材料力学基本公式
材料力学常用基本公式

1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力 ,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得3 截面的几何参数4 应力和应变5 应力状态分析6 内力和内力图7 强度计算8 刚度校核9 压杆稳定性校核10 动荷载11 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、 拉压 []σσ≤=maxmax AN2、 剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、 圆轴扭转 []ττ≤=W tTmax 4、平面弯曲 ①[]σσ≤=maxz max W M②[]max t max t max max σσ≤=y I M z tmax c max max y I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉(压)弯组合 []σσ≤+=maxmax zW M A N[]t max t zmax t σσ≤+=y I M A N z[]c max c z z max c σσ≤-=A N y I M 注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z2n2w 2n2wr34W M M②第四强度理论[]στσσ≤+=+=z2n2w 2n2wr475.03W M M二、变形及刚度条件1、 拉压 ∑⎰===∆LEAxx N EALN EANL L d )(ii2、 扭转 ()⎰=∑==Φpp i i p GI dxx T GI LT GI TL πφ0180⋅=Φ=p GI T L (m / )3、 弯曲(1)积分法:)()(''x M x EIy = C x x M x EI x EIy +==⎰d )()()('θ D Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)EI ML B =θ EI PL B 22=θ EIqL B 63=θEI ML f B 22=EI PL f B 33= EIqL f B 84=EIML B3=θ,EI MLA 6=θEIPL A B 162==θθEIqL A B 243==θθEIML f c 162=EIPL f c 483=EIqL f c 3844=(4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==ii i EI L M 22∑=()⎰EIdx x M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)=∂∂=∆ii P U()()⎰∂∂∑dx P x M EI x M i 三、应力状态与强度理论PAB MAB A BqL LLLL1、 二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=2、 二向应力状态极值正应力及所在截面方位角22min max )2(2xyy x y x τσσσσσσ+-±+=yx xyσστα--=22tg 03、 二向应力状态的极值剪应力22max )2(xyyx τσστ+-=注:极值正应力所在截面与极值剪应力所在截面夹角为450 4、 三向应力状态的主应力:321σσσ≥≥最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变))(1y x x Eμσσε-= )(1x y y Eμσσε-= )(y x z Eσσμε+-= Gxy xy τγ=(2)、表达形式之二(用应变表示应力))(12y x x E μεεμσ+-= )(12x y y Eμεεμσ+-= 0=z σ xy xy G γτ=6、三向应力状态的广义胡克定律()[]z y x x Eσσμσε+-=1()z y x ,, Gxy xy τγ= ()zx yz xy ,,7、强度理论 (1)[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤[]bb n σσ=(2)[]σσσσ≤-=313r()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []ss n σσ=8、平面应力状态下的应变分析 (1)αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫⎝⎛---++=xyyx yx+-=⎪⎭⎫ ⎝⎛-αεεγα2sin 22yx αγ2cos 2⎪⎪⎭⎫⎝⎛-xy(2)22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x γεεεεεεyx xyεεγα-=02tg 四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE=②中长受压杆 s p λλλ≥≥ λσb a -=cr③短粗受压杆s λλ≤ “cr σ”=s σ或 b σ2、关于柔度的几个公式 i Lμλ= p2p σπλE=ba s s σλ-=3、惯性半径公式AI i z= (圆截面4di z =,矩形截面12min b i =(b 为短边长度))五、动载荷(只给出冲击问题的有关公式) 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK (自由落体冲击)st20d ∆=g v K (水平冲击)六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状)⎰=dA I P 2ρ=324d π ()44132απ-D Dd =α ⎰==6442d dA y I z π ()44164απ-D 123bh123hb 323maxd y I W zz π==()43132απ-D62bh62hb2、惯性矩平移轴公式A a I I 2zc z +=。
材料力学公式完全版

材料力学公式完全版材料力学是研究材料在外力作用下的力学性质和变形行为的一门学科。
在材料力学中,有很多的公式被广泛应用于计算和分析材料的力学行为。
下面是一些常见的材料力学公式:1. 应力(Stress):应力是单位面积上的力,通常用σ 表示,计算公式为:σ = F / A,其中 F 是力的大小,A 是面积。
2. 应变(Strain):应变是物体在受力作用下发生变形的程度,通常用ε 表示,计算公式为:ε = ΔL / L,其中ΔL 是长度的变化量,L 是初始长度。
3. 弹性模量(Young's modulus):弹性模量是衡量材料抵抗变形的能力的物理量,通常用 E 表示,计算公式为:E = σ / ε。
4. 剪切应力(Shear stress):剪切应力是垂直方向上的切应力,通常用τ 表示,计算公式为:τ = F / A,其中 F 是切力的大小,A 是垂直于切力方向的面积。
5. 剪切应变(Shear strain):剪切应变是物体在受剪切力作用下的变形程度,通常用γ 表示,计算公式为:γ = tanθ,其中θ 是切变角度。
6. 泊松比(Poisson's ratio):泊松比是衡量材料横向收缩相对于纵向伸长的程度的物理量,通常用ν 表示,计算公式为:ν = -ε横 /ε纵。
7. 屈服强度(Yield strength):屈服强度是材料开始产生塑性变形的临界点,通常用σy 表示。
8. 极限强度(Ultimate strength):极限强度是材料在破坏前能承受的最大应力,通常用σu 表示。
9. 可延性(Elonagation):可延性是材料在断裂前的拉伸变形量,通常用δ 表示,计算公式为:δ = (L - L0) / L0。
10. 硬度(Hardness):硬度是材料抵抗划伤或压痕的能力,常用的硬度测量方法有布氏硬度、维氏硬度等。
11. 柯尔摩根关系(Hooke's law):柯尔摩根关系是描述弹性固体在小应变下的力学行为的线性关系,计算公式为:σ = Eε,其中 E 是杨氏模量,σ 是应力,ε 是应变。
材料力学常用基本公式

材料力学常用基本公式材料力学是研究材料的力学性质和力学变形行为的学科,涉及到材料的强度、刚度、变形、破坏等方面。
在材料力学的研究中,常用到一些基本公式来描述材料的力学特性。
以下是一些材料力学中常用的基本公式。
1.应力和应变的关系:应力(stress)是单位面积上的力,通常用σ表示,其计算公式为:σ=F/A其中,F是作用在材料上的力,A是该力作用在材料上的面积。
应变(strain)是材料在力作用下发生的变形程度,通常用ε表示,其计算公式为:ε=ΔL/L其中,ΔL是材料受力后的长度变化,L是材料受力前的初始长度。
2.各向同性线弹性材料的胡克定律:胡克定律描述了各向同性线弹性材料在弹性阶段的应力和应变关系,即应力与应变成正比。
胡克定律的公式为:σ=E*ε其中,E是材料的弹性模量,是描述材料对力产生变形的能力大小的物理量。
3.杨氏模量和剪切模量:在胡克定律中,杨氏模量(Young's modulus)是描述材料沿着受力方向的应力和应变关系,剪切模量是描述材料在垂直于受力方向发生剪切变形时的应力和应变关系。
它们的关系公式为:E=2G*(1+μ)其中,E是杨氏模量,G是剪切模量,μ是泊松比,描述了材料的侧向收缩程度和拉伸程度之间的比例关系。
4.流变方程:在一些材料的力学特性中,材料的应力和应变关系不再满足胡克定律,而呈现出非线性特性。
这时可以使用流变方程来描述应力和应变的关系。
其中,最常用的是弹塑性流变方程:σ=K*ε^n其中,σ是应力,ε是应变,K是材料的流变模量,n是流变指数。
5.共轭滑移原理:用于描述材料在微观滑移中的位错模型和宏观弹性力学行为之间的关系。
根据共轭滑移原理,材料在滑移发生时,应变应能量密度在前后变形区是不变的,可以表示为:ε*σ=ε_s*σ_s+ε_d*σ_d其中,ε*和σ*表示综合应变和综合应力,ε_s和σ_s表示剪切滑移应变和剪切滑移应力,ε_d和σ_d表示剪切向应变和剪切向应力。
材料力学公式大全

材料力学公式大全材料力学是研究材料在外力作用下的变形、破坏和稳定性等力学性能的学科。
在工程实践中,材料力学公式是工程师们进行材料设计、分析和计算的重要工具。
本文将为大家介绍一些常用的材料力学公式,希望能对大家有所帮助。
1. 应力和应变。
在材料力学中,应力和应变是最基本的概念。
应力是单位面积上的内力,通常用σ表示,其公式为:σ = F/A。
其中,F为受力,A为受力面积。
应变是材料单位长度的变形量,通常用ε表示,其公式为:ε = ΔL/L。
其中,ΔL为长度变化量,L为原始长度。
2. 弹性模量。
弹性模量是材料在弹性阶段的应力和应变关系的比例系数,通常用E表示,其公式为:E = σ/ε。
3. 餐极限。
屈服极限是材料在受力作用下开始发生塑性变形的应力值,通常用σy表示。
4. 断裂韧性。
断裂韧性是材料在破坏前所能吸收的能量,通常用K表示,其公式为:K = σ√πc。
其中,σ为应力,c为裂纹长度。
5. 疲劳强度。
疲劳强度是材料在交变应力作用下能够承受的最大应力值,通常用σf表示。
6. 塑性体积变形。
塑性体积变形是材料在塑性变形过程中体积的变化,通常用ΔV表示,其公式为:ΔV = V(ε1-ε2+ε3)。
其中,V为原始体积,ε1、ε2、ε3分别为三个主应变。
7. 岛壳理论。
岛壳理论是用于计算薄壁结构的强度和稳定性的理论,通常用T表示,其公式为:T = P/A。
其中,P为受力,A为受力面积。
8. 塑性流动理论。
塑性流动理论是用于描述金属材料在塑性变形过程中的流动规律的理论,通常用ε表示,其公式为:ε = ln(ε0/εf)。
其中,ε0为初始应变,εf为终止应变。
以上就是一些常用的材料力学公式,希望对大家有所帮助。
在工程实践中,我们可以根据具体情况选择合适的公式进行分析和计算,以保证工程设计的安全可靠性。
材料力学是一个复杂而又有趣的领域,希望大家能够在学习和工作中不断深入研究,提升自己的专业能力。
材料力学基本公式

材料力学基本公式材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学的重要组成部分。
在材料力学中,有一些基本公式是我们必须要掌握的,它们是我们研究材料力学问题的基础。
接下来,我们将介绍一些材料力学中的基本公式。
一、胡克定律。
胡克定律是材料力学中最基本的定律之一,它描述了弹性体在小应变下的应力和应变之间的线性关系。
胡克定律的数学表达式为:\[ \sigma = E \varepsilon \]其中,\( \sigma \) 表示应力,单位为帕斯卡(Pa);\( E \) 表示杨氏模量,单位为帕斯卡(Pa);\( \varepsilon \) 表示应变,无量纲。
二、泊松比。
泊松比是描述材料在拉伸或压缩过程中横向变形与纵向变形之间的比值。
泊松比的数学表达式为:\[ \mu = -\frac{\varepsilon_{y}}{\varepsilon_{x}} \]其中,\( \mu \) 表示泊松比,无量纲;\( \varepsilon_{y} \) 表示横向应变;\( \varepsilon_{x} \) 表示纵向应变。
三、胡克定律的广义表达式。
在实际工程中,材料的应力和应变往往不只是单向的,而是多维的。
这时,我们可以使用胡克定律的广义表达式来描述材料的应力和应变之间的关系:\[ \sigma_{ij} = C_{ijkl} \varepsilon_{kl} \]其中,\( \sigma_{ij} \) 表示应力张量;\( C_{ijkl} \) 表示弹性常数张量;\( \varepsilon_{kl} \) 表示应变张量。
四、杨氏模量和泊松比的关系。
材料的杨氏模量和泊松比之间存在着一定的关系,它们之间的关系可以用下面的公式表示:\[ E = 2G(1+\mu) \]其中,\( E \) 表示杨氏模量;\( G \) 表示剪切模量;\( \mu \) 表示泊松比。
五、拉伸应力和应变的关系。
材料力学常用的基本公式

1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得3 截面的几何参数4 应力和应变5 应力状态分析6 内力和内力图7 强度计算8 刚度校核9 压杆稳定性校核10 动荷载11 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、 拉压 []σσ≤=maxmax AN2、 剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、 圆轴扭转 []ττ≤=W tTmaxmax t max t max max σσ≤=y I z t max c max max y I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max 5、斜弯曲[]σσ≤+=maxyyz z max W M W M6、拉(压)弯组合 []σσ≤+=maxmax zW M A N[]t max t zmax t σσ≤+=y I M A N z[]c max c z z max c σσ≤-=A N y I M 注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z2n2w 2n2wr34W M M②第四强度理论[]στσσ≤+=+=z2n2w 2n2wr475.03W M M二、变形及刚度条件1、 拉压 ∑⎰===∆LEAxx N EALN EANL L d )(ii2、 扭转 ()⎰=∑==Φpp i i p GI dx x T GI L T GI TLπφ0180⋅=Φ=p GI T L (m / )3、 弯曲(1)积分法:)()(''x M x EIy =C x x M x EI x EIy +==⎰d )()()('θD Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)PAB MAB A BqL LLEI ML B =θ EI PL B 22=θ EIqL B 63=θEI ML f B 22=EI PL f B 33= EIqL f B 84=EIML B3=θ,EI MLA 6=θEIPL A B 162==θθEIqL A B 243==θθEIML f c 162=EIPL f c 483=EIqL f c 3844=(4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==ii i EI L M 22∑=()⎰EIdx x M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)=∂∂=∆ii P U()()⎰∂∂∑dx P x M EI x M i 三、应力状态与强度理论1、 二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=2、 二向应力状态极值正应力及所在截面方位角22min max )2(2xyy x y x τσσσσσσ+-±+=yx xyσστα--=22tg 03、 二向应力状态的极值剪应力22max )2(xyyx τσστ+-=注:极值正应力所在截面与极值剪应力所在截面夹角为450 4、 三向应力状态的主应力:321σσσ≥≥LL最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变))(1y x x Eμσσε-= )(1x y y Eμσσε-= )(y x z Eσσμε+-= Gxy xy τγ= (2)、表达形式之二(用应变表示应力))(12y x x E μεεμσ+-= )(12x y y Eμεεμσ+-= 0=z σ xy xy G γτ=6、三向应力状态的广义胡克定律()[]z y x x Eσσμσε+-=1()z y x ,, Gxy xy τγ= ()zx yz xy ,,7、强度理论(1)[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤ []bb n σσ=(2)[]σσσσ≤-=313r ()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []s sn σσ=8、平面应力状态下的应变分析 (1)αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫⎝⎛---++=xyyx y x+-=⎪⎭⎫ ⎝⎛-αεεγα2sin 22yx αγ2cos 2⎪⎪⎭⎫ ⎝⎛-xy (2)22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x γεεεεεεyx xyεεγα-=02tg 四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE= ②中长受压杆 s p λλλ≥≥ λσb a -=cr③短粗受压杆s λλ≤ “cr σ”=s σ 或 b σ2、关于柔度的几个公式iLμλ=p2p σπλE=ba s s σλ-=五、动载荷(只给出冲击问题的有关公式) 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK (自由落体冲击)st20d ∆=g v K (水平冲击)六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状)⎰=dA I P 2ρ=324d π()44132απ-D Dd =α ⎰==6442d dA y I z π ()44164απ-D 123bh123hb 323maxd y I W z z π==()43132απ-D62bh 62hb2、惯性矩平移轴公式A a I I 2zc z +=。
材料力学公式大全

材料力学公式大全材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学的重要组成部分。
在工程实践中,材料力学公式是工程师们设计和分析结构、零部件等工程问题时必不可少的工具。
本文将为大家介绍一些常用的材料力学公式,希望能对大家的工程实践有所帮助。
1. 应力公式。
在材料力学中,应力是指单位面积上的力的大小,通常用σ表示,其公式为:\[ \sigma = \frac{F}{A} \]其中,F为受力,A为受力面积。
2. 应变公式。
应变是指材料在受力作用下产生的变形程度,通常用ε表示,其公式为:\[ \varepsilon = \frac{\Delta L}{L} \]其中,ΔL为长度变化量,L为原始长度。
3. 弹性模量公式。
弹性模量是材料抵抗形变的能力,通常用E表示,其公式为:\[ E = \frac{\sigma}{\varepsilon} \]4. 剪切应力公式。
在材料力学中,剪切应力是指垂直于受力方向的力,通常用τ表示,其公式为:\[ \tau = \frac{F}{A} \]其中,F为受力,A为受力面积。
5. 剪切应变公式。
剪切应变是指材料在受剪切力作用下产生的变形程度,通常用γ表示,其公式为:\[ \gamma = \frac{\Delta x}{h} \]其中,Δx为位移,h为原始长度。
6. 泊松比公式。
泊松比是材料在拉伸或压缩时,在垂直方向上的收缩或膨胀程度的比值,通常用ν表示,其公式为:\[ \nu = -\frac{\varepsilon_{y}}{\varepsilon_{x}} \]其中,εy为垂直方向的应变,εx为拉伸或压缩方向的应变。
7. 弯曲应力公式。
在材料力学中,弯曲应力是指材料在受弯曲力作用下的应力,其公式为:\[ \sigma = \frac{M \cdot c}{I} \]其中,M为弯矩,c为截面到中性轴的距离,I为惯性矩。
8. 弯曲应变公式。
弯曲应变是指材料在受弯曲力作用下产生的变形程度,其公式为:\[ \varepsilon = \frac{M \cdot c}{E \cdot I} \]其中,M为弯矩,c为截面到中性轴的距离,E为弹性模量,I为惯性矩。
材料力学常用公式

材料力学常用公式材料力学是研究材料在受力下的力学性质和变形行为的学科,它在工程领域中有着广泛的应用。
常用的材料力学公式包括应力、应变、热应变、应力-应变关系等。
下面是一些常用的材料力学公式的介绍:1. 应力(Stress)公式:应力定义为单位面积上的力,常用公式为:σ=F/A其中,σ为应力,F为受力,A为受力面积。
2. 应变(Strain)公式:应变定义为材料单位长度的变化,常用公式为:ε=ΔL/L其中,ε为应变,ΔL为长度变化,L为原始长度。
3. 霍克定律(Hooke's Law):霍克定律描述了弹性固体在小应变下应力和应变的线性关系,常用公式为:σ=Eε其中,σ为应力,ε为应变,E为材料的弹性模量。
4. 应力-应变关系(Stress-Strain Relationship):应力-应变关系用来描述材料在受力下的变形行为,通常用应力与应变的曲线来表示。
其中弹性阶段遵循霍克定律,塑性阶段存在应力和应变不再线性相关的情况。
5.等效应力(von Mises Stress):等效应力是衡量材料在多轴载荷作用下发生破坏的临界值,常用公式为:σ_eq = √(σ_x^2 + σ_y^2 + σ_z^2 - σ_xσ_y - σ_yσ_z -σ_zσ_x + 3τ^2)其中,σ_eq为等效应力,σ_x、σ_y、σ_z为主应力,τ为主应力间的剪应力。
6. 拉伸强度(Tensile Strength):拉伸强度是材料在拉伸状态下破坏前的最大抗拉应力,常用公式为:σ_u = P_max / A_0其中,σ_u为拉伸强度,P_max为最大拉伸力,A_0为原始横截面积。
7. 弯曲应力(Bending Stress):当材料受弯曲作用时,所产生的应力称为弯曲应力,常用公式为:σ_b=(M*y)/I其中,σ_b为弯曲应力,M为弯矩,y为材料中点位置,I为截面惯性矩。
8. 剪切应力(Shear Stress):剪切应力是材料在剪切载荷作用下的应力,常用公式为:τ=F/A其中,τ为剪切应力,F为剪切力,A为剪切面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学重点及其公式材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。
变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。
外力分类:表面力、体积力;静载荷、动载荷。
内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。
(3)根据平衡条件,列平衡方程,求解截面上和内力。
应力:dA dFA F p A =∆∆=→∆lim正应力σ、切应力τ。
变形与应变:线应变、切应变。
杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲; 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。
动载荷:载荷和速度随时间急剧变化的载荷为动载荷。
失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。
二者统称为极限应力理想情形。
塑性材料、脆性材料的许用应力分别为:[]s sn σσ=,[]bbn σσ=,强度条件:[]σσ≤⎪⎭⎫ ⎝⎛=maxmax A F N ,等截面杆 []σ≤A F max轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=∆1,沿轴线方向的应变和横截面上的应力分别为:l l ∆=ε,A FN=σ。
横向应变为:b bb b b -=∆=1'ε,横向应变与轴向应变的关系为:μεε-=',μ为横向变形系数或泊松比。
胡克定律:当应力低于材料的比例极限P σ时,应力与应变成正比,即 εσE =,这就是胡克定律。
E为弹性模量(GPa 1=pa MPa 931010=)。
将应力与应变的表达式带入得:EAFll =∆EA 为抗拉或抗压刚度。
静不定(超静定):对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。
需要由几何关系构造变形协调方程。
扭转变形时的应力,薄壁圆筒扭转δπτ202R M e=其中)min ()(9549)(r n kw p m N M e =•420d D r R R +=+=为圆筒的平均半径。
剪切胡克定律:当剪切应力不超过材料的剪切比例极限时,切应力τ与切应变γ成正比。
γτG =.变形几何关系—圆轴扭转的平面假设dx d φργρ=。
物理关系——剪切胡克定律dx d G G φργτρρ==。
力学关系PA A A I dx d G dA dx d G dx d G dA T ϕρϕφρρτρ====⎰⎰⎰22 圆轴扭转时的应力:tp W TI TR ==max τ, t W =RI p 称为抗弯截面系数;强度条件:][max ττ≤=tW T,可以进行强度校核、截面设计和确定许可载荷。
圆截面对圆心的极惯性矩(a )实心圆324D I P π=;163D W t π=(b )空心圆,()444413232)(αππ-=-=D d D I P ;()43116απ-=D W t (D,d 分别是外,内径;D d =α)圆轴扭转时的变形:⎰⎰==l pl p dx GI T dx GI T ϕ;等直杆:pGI Tl=ϕ其中为圆轴的抗弯刚度P GI刚度条件:pGI T dx d =='ϕϕ,][180]['max max 'max max ϕπϕϕϕ≤⨯='≤='οP p GI T GI T ,静定梁的基本形式(1)简支梁;(2)外伸梁;(3);悬臂梁 弯曲内力与分布载荷q之间的微分关系)()(x q dx x dF S =;()()x F dx x dM S =;()()()x q dx x dF dx x M d S ==22弯曲变形的两个假设(1)弯曲变形的平面假设,(2)纵向线段间无正应力。
弯曲变形的关系:(1)纵向线应ρεy=,(2)ρεσyEE ==,(3)zEI M =ρ1,为抗弯刚度Z EI(4)zI My=σ ,梁凸的一侧受拉应力,凹的一侧是压应力。
正应力强度条件[]σσ≤==WM I y M z maxmax max max ,maxy I W z =其中W 为抗弯截面系数。
弯曲切应力的假设(1)切应力方向都平行剪力Fs ;(2)切应力沿截面宽度均匀分布,b I S F z z s *=τ,其中AA Z d y S ⎰=*11是横截面的部分面积1A 对中性轴的静矩提高弯曲强度的措施:梁的合理受力(降低最大弯矩m ax M ,合理放置支座,合理布置载荷,合理设计截面形状 塑性材料:[][]c t σσ=,上、下对称,抗弯更好,抗扭差。
脆性材料:[][]c t σσ<, 采用T 字型或上下不对称的工字型截面。
{[t σ]抗拉许用应力;[t σ]抗压许用应力 } 弯曲变形:挠度ω和转角θ 为刚度条件判断依据即:[][]θθωω≤≤max max ,(一)积分法求弯曲变形近似微分方程EI M dx d dx d ==θω22转角方程为:C dx EI Mdx dw +==⎰θ;挠曲线方程为:D CX dx dx EI M++=⎰⎰)(ω.其中,C ,D为常数,等截面梁的EI 为常数,积分时可提到积分号外边简化运算。
应力和应变分析,强度理论.应力状态:(1)轴向拉伸时斜截面既有正应力也有切应力,αστασσαα2sin 2cos 2==(2)受内压圆筒形薄壁容器横截面和纵截面上的应力计算公:δσ4'PD =,δσ2"PD =二向应力状态分析—解析法 (1)斜截面上的应力ατασσσσσα2sin 2cos 22xy yx yx --++=;ατασστα2cos 2sin 2xy yx +-=(2)极值应力 正应力:yx xyσστα--=22tan 0,22min max )2(2xy y x yx τσσσσσσ+-±+=⎭⎬⎫切应力:xyyx τσσα22tan 1-=,22min max )2(xy y x τσσττ+-±=⎭⎬⎫平面应变αγαεεεεεα2sin 22cos 22xyyx yx --++=;αγαεεγα2cos 22sin 2)(2xyy x +-=主应变的方向yx xyεεγα--=02tan ;22min max )2()2(2xy y x yx γεεεεεε+-±+=⎭⎬⎫应变的实测:使用应变仪可以着检测出;1αε2αε3αε但是切应变xyγ不易测出1112sin 22cos 22αγαεεεεεαxyyx yx --++=2222sin 22cos 22αγαεεεεεαxyyx yx --++=3332sin 22cos 22αγαεεεεεαxyyx yx --++=以上三个方程联立解出;1αε2αε3αε广义胡克定理,对于各向同性的材料当变形很小且在线弹性范围内时,线应变只与正应力有关,切应变只与切应力有关,所以广义胡克定理为gGGzxzx yzyz xyxy Ez Ey Ex y X Z zx y zyxτγτγτγεσσμσεσσμσεσσμσ===+-=+-=+-=)]([1)]([1)]([1 000)]([1)]([12)](1[12133132321===+-=+-=+-=zx yz xy EEEγγγεεσσμσεσσμσσσμσ时:当六个面都为主应力面为三个主应力的平均值为体积弹性模量单位体积的体积该变量m EK K E E VVV σμσεεεμεεεμθεεεθ,,)21(33)21(3)(21m 3213213211-==+•-=+-=+=-=+++复杂应力状态下的应变能:三应力状态下的应变能密度为[]213232221d 23212m dv d v 133221232221332211---61)(6212)21(3,)21(23,21)](2[21212121)()()(由此知道所以;叫畸变能密度。
由此应变能密度变为长方体而储存的的)体积不变但有正方体(,叫体积改变能密度。
应变能)因体积变化而储存的是由两部分组成:(应变能密度密度ααααααμναααμσμνσμεεσνννννννααααααμαααεαεαεανεεε+++=++-=-=-==+=++-++=++=EEE E E v m m m m v四种强度理论,强度失效的主要形式有两种,即屈服与断裂,相应的强度理论也有两类:一类解释断裂失效的,即最大拉应力理论和最大伸长线应变理论;另一类是解释屈服失效的,即最大切应力理论和畸变能密度理论。
[][][][][][]]---[21]---[21]---[21---61)2(61)2(614---22-23)()()(,)(1;2;)1(2132322214213232221213232221213232221d 2d 231r3313131max max 321r2321b3213211b 11r11b 1)()()(相当应力。
)()()(,所以强度条件为:)()()(,整理屈服准则得:)()()(在任意状态下,由。
屈服准则:,相应的畸变能密度为屈服应力)已知对单向拉伸时,(。
;即相当应力所以强度条件为:。
或。
所以屈服准则为)已知单向拉伸时,(。
即相当应力所以强度条件为:所以断裂准则:)断裂准则:(。
即相当应力所以强度条件断裂准则:αααααασσαααααασααααααααααααμνσμνσμσσσσσσσσσσσσστστσσμσσσσσμσσσσμσσσμσεσεσσσσσσ++=≤++=+++++=+=+=≤====+-=≤+-=+-+-===≤=r s s s s s s s EEE EE组合变形的叠加原理的条件:(1)服从胡克定理即线弹性形变(2)构件小变形 组合变形中重要内容为扭转和弯曲的组合变形,机械工程中轴类零件一边都是受弯扭变形的作用。
一边先画出轴的受力模型图,在作出轴的弯矩图和扭矩图,以此定出轴的危险截面和危险点。
一般单元体都应力状态都为下图的应力状态。
2222min max 4212)2(2τσστσσσσ+±=+±=⎭⎬⎫两个主应力一正一负,故三个主应力为为负值。
为正值。
3210σσσ=第三或第四强度理论的强度条件为[]στσσ≤+=2234r ;[]στσσ≤+=2243r 当为圆轴时:tW T=τ ;WM =σ; 且WW t =.所以化简得][75.0][224223σσσσ≤+=≤+=WT M W T M r r压杆的稳定:临界压力cr F :使压杆保持微小变形的的最小压力。