第四章纳米微粒的化学特性PPT课件
纳米微粒的基础理论课件

沉淀法是通过化学反应使溶液中的离子形成沉淀,再 经过洗涤、干燥得到纳米微粒的方法。
化学法是通过化学反应制备纳米微粒的方法, 主要包括化学气相沉积法、溶胶-凝胶法、沉淀 法等。
溶胶-凝胶法是利用溶胶中的胶体粒子相互聚结 形成凝胶,再通过干燥和热处理得到纳米微粒的 方法。
生物法
1
生物法是利用生物体系中的酶、微生物等生物分 子进行催化或合成纳米微粒的方法,主要包括生 物合成法和生物提取法。
根据应用需求选择合适的制备方法, 如根据所需纳米微粒的尺寸、形貌、 化学成分等特性选择合适的制备方法 。
03
纳米微粒的性质与应用
纳米微粒的物理性质
小尺寸效应
由于纳米微粒的尺寸在纳米级别,其电子能级发 生分裂,导致新的光学、电学和磁学等性质。
表面效应
纳米微粒的巨大表面积与体积比使其表面原子活 性增加,影响其化学反应活性。
量子效应
在纳米尺度上,电子的运动受到限制,表现出显 著的量子效应,影响材料的导电性和磁性。
纳米微粒的化学性质
01
02
03
高反应活性
纳米微粒具有高表面能, 使其在化学反应中表现出 高反应活性。
催化性能
纳米微粒可作为高效的催 化剂,应用于许多化学反 应中。
稳定性与相容性
通过表面修饰,纳米微粒 可以改善其在不同介质中 的稳定性和相容性。
研究和评估。
跨学科合作
纳米微粒的研究和应用涉及多 个学科领域,需要加强跨学科 的合作和交流,促进创新发展 。
技术瓶颈
目前纳米微粒的制备、表征和 应用技术还存在一些瓶颈,需 要加强技术研发和创新。
法规和伦理问题
随着纳米微粒的广泛应用,相 关的法规和伦理问题也逐渐凸 显,需要建立相应的规范和标
纳米材料物理化学性质

第四章纳米材料的物理化学性能纳米微粒的物理性能第一节热学性能※1.1. 纳米颗粒的熔点下降由于颗粒小,纳米颗粒的表面能高、比表面原子多,这些表面原子近邻配位不全,活性大以及体积远小于大块材料的纳米粒子熔化时所需要增加的内能小得多,这就使纳米微粒熔点急剧下降。
金的熔点:1064o C;2nm的金粒子的熔点为327o C。
银的熔点:960.5o C;银纳米粒子在低于100o C开始熔化。
铅的熔点:327.4o C;20nm球形铅粒子的熔点降低至39o C。
铜的熔点:1053o C;平均粒径为40nm的铜粒子,750o C。
※1.2. 开始烧结温度下降所谓烧结温度是指把粉末先用高压压制成形,然后在低于熔点的温度下使这些粉末结合成块,密度接近常规材料的最低加热温度。
纳米颗粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利于界面中的孔洞收缩,空位团的湮灭,因此,在较低的温度下烧结就能达到致密化的目的,即烧结温度降低。
※1.3. NPs 晶化温度降低非晶纳米颗粒的晶化温度低于常规粉末,且纳米颗粒开始长大温度随粒径的减小而降低。
※熔点降低、烧结温度降低、晶化温度降低等热学性质的显著变化来源于纳米材料的表(界)面效应。
第二节电学性能2.1 纳米金属与合金的电阻特性1. 与常规材料相比,Pd纳米相固体的比电阻增大;2. 比电阻随粒径的减小而逐渐增加;3. 比电阻随温度的升高而上升4. 随粒子尺寸的减小,电阻温度系数逐渐下降。
电阻的温度变化规律与常规粗晶基本相似,差别在于温度系数强烈依赖于晶粒尺寸。
随着尺寸的不断减小,温度依赖关系发生根本性变化。
当粒径为11nm时,电阻随温度的升高而下降。
5. 当颗粒小于某一临界尺寸时(电子平均自由程),电阻的温度系数可能会由正变负,即随着温度的升高,电阻反而下降(与半导体性质类似).电子在晶体中传播由于散射使其运动受阻,而产生电阻。
※纳米材料的电阻来源可以分为两部分:颗粒组元(晶内):当晶粒大于电子平均自由程时主要来自晶内散射界面组元(晶界):晶粒尺寸与电子平均自由程相当时,主要来自界面电子散射•纳米材料中大量的晶界存在,几乎使大量电子运动局限在小颗粒范围。
纳米颗粒(课堂PPT)

白蛋白纳米球
28
(2)明胶纳米球
将W/ O 型乳状液中的明胶乳滴 冷却至胶凝点以下 用甲醛交联固化 可用于对热敏感的药物
29
明胶纳米球
将300 g/ L 的明胶溶液3 ml (含有1. 8mg 丝裂霉素) 在3 ml 芝麻油中乳化。
将形成的乳状液在冰浴中冷却,使明胶乳 滴完全胶凝,再用丙酮稀释,用50 nm 孔 径的滤膜滤过,弃去粒径较大的颗粒。
21
PACA纳米球
22
(2)聚甲基丙烯酸甲酯纳米球(囊)
聚合反应引发:γ射线辐射或化学引发剂(如过 硫酸钾)。 聚合物的平均分子量及纳米囊或纳米球的粒径 均随单体浓度的增大、引发剂浓度的降低及温 度的降低而增大。 制备PMMA纳米球时一般不加乳化剂,但加入 高分子保护胶体,如蛋白质可使粒径分布变窄。
(1)聚氰基丙烯酸烷基酯纳米球(囊)
聚合引发剂:水中OH-离子。 通常制得的聚合物平均分子量较低,纳米球软 且易粘连,需应用稳定剂,如右旋糖酐。 影响粒径的重要因素:溶液的pH值和单体的 浓度。 本法制得的纳米囊或纳米球中药物的收率在 15%~90%范围内,亲脂性药物收率较高。
16
PACA聚合反应
纳米球或纳米囊的粒径取决于溶剂蒸发 之前形成的乳滴的粒径
通过搅拌速率、分散剂的种类和用量、 有机相及水相的比例、粘度、容器及搅 拌器的形状和温度等因素可以调节纳米 球或纳米囊的粒径。
39
曲安奈德聚乳酸(PLA) 纳米粒
曲安奈德(皮肤抗炎用药)20 mg 与PLA 400 mg 溶于2 ml 氯仿中为油相,
30
明胶纳米球
用丙酮洗去纳米球( ≤50 nm) 上的油 加10 %甲醛的丙酮溶液30 ml 使纳米 球交联10 min 丙酮洗涤,干燥,即得单颗粒纳米球
纳米微粒的特性-

非牛顿流体:包括假塑性流体、塑性流体和胀流体。假塑性
流体和塑性流体都属于剪切变稀的流体,但塑性流体具有屈 服值。胀流体 属于剪切变稠的流体。 黏度η:是流体内部抵抗流动的阻力,用对流体的剪切应力 与剪切速率之比表示。
ηred为胶乳浓度(体积分数) ,Φ为粒子的形状因子,等 于2.5,K为静电引力常数(约1.35)。随胶乳粒径减小黏度的增加 是由于粒径愈小,胶乳比表面增大,胶乳间静电引力增大, Mooney式中的K变大所致。
三、流变学
流体
牛顿流体
非牛顿流体
假塑性流体
塑性流体
胀流体
1.基本概念
流体:流体是由大量的、不断地作热运动而且无固定平衡位
置的分子构 成的,它的基本特征是没有一定的形状和具有流动 性。流体都有一定的可压缩性,液体可压缩性很小,而气体的可 压缩性较大。流体的流变形态分为牛顿流体和非牛顿流体。 牛顿流体:剪切应力τ与剪切速率 成正比的流体。
② 作新的润滑剂。
通常润滑剂易损耗、易污染环境。磁性液体中的磁性
颗粒尺寸仅为10单位,因此,不会损坏轴承,而基液亦可用润 滑油,只要采用合适的磁场就可以将磁性润滑油约束在所需的 部位。
③ 增进扬声器功率。
在音圈与磁铁间隙处滴入磁性液体,由于液体的导热系数 比空气高5~6倍,从而使得在相同条件下功率可以增加1倍。磁性 液体的添加对频响曲线的低频部分影响较大,通常根据扬声器的 结构,选用合适粘滞性的磁性液体,可使扬声器具有较佳的频响 曲线。
例如,纳米尺寸的黏土小颗粒在碱或碱土类金属的电解 液中的吸附(这是一种物理吸附过程,它是有层次)。吸 附层的电学性质也有很大的差别. 紧密层:靠近纳米微粒表面的一层属于强物理吸附,称为 紧密层,它的作用是平衡了超微粒子表面的电性 分散层:离超微粒子稍远的离子形成较弱吸附层,称为 分散层。
纳米粒子PowerPoint 幻灯片 (2)

液晶显示材料
纳米材料的应用——储氢材料
• 氢能是人类未来最理想的能源, 其热值高,资源丰富,无毒无污 染,并可再生。氢-氧燃料电池 可做汽车发动机的动力,达到零 排放。纳米材料可以作为储氢材 料,反复循环使用。研究表明许 多合金可作为储氢材料,如 LaNi5,FeTi的纳米颗粒可作为储 氢材料,若包覆V,Pd后,其储 氢性能将更大提高。
纳米复合膜陶瓷过滤机图
纳米材料的应用——光学材料
液晶显示材料
• 从光学角度来说,石墨烯是一种 “透明”的导体,可以用来替代现在 的液晶显示材料。目前的液晶显示器 利用的是以铟为基础的金属氧化物薄 膜,而铟这种金属十分稀有,预计在 未来十年内就可能出现供应短缺。另 外,与目前电脑、手机等电子产品的 重要原材料硅相比,石墨烯也具有诸 多优势,因此它将来有望取代硅,在 电子产品生产中得到广泛应用。
•
1959年,美国著名理论物理学R.Feynma曾说过: “我深信,当人们能操纵细微物体排列时,将可获得 极其丰富的新的物质的质”。如今,这一梦想终于能 在纳米材料得以实现。人们对纳米粒子的物理化学性 质的研究逐步深入,到了20世纪90年代,人工制备 的纳米材料已达百种以上。1990年7月在美国巴尔的 摩召开的第一届NST会议,标志着这一全新的技术— —纳米科技正式诞生。
氧化锌纳米粒子
纳米材料制备方法分类 纳米材料的类别
纳米粉体
化学法
沉淀法(共沉淀、均相 沉淀) 化学气相凝聚 (CVC ),水热法 相转移 法 溶胶-凝胶法 溶胶--凝胶法 电沉淀பைடு நூலகம் 还原法 非晶晶化法 原位聚合法 抽层法 乳液法 超微乳法 悬浮法 高分子包覆法 乳液法
物理法
综合法
惰性气体沉淀法 蒸发法 激光 辐射化学合成法 溅射法 真空蒸镀法 球磨法 爆炸法 喷雾法 溶剂挥发法 惰性气体蒸发法 高速粒子沉 淀法 激光溅射法 超声沉淀法
纳米材料学(二)——纳米微粒的特性

表面效应
表面效应是指纳米颗粒表面原子数与总原子数之比随 粒径变小而急剧增大后引起的性质上的变化。纳米粒 子尺寸小,表面能高,表面原子占相当大的比例。例 如粒径为10nm时,比表面积为90m2/g;粒径为5nm 时,比表面积为180m2/g;粒径下降到2nm时,比表 面积猛增到450m2/g。粒子直径减小到纳米级,不仅 引起表面原子数的迅速增加,而且纳米粒子的表面积、 表面能都会迅速增加。这主要是因为处于表面的原子 数较多,表面原子的晶场环境和结合能与内部原子不 同所引起的。表面原子周围缺少相邻的原子,有许多 悬空键,具有不饱和性质,易与其它原子相结合而稳 定下来,故具有很大的化学活性,晶体微粒化伴有这 种活性表面原子的增多,其表面能大大增加。
蓝移和红移现象:与大块材料相比,纳 米微粒的吸收带普遍存在“蓝移”现象, 即吸收带移向短波长方向。对纳米微粒 吸收带“蓝移”的一种解释是基于纳米 微粒的量子尺寸效应。由于颗粒的尺寸 减小、能隙变宽,即已被电子占据分子 轨道能级与未被占据分子轨道能级之间 的宽度(能隙)随颗粒直径减小而增大, 这是产生蓝移的根本原因。
纳米微粒的化学特性
吸附 分散与团聚 催化作用
吸附
吸附是相接触的不同相之间产生的结合 现象。 吸附可分为两类,物理吸附和化学吸附。 物理吸附是吸附剂与吸附相之间以范德 华力之类较弱的物理力相结合; 化学吸附是吸附剂与吸附相之间以化学 键强结合。
纳米微粒由于有大的比表面和表面原子配位不 足,与相同材质的大块材料相比,有较强的吸 附性。 纳米粒子的吸附性与被子吸附物质的性质、溶 剂的性质以及溶液的性质有关。 电解质和非电解质溶液以及溶液的pH值等都对 纳米微粒的吸附产生强烈的影响。 不同种类的纳米微粒吸附性质也有很大差别。
加入反絮凝剂形成双电层; 加入表面活性剂包裹微粒。
纳米材料的结构和性质ppt课件

可编辑课件
16
可编辑课件
此外,纳米磁 性微粒还具备 许多其他的磁 特性.纳米金 属Fe(8nm)饱和 磁化强度比常 规α-Fe低40%, 纳米Fe的比饱 和磁化强度随 粒径的减小而 下降(见图);
17
2.3光学性能
纳米粒子的一个最重要的标志是尺寸与物理的 特征量相差不多,例如,当纳米粒子的粒径与 超导相干波长、玻尔半径以及电子的德布罗意 波长相当时,小颗粒的量子尺寸效应十分显 著.与此同时,大的比表面使处于表面态的原 子,电子与处于小颗粒内部的原子、电子的行 为有很大的差别,这种表面效应和量子尺寸效 应对纳米微粒的光学特性有很大的影响.甚至 使纳米微粒具有同样材质的宏观大块物体不具 备的新的光学特性.主要表现为如下几方面:
可编辑课件
36
例如可以将酯类氧化变成醇,醇再氧化 变成醛,醛再氧化变成酸,酸进一步氧 化变成CO2和水.半导体的光催化活性主 要取决导带与价带的氧化-还原电位,价 带的氧化—还原电位越正,导带的氧 化—还原电位越负,则光生电子和空穴 的氧化及还原能力就越强,从而使光催 化降解有机物的效率大大提高.
硅作载体的镍纳米微粒作催化剂时,当粒径小
于5nm时,不仅表面活性好,使催化效应明显,
而且对丙醛的氢化反应中反应选择性急剧上升,
即使丙醛到正丙醇氢化反应优先进行,而使脱
碳引起的副反应受到抑制.
可编辑课件
33
由于纳米微粒具有大的比表面积,高的 表面活性,及表面活性能与气氛性气体 相互作用强等原因,纳米微粒对周围环 境十分敏感.如光、温、气氛、湿度等, 因此可用作各种传感器,如温度、气体、 光、湿度等传感器。
可编辑课件
25
这是因为光吸收带的位置是由影响峰位的蓝移 因素和红移因素共同作用的结果,如果前者的 影响大于后者,吸收带蓝移,反之,红移.随 着粒径的减小,量子尺寸效应会导致吸收带的 蓝移,但是粒径减小的同时,颗粒内部的内应 力会增加,这种压应力的增加会导致能带结构 的变化,电子波函数重叠加大,结果带隙、能 级间距变窄,这就导致电子由低能级向高能级 及半导体电子由价带到导带跃迁引起的光吸收 带和吸收带发生红移.纳米NiO中出现的光吸 收带的红移是由于粒径减小时红移因素大于蓝 移因素所致.
纳米粒子的特性 ppt课件

2.磁学姓质
(1).超顺磁性
居里-外斯定律:= C
T Tc
超顺磁性:矫顽力H c
0,对于 H
kBT
1时:
磁化强度:M P
2 H ,为粒子磁距
3k BT
起源:在小尺寸下,当各向异性能减少到与热运动能可想
比拟时,磁化方向就不再固定在一个易磁化方向,易磁化
方向作无规律的变化,结果导致超顺磁性的出现。
• 美国政府大幅度追加纳米科技研究经费,其原 因之一是磁电于器件巨大的市场与高科技所带 来的高利润,其中巨磁电阻效应高密度读出磁 头的市场估计为10亿美元,目前己进入大规模 的工业生产,磁随机存储器的市场估计为1千 亿美元。磁电子传感器件的应用市场亦十分宽 广
纳米磁极
6极
8极
4极
磁性液体
• 纳米粒子粒径小于临界半径(一般为5~10nm) 时变得有超顺磁性,如把此强磁性纳米粒子包裹一 层表面活性剂后均匀地分散到溶液中,可制得一类 新型液态胶状磁流体材料--磁性液体。
• 1999年以GMR多层膜为磁头的硬盘驱动器(HDD) 进入市场,其存储密度达到11Gbits/in2,而1990年 仅为0.1Gbits/in2,10年中提高了100倍。
• 目前GMR的研究开发工作正方兴未艾,而将
上述隧道磁电阻(TMR)多层膜应用于新型随机存 储器 (MRAM)的研究又已经展开。
• 大块Pb的熔点为600K,而20nm球形Pb微粒 熔点降低为288K;
• 纳米Ag微粒在低于373K时开始熔化,常规 Ag的熔点为1173K左右。
• 这一特点使低温下将纳米金属烧结成合 金产品成为现实,且为不溶解的金属冶 炼成合金创造了条件。
纳米金属铜的超延展性
•纳米ZrO2的烧结温度比微米级ZrO2的烧结温度降低了400℃
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pH比较小时,粒子表面形成M—O H2(M代表金属离子,如Si,Al,Ti 等),导致粒子表面带正电。 pH高时,粒子表面形成M—O键, 使粒子表面带负电。 pH值处于中间值,则纳米氧化物表 面形成M—OH键,粒子呈电中性。
§4.2纳米微粒的分散和团聚
4.2.1分散
一、面临的问题
在纳米微粒制备过程中,纳米微粒表 面的活性使它们很容易团聚在一起从而形 成带有若干弱连接界面的尺寸较大的团聚 体,这给纳米微粒的收集带来很大的困难。
看出, 1/ k反比于Z和C1/2,这表明高价离子、高电解质浓度下,
11
双电层很薄。
§4.1吸附
4.1.2电解质吸附
三、纳米氧化物随pH值可带不同的电荷
纳米氧化物的粒子,如石英、氧化铝 和二氧化钛等根据它们在水溶液中的pH值 不同可带正电、负电或呈电中性。
12 图4.2 pH值对氧化物带电 状况的影响
二、解决的方案
用物理方法或化学方法制备的纳米粒 子经常采用分散在溶液中进行收集。
13
§4.2纳米微粒的分散和团聚
4.2.1分散
1分散机理:
A现象 尺寸较大的粒子容易沉淀下来,当粒径在 纳米级(1—100nm),由于布朗运动等因素阻止它 们沉淀而形成一种悬浮液,纳米微粒称为胶体。 由于小微粒之间库仑力或范德瓦耳斯力团聚现象 仍可能发生。
4. 2.1微粒的分散 4. 2的黏性 4. 3.2纳米Al2O3悬浮液的黏度 4. 3.3磁性液体的黏度 4. 3.4双电层对黏性的影响
§4.1吸附
吸附的概念
吸附是相接触的不同相之间产生的结合现象
吸附的分类
物理吸附 吸附剂与吸附相之间是以范德瓦
4、不同种类的纳米微粒吸附性质有很大差别。
5
§4.1吸附
4.1.1非电解质的吸附
一、概念
非电解质是指电中性的分子,它们可通 过氢键、范德瓦耳斯力、偶极子的弱静电引 力吸附在粒子表面。其中主要是以氢键形成 而吸附在其它相上。
二、吸附的典型例子
例如:氧化硅粒子对醇、酰胺、醚的吸 附过程中氧化硅微粒与有机试剂中间的接触 为硅烷醇层,硅烷醇在吸附中起着重要作用。
B方法 通常用超声波将分散剂(水或有机试剂)中 的团聚体打碎。
C原理 其原理是由于超声频振荡破坏了团聚体中 小微粒之间的库仑力或范德瓦耳斯力,从而使小 颗粒分散于分散剂中。
14
§4.2纳米微粒的分散和团聚
4.2.1分散
2防止小颗粒团聚采用的方法:
A、加入反絮凝剂形成双电层 反絮凝剂的选择可 依纳米微粒的性质、带电类型等来定。即:选择 适当的电解质作分散剂,使纳米粒子表面吸引异 电离子形成双电层,通过双电层之间库仑排斥作 用使粒子之间发生团聚的引力大大降低,实现纳 米微粒分散的目的。
8
§4.1吸附
4.1.2电解质吸附
一、吸附的机理:电解质在溶液中以离子形 式存在,其吸附能力大小由库仑力来决定。 纳米微粒在电解质溶液中的吸附现象大多数 属于物理吸附。 1缘由:由于纳米粒子的大的比表面常常产生键的
不饱和性,致使纳米粒子表面失去电中性而带电 (例如纳米氧化物,氮化物粒子),而电解质溶液中 往往把带有相反电荷的离子吸引到表面上以平衡其 表面上的电荷,这种吸附主要是通过库仑交互作用 而实现的。
10
称为 分散层。
§4.1吸附
4.1.2电解质吸附
上述两层构成双电层。 双电层中电位分布可用 一表示式来表明,例如把Cu离子—黏土粒子之间 吸附当作强电解质吸附来计算,以粒子表面为原 点,在溶液中任意距离x的电位可用下式表示:
Z为原子价,NA为阿伏伽德罗常数, C为强电解质的摩尔浓 度 ,k 表示双电层的扩展程度.1/ k称为双电层的厚度.由式
9
§4.1吸附
4.1.2电解质吸附
2实例列举:例如,纳米尺寸的黏土小颗粒在碱
或碱土类金属的电解液中的吸附(这是一种物理 吸附过程,它是有层次的)。吸附层的电学性质 也有很大的差别.
二、吸附层的电学性质
1靠近纳米微粒表面的一层属于强物理吸 附,称为紧密层,它的作用是平衡了超微 粒子表面的电性。
2离超微粒子稍远的离子形成较弱吸附层,
纳米微粒的化学特性
1
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容
2
主要内容
§ 4.1 吸附
4.1.1非电解质的吸附 4.1.2电解质吸附
§ 4.2 纳米微粒的分散与团聚
由上述例子可知
受吸附相的性质影响
说明 :即使吸附相是相同的,但由于溶剂种类不 同吸附量也不一样。例如,以直链脂肪酸为吸附 相,以苯及正己烷溶液为溶剂,结果以正己烷为 溶剂时直链脂肪酸在氧化硅微粒表面上的吸附量 比以苯为溶剂时多,这是因为在苯的情况下形成 的氢键很少。从水溶液中吸附非电解质时,受pH 值影响很大,pH值高时,氧化硅表面带负电,水 的存在使得氢键难以形成,吸附能力下降。
耳斯力之类较弱的物理力结合
化学吸附 吸附剂与吸附相之间是以化学键强
结合
4
§4.1吸附
纳米微粒吸附性特点
1、纳米微粒由于有大的比表面和表面原子配 位不足,与相同材质的大块材料相比较,有较强 的吸附性。
2、纳米粒子的吸附性与被吸附物质的性质、 溶剂的性质以及溶液的性质有关。
3、电解质和非电解质溶液以及溶液的pH值等 都对纳米微粒的吸附产生强烈的影响。
6
§4.1吸附
4.1.1非电解质的吸附
作用机制:上述有机试剂中的O或N与硅烷醇的羟基 (OH基)中的H形成O—H或N—H氢键,从而完成SiO2微 粒对有机试剂的吸附,如图4.1所示。
7
图4.1 在低pH下吸附于氧化硅表面的醇、酰胺、醚分子。
§4.1吸附
4.1.1非电解质的吸附
三、影响吸附的因素
受粒子表面性质的影响
例子 如,纳米氧化物SiO2,Al2O3和TiO2等在 水中的pH高低不同(带正电或负电),因此可选 Na+,NH4+或Cl-,NO3-异电离子作反絮凝剂,使 微粒表面形成双电层,从而达到分散的目的。
15
§4.2纳米微粒的分散和团聚
4.2.1分散
B、加表(界)面活性剂包裹微粒 为了防止分散的纳米粒 子团聚也可加入表面活性剂,使其吸附在粒子表面, 形成微胞状态,由于活性剂的存在而产生了粒子间的 排斥力,使得粒子间不能接触,从而防止团聚体的产 生。对于磁性纳米微粒,由于颗粒之间磁吸引力,很 容易团聚,加入界面活性剂(如油酸)使其包裹在磁 性粒子表面,造成粒子间排斥作用,避免了团聚体的 生成。