950505114253647475048514952⨯⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯35023215226=⨯= 【例 8】 222222222222233333333333331121231234122611212312341226++++++++⋯+-+-+⋯-++++++++⋯+ 【解析】 22222333(1)(21)122212116()(1)123(1)314n n n n n n a n n n n n n n ⨯+⨯+++⋯++===⨯=⨯+⨯+++⋯+⨯++原式=211111111[()()()()]31223342627⨯+-+++-+=2152(1)32781⨯-=【巩固】 2221111112131991⎛⎫⎛⎫⎛⎫+⨯+⨯⨯+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭【解析】 22221(1)(1)1(1)1(1)1(2)n n n a n n n n ++=+==+-+-⨯+ 原式223398989999(21)(21)(31)(31)(981)(981)(991)(991)⨯⨯⨯⨯=⨯⨯⨯⨯+⨯-+⨯-+⨯-+⨯- 223344559898999929949131425364999710098110050⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯=⨯=⨯⨯⨯⨯⨯⨯ 【例 9】 计算:22222223992131991⨯⨯⨯=---【解析】 通项公式:()()()()()221111112n n n a n n n n ++==+++-+,原式22334498989999(21)(21)(31)(31)(41)(41)(981)(981)(991)(991)⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯+⨯-+⨯-+⨯-+⨯-+⨯- 223344559898999931425364999710098⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 22334498989999132435979998100=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯29999110050=⨯=【巩固】 计算:222222129911005000220050009999005000+++=-+-+-+【解析】 本题的通项公式为221005000nn n -+,没办法进行裂项之类的处理.注意到分母()()()2100500050001005000100100100n n n n n n -+=--=----⎡⎤⎣⎦,可以看出如果把n 换成100n -的话分母的值不变,所以可以把原式子中的分数两两组合起来,最后单独剩下一个22505050005000-+.将项数和为100的两项相加,得()()()()22222222210010022001000021005000100500010050001001001005000n n n n n n n n n n n n n n -+--++===-+-+-+---+,所以原式249199=⨯+=.(或者,可得原式中99项的平均数为1,所以原式19999=⨯=)【例 10】 ⎪⎭⎫⎝⎛+++++++-⎪⎭⎫ ⎝⎛⨯++⨯+⨯⨯22222210211211112120154132124【解析】 虽然很容易看出321⨯=3121-,541⨯=5141-……可是再仔细一看,并没有什么效果,因为这不象分数裂项那样能消去很多项.我们再来看后面的式子,每一项的分母容易让我们想到公式 ,于是我们又有)12()1(632112222+⨯+⨯++++n n n n = ..减号前面括号里的式子有10项,减号后面括号里的式子也恰好有10项,是不是“一个对一个”呢?⎪⎭⎫⎝⎛+++++++-⎪⎭⎫ ⎝⎛⨯++⨯+⨯⨯22222210211211112120154132124 =⎪⎭⎫ ⎝⎛⨯⨯++⨯⨯+⨯⨯⨯-⎪⎭⎫ ⎝⎛⨯++⨯+⨯⨯21111015321321162120154132124=⎪⎭⎫⎝⎛⨯⨯++⨯⨯+⨯⨯⨯-⎪⎭⎫ ⎝⎛⨯++⨯+⨯⨯212220156413421242120154132124=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯⨯-⨯++⎪⎭⎫ ⎝⎛⨯⨯-⨯+⎪⎭⎫ ⎝⎛⨯⨯-⨯⨯2122201212015641541342132124=⎪⎭⎫ ⎝⎛⨯++⨯+⨯⨯2220164142124 =⎪⎭⎫ ⎝⎛⨯++⨯+⨯⨯111013212116 =⎪⎭⎫ ⎝⎛-⨯11116=1160.模块二、换元与公式应用【例 11】 计算:3333333313579111315+++++++【解析】 原式()333333333123414152414=++++++-+++()()223331515181274⨯+=-⨯+++22576002784=-⨯⨯ 8128=【巩固】 132435911⨯+⨯+⨯+⨯ 【解析】 原式()()()()()()21213131101101=-++-+++-+()()()()()22222222222131101231091231010101121103756=-+-++-=+++-=++++-⨯⨯=-=【巩固】 计算:1232343458910⨯⨯+⨯⨯+⨯⨯++⨯⨯【解析】 原式()()()()2222221331441991=⨯-+⨯-+⨯-++⨯-()333323492349=++++-++++ ()()2123912349=++++--++++245451980=-=【例 12】 计算:234561111111333333++++++【解析】 法一:利用等比数列求和公式。

相关文档
最新文档