(word完整版)小升初奥数—排列组合问题

合集下载

小升初数学排列组合练习题(附答案)

小升初数学排列组合练习题(附答案)

小升初数学排列组合练习题(附答案)
2019小升初数学排列组合练习题(附答案)数学是一个重要的基础课程,下面为大家分享小升初数学排列组合练习题,大家一定要经常用习题来锻炼自己的数学各种思维。

1、有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有( )
A 768种
B 32种
C 24种
D 2的10次方中
解:根据乘法原理,分两步:
第一步是把5对夫妻看作5个整体,进行排列有
5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。

第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种综合两步,就有24×32=768种。

2、若把英语单词hello的字母写错了,则可能出现的错误共有 ( )
A 119种
B 36种
C 59种
D 48种
解:全排列5*4*3*2*1=120 有两个l所以120/2=60
原来有一种正确的所以60-1=59
3、小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小。

小学奥数专题--排列组合(精编文档).doc

小学奥数专题--排列组合(精编文档).doc

【最新整理,下载后即可编辑】✧排列问题题型分类:1.信号问题2.数字问题3.坐法问题4.照相问题5.排队问题✧组合问题题型分类:1.几何计数问题2.加乘算式问题3.比赛问题4.选法问题✧常用解题方法和技巧1.优先排列法2.总体淘汰法3.合理分类和准确分步4.相邻问题用捆绑法5.不相邻问题用插空法6.顺序问题用“除法”7.分排问题用直接法8.试验法9.探索法10.消序法11.住店法12. 对应法 13. 去头去尾法 14. 树形图法 15. 类推法 16. 几何计数法 17. 标数法 18. 对称法分类相加,分步组合,有序排列,无序组合基础知识(数学概率方面的基本原理)一. 加法原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1中不同的方法, 在第二类办法中有M 2中不同的方法,……, 在第N 类办法中有M n 种不同的方法,那么完成这件事情共有M 1+M 2+……+M n 种不同的方法。

二. 乘法原理:如果完成某项任务,可分为k 个步骤,完成第一步有n 1种不同的方法, 完成第二步有n 2种不同的方法,…… 完成第k步有nk种不同的方法,那么完成此项任务共有n1×n2×……×nk种不同的方法。

三.两个原理的区别⏹做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。

每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)⏹做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同⏹这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.四.排列及组合基本公式1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 P m n 表示. P m n =n(n-1)(n-2)……(n -m+1)=n!(n-m)!(规定0!=1). 2. 组合及计算公式从n 个不同元素中,任取m(m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合;从n 个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号C m n 表示.C mn = P mn /m!= n!(n-m)!×m!一般当遇到m 比较大时(常常是m>0.5n 时),可用C m n = C n-m n 来简化计算。

小升初数学解决问题系列——排列组合

小升初数学解决问题系列——排列组合

小升初解决问题系列《排列组合》专题专练1.乐乐有3件衬衫、2条短裙、2双皮鞋,用它们一共可以搭配() 种不同的穿法。

A.6B.8C.9D.12解:3×2×2=12(种)用它们一共可以搭配12种不同的穿法。

故答案为:D。

2.明明、红红、奇奇、亮亮4名同学站成一排拍照,其中亮亮站在最左边,一共有()种不同的排法。

A.6B.4C.12D.24解:3×2×1=6(种)。

故答案为:A。

3.用2、4、9和小数点组成的两位小数共有()个。

A.3B.4C.6D.12解:用2、4、9和小数点组成的两位小数有:2.49、2.94、4.29、4.92、9.42、9.24共6个。

故答案为:C。

4.从猴山到狮虎山,一共有()条路线。

A.6B.8C.10D.12解:3×2=6(条)故答案为:A。

5.小明想从四本不同的书中任选2 本书,共有()种选法A.3B.4C.5D.6解:,将四本书进行编号,再两两组合,一共有3+2+1=6(种)选法;故答案为:D。

二、填空题6.2023年3月24~26日,第二十八届“CBA全明星周末”在厦门奥林匹克体育中心举办,掀起了一阵篮球风。

某校三年级如火如荼地开展篮球赛,每两班比赛一场,三年级有6个班,一共需要进行场比赛。

解:5+4+3+2+1=15(场)故答案为:15。

7.25支球队参加比赛。

以单场淘汰赛进行到决出冠军,一共要进行场比赛。

解:12+6+3+2+1=24(场)故答案为:24。

8.四年级四个班进行足球比赛,每两个班都要赛一场,已知一班已经赛了3场,二班已经赛了1场,三班已经赛了2场,四班已经赛了场。

解:1+1=2(场)。

故答案为:2。

9.四个小朋友进行兵乓球比赛,每两人之间比一场,一共要比场。

他们用手中的数字卡片组成没有重复数字的两位数,一共可以组成个。

解:3+2+1=6(场);一共可以组成12、13、14、21、23、24、31、32、34、41、42、43,共12个两位数。

小学奥数之排列组合问题

小学奥数之排列组合问题
题目:有五本不同的书分给甲、乙、丙三人,其中一人一本,另两人各两本,不同的分配方法有 _______ 种. 答案:90
题目:将5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为 _______. 答案:60
掌握基础概念和公式
理解排列组合的原理和计算方法
理解排列组合的概念和公式
练习题:有5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为多少? 答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。练习题:用数字0,1,2,3,4可以组成多少个无重复数字且大于2000的三位数? 答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。

(完整版)解排列组合应用题的解法技巧(可编辑修改word版)

(完整版)解排列组合应用题的解法技巧(可编辑修改word版)

(完整版)解排列组合应用题的解法技巧(可编辑修改word版)n n nn 解排列组合应用题的解法·技巧引言:1、本资料对排列、组合应用题归纳为 8 种解法、13 种技巧2、解排列组合问题的“16 字方针”:分类相加,分步相乘,有序排列,无序组合一般先选再排,即先组合再排列,先分再排。

弄清要完成什么样的事件是前提,解决这类问题通常有三种途径(1) 以元素为主,应先满足特殊元素的要求,再考虑其他元素(2) 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置即采用“先特殊后一般”的解题原则.(3) 先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数前两种方式叫直接解法,后一种方式叫间接(剔除)解法注:数量不大时可以逐一排出结果。

3、解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.(一)排列组合应用题的解法排列组合应用题的解题方法既有一般的规律,又有很多特别的技巧,它要求我们要认真地审题,对题目中的信息进行科学地加工处理。

下面通过一些例题来说明几种常见的解法。

一. 运用两个基本原理二. 特殊元素(位置)优先三. 捆绑法四. 插入法五. 排除法六. 机会均等法七. 转化法八. 隔板法一. 运用两个基本原理加法原理和乘法原理是解排列组合应用题的最基本的出发点,可以说对每道应用题我们都要考虑在记数的时候进行分数或分步处理。

例 1:n 个人参加某项资格考试,能否通过,有多少种可能的结果?解法 1:用分类记数的原理,没有人通过,有 C 0 种结果;1 个人通过,有 C 1 种结 n n果,……;n 个人通过,有C n 种结果。

所以一共有C 0 + C 1 + +C n = 2n 种可能的结果。

小升初--排列组合专题解答

小升初--排列组合专题解答

1.某人到食堂去买饭,主食有三种,副食有5种,他主食和副食各买一种,共有多少种不同的买法?2.由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?3.有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子,问:共有多少种不同的放法?4.在自然数中,用两位数做被减数,用一位数做减数,共可以组成多少个不同的减法算式?5.一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上,问共有多少种不同的站位方法?6.由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数没有重复的三位数?③百位为8的没有重复的三位数?④百位为8的没有重复的三位偶数?7.从1到500的所有自然数中不含有数字4的自然数有多少个?8.从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问从甲地到丙地共有多少中走法?9.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿)有多少不同的拿法?10.1~500的自然数中,不含数字0和1的数有多少个?11.用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?12.5个人站成一排,其中甲必须站在中间有多少种不同的站法?13.某班集体中选出了5名班委,他们分别担任班长、学习委员、生活委员、宣传委员和体育委员。

问有多少种不同的分工方式?14.由数字1、2、3、4、5、6可以组成多少没有重复数字的①三位数②个位是1的三位数③百位是1的五位数④六位数15从分别写有1、3、5、7、9的五张卡片中任意取两张作成一道两个一位数的乘法题,问:①有多少个不同的乘积?②有多少个不同的乘法算式?16.一个半圆周上共有12个点,以这些点为顶点可以画多少个三角形?四边形?17.从甲地到乙地某车要停靠9个站,问此车应准备____________种不同的车票,这些车票中最多有_______种不同的票价。

小升初数学排列组合练习题(附答案)-word文档

小升初数学排列组合练习题(附答案)-word文档

2019小升初数学排列组合练习题(附答案)数学是一个重要的基础课程,下面为大家分享小升初数学排列组合练习题,大家一定要经常用习题来锻炼自己的数学各种思维。

1、有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有( )A 768种B 32种C 24种D 2的10次方中解:根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。

第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种综合两步,就有24×32=768种。

2、若把英语单词hello的字母写错了,则可能出现的错误共有 ( )A 119种B 36种C 59种D 48种解:全排列5*4*3*2*1=120 有两个l所以120/2=60原来有一种正确的所以60-1=593、小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?解答:把路程看成1,得到时间系数去时时间系数:1/3÷12+2/3÷30返回时间系数:3/5÷12+2/5÷30两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)以上是为大家分享的小升初数学排列组合练习题,希望能够切实的帮助到大家,同时祝大家能够顺利进入理想的重点中学!加油哦~。

奥数讲义计数专题:排列组合(含答案)

奥数讲义计数专题:排列组合(含答案)

华杯赛计数专题:2排列组合基础知识:1.排列:从n个对象中选出m(不超过n)个并进行排序,共有的方法数称为排列数,写成。

2.排列数的计算:约定:0!=1排列数是由乘法原理得到的,因此排列可以看成是乘法原理的一种应用。

3.组合:从n个对象中选出m(不超过n)个,不进行排序,共有的方法数称为组合数,写成。

4.排列与组合的关系:。

5.组合数的计算:6.排列数与组合数的一些性质:例题:例1.4名男生和3名女生站成一排:(1)一共有多少种不同的站法?(2)甲,乙二人必须站在两端的排法有多少种?(3)甲,乙二人不能站在两端的排法有多少种?(4)甲不排头,也不排尾,有多少种排法?(5)甲只能排头或排尾,有多少种排法?【答案】(1)5040;(2)240;(3)2400;(4)3600;(5)略【解答】例2.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共多少种?【答案】4186种【解答】至少有3件是次品,分两种情况第一种情况:3件是次品的抽法:从4件次品中中抽出3件是种,其中,,然后,从46件正常品中抽2件,总共种。

其中,所以,3件是次品的抽法共种。

第二种情况:4件是次品的抽法共:种。

任意抽出5件产品,至少有3件是次品的抽法,是将上述两种情况加在一起,所以,总共是4×23×45+46=23×182=4186种。

总结:有序是排列,无序是组合。

例3.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种?【答案】540种【解答】可设三所学校为甲、乙、丙,三位医生去3所学校的分配方案:用排列数表示为=3×2×1=6。

用乘法原理表示为3!=6。

六名护士去学校甲有种选法,剩下4名护士去乙学校,有种选法,剩下两名自然去学校丙。

所以,不同的分配方法共有种。

例4.有多少个五位数,满足其数位上的每个数字均至少出现两次?【答案】819【解答】方法一:(1)出现一个数字的情况是9种;(2)出现两个数字,首位不能是0,共有9种情况,(i)首位确定之后,如果首位数总共出现3次,则从后面的4个数位中,选出两位,共种情况,剩下的两个数位,还需要选相同的数,因为可以是0,所以,有9种选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初奥数—排列组合问题一、 排列组合的应用【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。

【解析】 (1)775040P =(种)。

(2)只需排其余6个人站剩下的6个位置.66720P =(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ⨯= (种). (5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ⨯=(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。

【例 2】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试几次?【解析】 四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种。

第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择;第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312⨯=(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择.综上所述,由加法原理,一共可以组成412121212456+++++=(个)不同的四位数,即确保能打开保险柜至少要试56次.【例 3】 一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有多少个?【解析】 设A :BC DE 是满足题意的时刻,有A 为8,B 、D 应从0,1,2,3,4,5这6个数字中选择两个不同的数字,所以有26P 种选法,而C 、E 应从剩下的7个数字中选择两个不同的数字,所以有27P 种选法,所以共有26P ×27P =1260种选法。

从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有1260个。

【例 4】 4名男生,5名女生,全体排成一行,问下列情形各有多少种不同的排法:⑴ 甲不在中间也不在两端; ⑵ 甲、乙两人必须排在两端;⑷男女相间.【解析】⑴先排甲,9个位置除了中间和两端之外的6个位置都可以,有6种选择,剩下的8个人随意排,也就是8个元素全排列的问题,有888765432140320P=⨯⨯⨯⨯⨯⨯⨯=(种)选择.由乘法原理,共有640320241920⨯=(种)排法.⑵甲、乙先排,有22212P=⨯=(种)排法;剩下的7个人随意排,有7 776543215040P=⨯⨯⨯⨯⨯⨯=(种)排法.由乘法原理,共有2504010080⨯=(种)排法.⑶分别把男生、女生看成一个整体进行排列,有22212P=⨯=(种)不同排列方法,再分别对男生、女生内部进行排列,分别是4个元素与5个元素的全排列问题,分别有4 4432124P=⨯⨯⨯=(种)和5554321120P=⨯⨯⨯⨯=(种)排法.由乘法原理,共有2241205760⨯⨯=(种)排法.⑷先排4名男生,有44432124P=⨯⨯⨯=(种)排法,再把5名女生排到5个空档中,有5 554321120P=⨯⨯⨯⨯=(种)排法.由乘法原理,一共有241202880⨯=(种)排法。

【例 5】一台晚会上有6个演唱节目和4个舞蹈节目.求:⑴当4个舞蹈节目要排在一起时,有多少不同的安排节目的顺序?⑵当要求每2个舞蹈节目之间至少安排1个演唱节目时,一共有多少不同的安排节目的顺序?【解析】⑴先将4个舞蹈节目看成1个节目,与6个演唱节目一起排,则是7个元素全排列的问题,有7 77!76543215040P==⨯⨯⨯⨯⨯⨯=(种)方法.第二步再排4个舞蹈节目,也就是4个舞蹈节目全排列的问题,有444!432124P==⨯⨯⨯=(种)方法.根据乘法原理,一共有504024120960⨯=(种)方法.⑵首先将6个演唱节目排成一列(如下图中的“□”),是6个元素全排列的问题,一共有6 66!654321720P==⨯⨯⨯⨯⨯=(种)方法.×□×□×□×□×□×□×第二步,再将4个舞蹈节目排在一头一尾或2个演唱节目之间(即上图中“×”的位置),这相当于从7个“×”中选4个来排,一共有477654840P=⨯⨯⨯=(种)方法.根据乘法原理,一共有720840604800⨯=(种)方法。

【例 6】⑴从1,2,…,8中任取3个数组成无重复数字的三位数,共有多少个?(只要求列式)⑵从8位候选人中任选三位分别任团支书,组织委员,宣传委员,共有多少种不同的选法?⑶3位同学坐8个座位,每个座位坐1人,共有几种坐法?⑷8个人坐3个座位,每个座位坐1人,共有多少种坐法?⑸一火车站有8股车道,停放3列火车,有多少种不同的停放方法?⑹8种不同的菜籽,任选3种种在不同土质的三块土地上,有多少种不同的种法?【解析】⑴按顺序,有百位、十位、个位三个位置,8个数字(8个元素)取出3个往上排,有38P种.⑵3种职务3个位置,从8位候选人(8个元素)任取3位往上排,有38P种.⑶3位同学看成是三个位置,任取8个座位号(8个元素)中的3个往上排(座号找人),每确定一种号码即对应一种坐法,有38P种.⑷3个坐位排号1,2,3三个位置,从8人中任取3个往上排(人找座位),有38P种.⑸3列火车编为1,2,3号,从8股车道中任取3股往上排,共有38P种.⑹土地编1,2,3号,从8种菜籽中任选3种往上排,有38P种。

【例 7】某校举行男生乒乓球比赛,比赛分成3个阶段进行,第一阶段:将参加比赛的48名选手分成8个小组,每组6人,分别进行单循环赛;第二阶段:将8个小组产生的前2名共16人再分成4个小组,每组4人,分别进行单循环赛;第三阶段:由4个小组产生的4个第1名进行2场半决赛和2场决赛,确定1至4名的名次.问:整个赛程一共需要进行多少场比赛?【解析】第一阶段中,每个小组内部的6个人每2人要赛一场,组内赛266515 21C⨯==⨯场,共8个小组,有243⨯组,有6424⨯=场;第三阶段赛224+=场.根据加法原理,整个赛程一共有120244148++=场比赛。

【例 8】 8个人站队,冬冬必须站在小悦和阿奇的中间(不一定相邻),小慧和大智不能相邻,小光和大亮必须相邻,满足要求的站法一共有多少种?【解析】 冬冬要站在小悦和阿奇的中间,就意味着只要为这三个人选定了三个位置,中间的位置就一定要留给冬冬,而两边的位置可以任意地分配给小悦和阿奇. 小慧和大智不能相邻的互补事件是小慧和大智必须相邻 小光和大亮必须相邻,则可以将两人捆绑考虑只满足第一、三个条件的站法总数为:3212372423P P P 3360C C ⨯⨯⨯⨯=(种) 同时满足第一、三个条件,满足小慧和大智必须相邻的站法总数为:3222262322P P P P 960C ⨯⨯⨯⨯=(种)因此同时满足三个条件的站法总数为:33609602400-=(种)。

【例 9】 某池塘中有A B C 、、三只游船,A 船可乘坐3人,B 船可乘坐2人,C 船可乘坐1人,今有3个成人和2个儿童要分乘这些游船,为安全起见,有儿童乘坐的游船上必须至少有个成人陪同,那么他们5人乘坐这三支游船的所有安全乘船方法共有多少种?【解析】 由于有儿童乘坐的游船上必须至少有1个成人陪同,所以儿童不能乘坐C 船.⑴若这5人都不乘坐C 船,则恰好坐满A B 、两船,①若两个儿童在同一条船上,只能在A 船上,此时A 船上还必须有1个成人,有133C =种方法;②若两个儿童不在同一条船上,即分别在A B 、两船上,则B 船上有1个儿童和1个成人,1个儿童有122C =种选择,1个成人有133C =种选择,所以有236⨯=种方法.故5人都不乘坐C 船有369+=种安全方法;⑵若这5人中有1人乘坐C 船,这个人必定是个成人,有133C =种选择.其余的2个成人与2个儿童,①若两个儿童在同一条船上,只能在A 船上,此时A 船上还必须有1个成人,有122C =种方法,所以此时有326⨯=种方法;②若两个儿童不在同一条船上,那么B 船上有1个儿童和1个成人,此时1个儿童和1个成人均有122C =种选择,所以此种情况下有32212⨯⨯=种方法;故5人中有1人乘坐C 船有61218+=种安全方法.所以,共有91827+=种安全乘法.【例 10】 从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?⑴恰有3名女生入选;⑵至少有两名女生入选;⑶某两名女生,某两名男生必须入选; ⑷某两名女生,某两名男生不能同时入选;⑸某两名女生,某两名男生最多入选两人。

【解析】 ⑴恰有3名女生入选,说明男生有5人入选,应为3581014112C C ⨯=种; ⑵要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:8871181010843758C C C C --⨯=;⑶4人必须入选,则从剩下的14人中再选出另外4人,有4141001C =种; ⑷从所有的选法818C 种中减去这4个人同时入选的414C 种: 84181443758100142757C C -=-=.⑸分三类情况:4人无人入选;4人仅有1人入选;4人中有2人入选,共:817261441441434749C C C C C +⨯+⨯=。

【例 11】 在10名学生中,有5人会装电脑,有3人会安装音响设备,其余2人既会安装电脑,又会安装音响设备,今选派由6人组成的安装小组,组内安装电脑要3人,安装音响设备要3人,共有多少种不同的选人方案?【解析】 按具有双项技术的学生分类:⑴ 两人都不选派,有3554310321C ⨯⨯==⨯⨯(种)选派方法;若此人要安装电脑,则还需2人安装电脑,有25541021C ⨯==⨯(种)选法,而另外会安装音响设备的3人全选派上,只有1种选法.由乘法原理,有10110⨯=(种)选法;若此人安装音响设备,则还需从3人中选2人安装音响设备,有2332321C ⨯==⨯(种)选法,需从5人中选3人安装电脑,有3554310321C ⨯⨯==⨯⨯(种)选法.由乘法原理,有31030⨯=(种)选法.根据加法原理,有103040+=(种)选法; 综上所述,一共有24080⨯=(种)选派方法. ⑶ 两人全派,针对两人的任务可分类讨论如下:①两人全安装电脑,则还需要从5人中选1人安装电脑,另外会安装音响设备的3人全选上安装音响设备,有515⨯=(种)选派方案; ②两人一个安装电脑,一个安装音响设备,有22535432602121C C ⨯⨯⨯=⨯=⨯⨯(种)选派方案; ③两人全安装音响设备,有355433330321C ⨯⨯⨯=⨯=⨯⨯(种)选派方案.根据加法原理,共有5603095++=(种)选派方案.综合以上所述,符合条件的方案一共有108095185++=(种).【例 12】 有11名外语翻译人员,其中5名是英语翻译员,4名是日语翻译员,另外两名英语、日语都精通.从中找出8人,使他们组成两个翻译小组,其中4人翻译英文,另4人翻译日文,这两个小组能同时工作.问这样的分配名单共可以开出多少张?【解析】 针对两名英语、日语都精通人员(以下称多面手)的参考情况分成三类:⑴ 多面手不参加,则需从5名英语翻译员中选出4人,有41555C C ==种选择,需从4名日语翻译员中选出4人,有1种选择.由乘法原理,有515⨯=种选择.⑵ 多面手中有一人入选,有2种选择,而选出的这个人又有参加英文或日文翻译两种可能:如果参加英文翻译,则需从5名英语翻译员中再选出3人,有3554310321C ⨯⨯==⨯⨯种选择,需从4名日语翻译员中选出4人,有1种选择.由乘法原理,有210120⨯⨯=种选择;如果参加日文翻译,则需从5名英语翻译员中选出4人,有41555C C ==种选择,需从4名日语翻译员中再选出3名,有31444C C ==种选择.由乘法原理,有25440⨯⨯=种选择.根据加法原理,多面手中有一人入选,有204060+=种选择.⑶ 多面手中两人均入选,对应一种选择,但此时又分三种情况: ①两人都译英文;②两人都译日文;③两人各译一个语种.情况①中,还需从5名英语翻译员中选出2人,有25541021C ⨯==⨯种选择.需从4名日语翻译员中选4人,1种选择.由乘法原理,有110110⨯⨯=种选择. 情况②中,需从5名英语翻译员中选出4人,有41555C C ==种选择.还需从4名日语翻译员中选出2人,有2443621C ⨯==⨯种选择.根据乘法原理,共有15630⨯⨯=种选择. 情况③中,两人各译一个语种,有两种安排即两种选择.剩下的需从5名英语翻译员中选出3人,有3554310321C ⨯⨯==⨯⨯种选择,需从4名日语翻译员中选出3人,有31444C C ==种选择.由乘法原理,有1210480⨯⨯⨯=种选择.综上所述,由加法原理,这样的分配名单共可以开出560120185++=张.二、 几何计数【例 13】 下图中共有____个正方形。

相关文档
最新文档