材料力学 弯曲变形
合集下载
材料力学-弯曲变形

(向下)
qB
qmax
w(l)
Pl 2 2EI
(顺时针)
例题2
图示的等截面简支梁长为l,抗弯刚度为
EI,在右端受有集中力偶M0的作用,求梁任
一截面的转角和挠度。
y
解:
由整体平衡得 FAx=0, FAy= FBy= M0/l 从而,截面的弯矩为
M(x)= xFAy= xM0/l
FAx A x o
FAy
横截面变形:
线位移:长度变化
水平方向—小变形假定,挠曲轴平坦,忽略不计 垂直方向—挠度 w= w(x)
转角:角度变化
横截面相对于原位置转过的夹角,
一般用q (x)表示截面转角,并且以逆时针为正
q'
对于细长梁,略去剪力对变形影响 平截面假设成立: 变形的横截面与挠曲轴垂直
q q tan q dw
(l 2
a2)
y
例题3
P x
A
C
于是,梁的挠曲线方程为 FAx
l
w
w1 w2
(x) (x)
0 xa a xb
FAy
a
b
Pb
6 EIl
Pa
6 EIl
x3 (b2 l2 )x (l x)3 (a2 l2
)(l
x)
0 xa a xl
转角方程为
q w ww12((xx))
0 xa a xb
Pb 2EIl
x2
C1
ቤተ መጻሕፍቲ ባይዱdx
Pb 6EIl
x3
C1x
D1
同理,对CB段
w2
w2dx C2
Pa EIl
(l
x)dx
C2
材料力学:第七章 弯曲变形

刚度设计依据
(1) 挠度w大小取决于M, E, I三个参数 应该取较小的M, 较大的E, I
(2) 弯矩M大小取决于载荷\约束分布及梁跨度大小
(3) 截面惯性矩I 大小和截面形状有关,
弹性模量E大小和材料有关
Iz =
y2dA,
A
当A大小一定时, y越大, I 越大
梁的合理刚度设计
选择I 较大的薄壁横截面形状
1 度静不定 选 FBy 为多余力, 去约 束, 写出位移边界条件
-变形协调条件 -物理方程
利用边界条件 解出未知力
列平衡方程,求其他约束力:
-补充方程
分析方法与步骤:
判断梁的静不定度
用多余力代替多余约
束的作用,得相当系统
相当系统
相当系统有多种选择:
计算相当系统在多余约
束处的位移,并根据变形 协调条件建立补充方程。
例题
解:
()
()
例题
例题
解:
()
()
()
例题
图示组合梁,EI=常数,求 wB 与qA
例题
解:
P378, 情况8
()
P377, 情况1,2
()
例题
图示刚架,求截面 C 的铅垂位移
例题
解:
位移w1包括AB弯曲 和AB扭转两部分
例题
矩形截面梁, 自由端承受集中载荷F作用, 该载荷与对 称轴y的夹角为θ, 用叠加法计算自由端求自由端截面形心C
的位移d
解:
例题
一般情况下
挠曲轴与外力作用面一般不重合
§6 简单静不定梁
静不定度与多余约束 简单静不定梁分析方法
静不定度与多余约束
静不定度 4-3= 1
(1) 挠度w大小取决于M, E, I三个参数 应该取较小的M, 较大的E, I
(2) 弯矩M大小取决于载荷\约束分布及梁跨度大小
(3) 截面惯性矩I 大小和截面形状有关,
弹性模量E大小和材料有关
Iz =
y2dA,
A
当A大小一定时, y越大, I 越大
梁的合理刚度设计
选择I 较大的薄壁横截面形状
1 度静不定 选 FBy 为多余力, 去约 束, 写出位移边界条件
-变形协调条件 -物理方程
利用边界条件 解出未知力
列平衡方程,求其他约束力:
-补充方程
分析方法与步骤:
判断梁的静不定度
用多余力代替多余约
束的作用,得相当系统
相当系统
相当系统有多种选择:
计算相当系统在多余约
束处的位移,并根据变形 协调条件建立补充方程。
例题
解:
()
()
例题
例题
解:
()
()
()
例题
图示组合梁,EI=常数,求 wB 与qA
例题
解:
P378, 情况8
()
P377, 情况1,2
()
例题
图示刚架,求截面 C 的铅垂位移
例题
解:
位移w1包括AB弯曲 和AB扭转两部分
例题
矩形截面梁, 自由端承受集中载荷F作用, 该载荷与对 称轴y的夹角为θ, 用叠加法计算自由端求自由端截面形心C
的位移d
解:
例题
一般情况下
挠曲轴与外力作用面一般不重合
§6 简单静不定梁
静不定度与多余约束 简单静不定梁分析方法
静不定度与多余约束
静不定度 4-3= 1
材料力学第5章弯曲变形ppt课件

qL
4.22kNm
4.22kNm
M
max
32 M
max
76.4MPa
WZ
d 3
例题
20kN m
A
4m
FA
20kN m
A
MA
4m
试求图示梁的支反力
40kN
B
D
2m
2m
B
B1 FB
FB 40kN
B
D
B2
2m
2m
在小变形条件下,B点轴向力较小可忽略不
计,所以为一次超静定.
C
B1 B2
FBBBMF12AA2383qFEqELBqqLI84LI2LLZZ32F35BFF4FEFB83PBPLIEL7Z3L12IZ.218352.k75N5kFkN2PNmEL2IZ2
x
边界条件
A
L2
B
L2
C
y
连续条件
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
全梁仅一个挠曲线方程
C
q
EA
共有两个积分常数 边界条件
L1
A
x
B
EI Z
L
y
例题 5.5
用积分法求图示各梁挠曲线方程时,试问在列各梁 的挠曲线近似微分方程时应分几段;将分别出现几个 积分常数,并写出其确定积分常数的边界条件
q
a
B C LBC
B
2a
FN
B
q2a4
8EIZ
FN 2a3
3EIZ
C
FN
a
D
材料力学第6章弯曲变形

Fb M2 x2 F ( x2 a ) l
M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程
(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2
3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl
M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程
(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2
3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl
材料力学 弯曲变形分析

a)3
C2 x2
D2
目录
B B x
FBy
§6.3 用积分法求弯曲变形
4)由边界条件确定积分常数
位移边界条件
x1 0, y1(0) 0 x2 l, y2(l) 0 光滑连续条件
x1 x2 a, 1(a) 2 (a)
x1 x2 a, y1(a) y2 (a)
代入求解,得
C1
C2
y M (x) > 0
M (x) > 0
d2y
dx 2 > 0
x
O
y M (x) < 0
M (x) < 0
d2y
dx 2 < 0
x
O
目录
§6.2 挠曲线的微分方程
由弯矩的正负号规定可得,弯矩的符号与挠曲线的二阶 导数符号一致,所以挠曲线的近似微分方程为:
d 2 y M (x) dx2 EI z
由上式进行积分,求出梁横截面的转角和挠度。
目录
§6.3 用积分法求弯曲变形
挠曲线的近似微分方程为:
d2y dx2
M(x) EI z
EI z
d2y dx2
M(x)
积分一次得转角方程为:
EI z
dy dx
EI z
M( x)dx C
再积分一次得挠度方程为:
EIz y M( x)dxdx Cx D
7-3
目录
§6.3 用积分法求弯曲变形
材料力学
龚峰 gongfeng@
第6章 弯曲变形
§6.1 工程中的弯曲变形问题 §6.2 挠曲线的微分方程 §6.3 用积分法求弯曲变形 §6.4 用叠加法求弯曲变形 §6.5 简单超静定梁 §6.6 提高弯曲刚度的一些措施
材料力学6弯曲变形

=
M 0 L2 9 3EI Z
<[f ]
刚度满足要求。 刚度满足要求。
例二、长度为 的梁 的梁AC, 为常数, 例二、长度为L的梁 ,其EI为常数,在自由端承受集 为常数 中力P(如图),试求自由端C的挠度和转角 ),试求自由端 的挠度和转角。 中力 (如图),试求自由端 的挠度和转角。 外力分析: 解: 1)外力分析:
解: 1)外力分析: )外力分析: M0 M0 RA = (↓), R B = (↑ ) L L 2)内力分析:(M方程 方程) )内力分析: 方程
3)挠曲线方程和转角方程: )挠曲线方程和转角方程:
M0 M(x) = − x (0 ≤ x ≤ L ) L
M0 2 d2V M0 EIzθ= − x +C x EIz 2 = − 2L dx L M0 3 EI z V = − x + Cx + D 6L
思考题: 思考题:求VB
试用叠加法求C截面的挠度和转角 例5、试用叠加法求C截面的挠度和转角 (I2=2I1)。
EI 2 A a C a EI1
A
C a
m0= Pa A a P
解:(1)BC段变形,AC段刚化 :(1)BC段变形,AC段刚化 段变形 ( VC(1) = 0 θ C1) = 0 B (2)AC段变形 BC段刚化 段变形, (2)AC段变形,BC段刚化 P 3 2 Pa Pa VCP = ( ↑) θ CP = ( ) 3EI 2 2EI 2 B Pa 2 ( ) Pa 3 θ Cm0 = VCm0 = ( ↑) EI 2 2 EI 2 P 5Pa 3 VC( 2 ) = VCP + VCm0 = ( ↑) 6 EI 2 3Pa 2 B ( θ C2 ) = θ CP + θ Cm0 = ( ) 2 EI 2 (3)总变形 (3)总变形
材料力学弯曲变形

13
压杆稳定计算 1)根据压杆的约束条件确定长度系数 )根据压杆的约束条件确定长度系数µ 2)计算杆件自身的柔度 )计算杆件自身的柔度λ(10.7),判断发生弯曲的平面 , 也可由惯性矩来判断最大、最小刚度平面) (也可由惯性矩来判断最大、最小刚度平面) 3)通过比较 的大小,判断计算临界压力的公式 的大小, )通过比较λ的大小
1. λ1与材料的性能有关,材料不同,λ1的数 与材料的性能有关,材料不同, 值也就不同; 越大,杆件越容易弯曲。 值也就不同;λ越大,杆件越容易弯曲。 2. 满足 1条件的杆件称为细长杆或大柔度杆; 满足λ≥λ 条件的杆件称为细长杆 大柔度杆; 细长杆或 也叫大柔度杆的分界条件。 也叫大柔度杆的分界条件。其临界应力可用欧 拉公式计算。 拉公式计算。 3. λ越大杆件越容易弯曲。 越大杆件越容易弯曲。 越大杆件越容易弯曲 解题步骤: 解题步骤: 1)由截面形状确定最大、最小刚度平面 )由截面形状确定最大、 2)计算柔度,判断欧拉公式是否适用 )计算柔度, 3)计算临界压力和临界应力 )
σ =
P ≤ [σ ] st A
14
图示结构中, 为圆截面杆 直径d=80 mm,A端固 为圆截面杆, 例10.4 图示结构中,AB为圆截面杆,直径 , 端固 端铰支; 是正方形截面杆 边长a=70 mm,C端也为 是正方形截面杆, 定,B端铰支;BC是正方形截面杆,边长 端铰支 , 端也为 铰支; 和 杆可以独自发生弯曲变形而互不影响 杆可以独自发生弯曲变形而互不影响; 铰支;AB和BC杆可以独自发生弯曲变形而互不影响;两杆 的材料是A3钢 的材料是 钢,其λp=104 ,l=3 m,稳定安全系数 st=2.5 ; ,稳定安全系数n 求结构的许可载荷P。 求结构的许可载荷 。
π 2E Pcr = σ cr A = 2 ⋅ A = 269kN λ
压杆稳定计算 1)根据压杆的约束条件确定长度系数 )根据压杆的约束条件确定长度系数µ 2)计算杆件自身的柔度 )计算杆件自身的柔度λ(10.7),判断发生弯曲的平面 , 也可由惯性矩来判断最大、最小刚度平面) (也可由惯性矩来判断最大、最小刚度平面) 3)通过比较 的大小,判断计算临界压力的公式 的大小, )通过比较λ的大小
1. λ1与材料的性能有关,材料不同,λ1的数 与材料的性能有关,材料不同, 值也就不同; 越大,杆件越容易弯曲。 值也就不同;λ越大,杆件越容易弯曲。 2. 满足 1条件的杆件称为细长杆或大柔度杆; 满足λ≥λ 条件的杆件称为细长杆 大柔度杆; 细长杆或 也叫大柔度杆的分界条件。 也叫大柔度杆的分界条件。其临界应力可用欧 拉公式计算。 拉公式计算。 3. λ越大杆件越容易弯曲。 越大杆件越容易弯曲。 越大杆件越容易弯曲 解题步骤: 解题步骤: 1)由截面形状确定最大、最小刚度平面 )由截面形状确定最大、 2)计算柔度,判断欧拉公式是否适用 )计算柔度, 3)计算临界压力和临界应力 )
σ =
P ≤ [σ ] st A
14
图示结构中, 为圆截面杆 直径d=80 mm,A端固 为圆截面杆, 例10.4 图示结构中,AB为圆截面杆,直径 , 端固 端铰支; 是正方形截面杆 边长a=70 mm,C端也为 是正方形截面杆, 定,B端铰支;BC是正方形截面杆,边长 端铰支 , 端也为 铰支; 和 杆可以独自发生弯曲变形而互不影响 杆可以独自发生弯曲变形而互不影响; 铰支;AB和BC杆可以独自发生弯曲变形而互不影响;两杆 的材料是A3钢 的材料是 钢,其λp=104 ,l=3 m,稳定安全系数 st=2.5 ; ,稳定安全系数n 求结构的许可载荷P。 求结构的许可载荷 。
π 2E Pcr = σ cr A = 2 ⋅ A = 269kN λ
材料力学第八章-弯曲变形

q0 B x 等价 MA A EI f q0 B
L
A
L
解:建立静定基 确定超静定次数 用反力代替多余约束 得新结构 —— 静定基
或
q0
A
B L RB
32
q0 A L B RB
几何方程——变形协调方程
f B f Bq f BRB 0
物理方程
=
A B RB q0 A B
qL RB L f Bq ; f BRB 8EI 3EI
A A 铰连接
P
C D
C
D
B
A点:f A 0, A 0
B点: f B左 f B右
C点: f C左 f C右 C左 C右
D点:f D 0
21
边界条件、连续条件应用举例
P
弯矩图分二段,
共积分常数 需4个边界条件 和连续条件
A B
C
(+)
A点: A 0 B点: f B左 f B右 , C点:f C 0
解:载荷分解如图
=
P A B
查梁的简单载荷变形表,
得到变形
Pa PA 4 EI
q B
2
Pa f PC 6 EI
3
+
A
qa qA 3EI
3
5qL f qC 24 EI24
4
P
A
C a a
q B
Pa PA 4 EI
qa 3 qA 3EI
2
Pa 3 f PC 6 EI
Differential Equation of beam deformation 1 M ( x) 已知曲率为 EI z x
M>0
L
A
L
解:建立静定基 确定超静定次数 用反力代替多余约束 得新结构 —— 静定基
或
q0
A
B L RB
32
q0 A L B RB
几何方程——变形协调方程
f B f Bq f BRB 0
物理方程
=
A B RB q0 A B
qL RB L f Bq ; f BRB 8EI 3EI
A A 铰连接
P
C D
C
D
B
A点:f A 0, A 0
B点: f B左 f B右
C点: f C左 f C右 C左 C右
D点:f D 0
21
边界条件、连续条件应用举例
P
弯矩图分二段,
共积分常数 需4个边界条件 和连续条件
A B
C
(+)
A点: A 0 B点: f B左 f B右 , C点:f C 0
解:载荷分解如图
=
P A B
查梁的简单载荷变形表,
得到变形
Pa PA 4 EI
q B
2
Pa f PC 6 EI
3
+
A
qa qA 3EI
3
5qL f qC 24 EI24
4
P
A
C a a
q B
Pa PA 4 EI
qa 3 qA 3EI
2
Pa 3 f PC 6 EI
Differential Equation of beam deformation 1 M ( x) 已知曲率为 EI z x
M>0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、各自积分
EI1EI12 FLb x2C1 EI16 FLb x3C1xD 1
E2 IE2I2 F Lx2 b F 2(x a )2 C 2
E2I6 F Lxb 3F 6(xa)3C 2xD 2
5、确定积分常数
边界条件: x0 1 0
xL 2 0
连续条件: xa 1 2
1 2
C16FLb(L2b2) C2, D1D20
载荷叠加法 (查表法)
应用于多个载荷作用的情形
例1 已知:q、l、 EI,求:yC ,B
ωC , B
1、载荷分解
2查表:单独载荷作用下
B1
ql3 24EI
,
C1
5ql4
384EI
B2
(q)ll2 q3l , 16EI 16EI
wC2
(ql)l3 48EI
B3(q3E 2l)Il 3qE3l,I
案例1: 车削加工一等截面构件, 如果构件的的变形过大, 会加工成变截面;
案例2: 摇臂钻床简化为刚架, 受工件的反力作用; 如果钻床的变形过大, 不能准确定位。
车间桁吊大梁的变形
案例3: 车间桁吊大梁的过大变形
会使梁上小车行走困难,造成爬坡现象; 还会引起较严重的振动;
2、工程有时利用弯曲变形达到某种要求。 案例1:
在小变形, 材料服从胡克定律的情况下,
挠曲线的近似微分方程 EI(x)M (x)是线性的;
计算弯矩时,使用变形前的位置
弯矩 M(x)与载荷之间的关系 是线性的;
对应于几种不同的载荷, 弯矩可以叠加, 近似微分方程的解也可以叠加。
证明 设弯矩 M(x)MFMq 挠曲线 F q
分别满足各自的近似微分方程
w
w w
w w
w
C1
ql3 6EI
,
C1
ql4 8EI
q( l )3
w
B2
2 6 EI
,
c2
C2 B2B22l
q( l )4 2
8 EI
B
2
l 2
w
CC1C2 ql 4
8 EI
q( l )4 2
8 EI
B
2
l 2
41ql4 384EI
CC1C2 ql 3
6 EI
q( l )3 2
2、分段列出梁的弯矩方程
AC段 (0xa)
M1(x)FAxFLbx,
x
x a L
F B
C b
x
F By
BC段 (axL) M 2(x)F Lb xF(xa),
3、代入各自的挠曲线近似微分方程中
M1(x)
Fbx, L
EI1
Fbx, L
Fb M 2(x)LxF(xa),
EI2 F Lb xF(xa),
四、不宜采用高强度钢; 各种钢材E大致相同。
1、y’’=M(x)/EI在 条件下成立? A:小变形; B:材料服从虎克定律; C:挠曲线在XOY面内; D:同时满足A、B、C;
2、等直梁在弯曲变形时,挠曲线曲率在最大 处一定最大。
A:挠度 B:转角; C:弯矩;
弯曲变形的物理量 挠度ω + 转角
§6-2 挠曲线的微分方程
1、建立y坐标系
x
x
2、挠曲线方程:
Xoy平面 就是梁的纵向对称面; 在平面弯曲的情况下,变形后梁的轴线将成为xoy面内
的一条平面曲线; 该曲线方程为 : f(x)
3、挠度、转角物理意义
y
x
①:挠度的物理意义:
挠曲线在该点处的纵坐标;
2)考虑BC段变形引起C截面的挠度 AB段看作刚体
F
A
BC
wC2
Fa3 () 3EI
l
a
F
C
B a
wC 2
C截面的总挠度
CC1C2
Fa2l Fa3 () 3EI 3EI
讨论 积分法求变形有什么优缺点? 叠加法求变形有什么优缺点?
弯曲变形的刚度条件:
[], []
max
m ax
[ω]——许用挠度,[]——许用转角
2
积分一次: EI'EI1q3xC
6
转角方程
B x
积分二次: EI1q4xCxD
24
挠曲线方程
3、确定常数C、D. 边界条件:
xL: 0 0
C 1qL3 6
D 1 qL4 8
q
A
B
L
EI'EI1q3xC
6
EI1q4xCxD
24
1(1q3x1q3L)
EI 6 6
1(1q4xq3L xq4L )
EI24 6 8
4、计算A截面的挠度和转角
A截面处 x0
A
qL3 6EI
A
qL4 8EI
q
A
B
L
1(1q3x1q3L)
EI 6 6
1(1q4xq3L xq4L )
EI24 6 8
例2 一简支梁受力如
ω
图所示。试求 (x),w(x) A
和 A 。
F Ay
1、求支座反力
Fb
FAy
, L
FBy
Fa L
A l
F
BC a
1)考虑AB段变形引起的C截面的挠度 (BC段看作刚体)
外力向研究的AB段上简化
F
Fa
F:作用在支座上,不产生变形。
A
B C Fa:使AB梁产生变形。
l
a
F
Fa
Fa引起梁的变形形状为
A
B B
AB段上凸; C C1
l
a
B
(Fa)l 3EI
C1Ba
(Fa)l 3EI
a
Fa2l 3EI
()
梁的边界条件
悬臂梁:
ω
L
x
x0:
0 0
梁的边界条件
简支梁: ω
x L
x0: 0
xL: 0
连续性条件:
ω
边界条件
A
x0: 0
xL: 0
P B
C a
x
L
连续性条件
xa:
C左
C右
C左
C右
连续性条件:
ω A
C a
M
B
x
L
xa: C左C右
特别强调
C左 C右
在中间铰两侧转角不同,但挠度却是唯一的。
1
y''(x) 1y'2(x)
3 2
(瑞士科学家Jacobi.贝努利得到)
平面弯曲的挠曲线 正好为xoy平面内的一条曲线,
所以曲线y=f(x): 从数学上讲 是一条普通的平面曲线,
从力学上讲 就是梁发生弯曲变形的挠曲线。
挠曲线微分方程
1 M (x)
EI
1
y''(x) 1y'2(x)
例1:写出梁的边界条件、连续性条件:
边界条件
ω
P
B
x0: 0
A
a
C
x
k
xL: FBy
k
L
连续性条件
xa: C左 C右
C左
C右
例2:写出梁的边界条件、连续性条件: 边界条件
EA P
h
x0: 0
xL: FByh
A
a
C
B
EA
连续性条件
L
xa:
C左
C右
C左
C右
讨论:挠曲线分段
6 EI
7ql4 48EI
第二类叠加法 逐段刚化法
将梁的挠曲线分成几段;
首先分别计算各段梁的变形在需求位移处引起的位 移(挠度和转角); 然后计算其总和(代数和或矢量和),即得需求的位移。
在分析各段梁的变形在需求位移处引起的位移时,
除所研究的梁段发生变形外,其余各段梁均视为刚体。
例3 : 用叠加法确定ωC ?
工程中, [ω]常用梁的计算跨度l 的若干分之一表示。
对于桥式起重机梁:
[] l ~ l
500 750
对于一般用途的轴: [] 3l ~ 5l
1000010000
在安装齿轮或滑动轴承处,许用转角为:
[]0.00r1ad
1、求自由端的挠度与转角
q
P
L
2、求自由端的挠度与转角
q
P2
P1
L
L
3、求简支梁中点的挠度
5、挠曲线近似微分方程 在小变形的条件下,
(x) M(x)
12(x)32 EzI
挠曲线是一条光滑平坦的曲线,
转角 较小,
(x)(x)0 12(x)1
故得挠曲线近似微分方程:
''M(x)
EI
符号规定:
ω M
M0
d 2
dx 2
0
M x
M0
ω
d 2 dx 2
0
M
Mx
挠曲线为凹曲线
挠曲线为凸曲线
汽车板簧应有较大的弯曲变形, 才能更好的起到缓和减振的作用;
二、弯曲变形的物理量
拉伸 F
扭转:
F
l FN l
EA
T l
G IP
弯曲变形的物理量如何?
内 力 杆 件 长 度 抗变形刚度
弯曲变形的物理量 1、挠曲线
x
2、挠度 截面形心在力的方向的位移 ω 向上为正
3、转角 截面绕中性轴转过的角度 逆时针为正
在中间铰两侧转角不同,但挠度却是唯一的。
A
C
M B
边界条件 连续性条件
a
L
x0: 0 0
xal 0