龙芯3号多核处理器设计及其挑战
龙芯 3C5000L 处理器寄存器使用手册说明书

龙芯3C5000L处理器寄存器使用手册多核处理器架构、寄存器描述与系统软件编程指南V1.1龙芯中科技术股份有限公司版权声明本文档版权归龙芯中科技术股份有限公司所有,并保留一切权利。
未经书面许可,任何公司和个人不得将此文档中的任何部分公开、转载或以其他方式散发给第三方。
否则,必将追究其法律责任。
免责声明本文档仅提供阶段性信息,所含内容可根据产品的实际情况随时更新,恕不另行通知。
如因文档使用不当造成的直接或间接损失,本公司不承担任何责任。
龙芯中科技术股份有限公司Loongson Technology Corporation Limited地址:北京市海淀区中关村环保科技示范园龙芯产业园2号楼Building No.2, Loongson Industrial Park,Zhongguancun Environmental Protection Park, Haidian District, Beijing电话(Tel):************传真(Fax):************阅读指南《龙芯3C5000L处理器寄存器使用手册》介绍龙芯3C5000L多核处理器架构与寄存器描述,对芯片系统架构、主要模块的功能与配置、寄存器列表及位域进行详细说明。
修订历史手册信息反馈:*******************也可通过问题反馈网站/ 向我司提交芯片产品使用过程中的问题,并获取技术支持。
I 目录1 概述 (1)1.1 龙芯系列处理器介绍 (1)1.2 龙芯3C5000L简介 (2)2 系统配置与控制 (5)2.1 芯片工作模式 (5)2.2 控制引脚说明 (5)3 物理地址空间分布 (7)3.1 结点间的物理地址空间分布 (7)3.2 结点内的物理地址空间分布 (8)3.3 地址路由分布与配置 (9)4 芯片配置寄存器 (17)4.1 版本寄存器(0x0000) (17)4.2 芯片特性寄存器(0x0008) (17)4.3 厂商名称(0x0010) (18)4.4 芯片名称(0x0020) (18)4.5 功能设置寄存器(0x0180) (18)4.6 引脚驱动设置寄存器(0x0188) (19)4.7 功能采样寄存器(0x0190) (19)4.8 温度采样寄存器(0x0198) (20)4.9 频率配置寄存器(0x01B0) (20)4.10 处理器核分频设置寄存器(0x01D0) (23)4.11 处理器核复位控制寄存器(0x01D8) (23)4.12 路由设置寄存器(0x0400) (24)4.13 其它功能设置寄存器(0x0420) (24)4.14 摄氏温度寄存器(0x0428) (26)4.15 SRAM调节寄存器(0x0430) (26)4.16 FUSE0观测寄存器(0x0460) (26)4.17 FUSE1观测寄存器(0x0470) (27)5 芯片时钟分频及使能控制 (28)II 5.1 芯片模块时钟介绍 (28)5.2 处理器核分频及使能控制 (29)5.2.1 按地址访问 (29)5.2.2 配置寄存器指令访问 (30)5.3 结点时钟分频及使能控制 (30)5.3.1 软件设置 (31)5.3.2 硬件自动设置 (31)5.4 HT控制器分频及使能控制 (32)5.5 Stable Counter分频及使能控制 (33)6 软件时钟系统 (35)6.1 Stable Counter (35)6.1.1 Stable Timer的配置地址 (35)6.1.2 Stable Counter的时钟控制 (36)6.1.3 Stable Counter的校准 (37)6.2 Node Counter (38)6.2.1 按地址访问 (38)6.3 时钟系统小结 (38)7 GPIO控制 (39)7.1 输出使能寄存器(0x0500) (39)7.2 输入输出寄存器(0x0508) (39)7.3 中断控制寄存器(0x0510) (39)7.4 GPIO引脚功能复用表 (40)7.5 GPIO中断控制 (41)8 LA464处理器核 (43)8.1 3C5000L实现的指令集特性 (43)8.2 3C5000L配置状态寄存器访问 (47)9 共享Cache(SCache) (48)10 处理器核间中断与通信 (51)10.1 按地址访问模式 (51)10.2 配置寄存器指令访问 (53)10.3 配置寄存器指令调试支持 (54)11 I/O中断 (56)11.1 传统I/O中断 (56)11.1.1 按地址访问 (58)11.1.2 配置寄存器指令访问 (59)11.2 扩展I/O中断 (59)11.2.1 按地址访问 (60)11.2.2 配置寄存器指令访问 (63)11.2.3 扩展IO中断触发寄存器 (63)11.2.4 扩展IO中断与传统HT中断处理的区别 (64)12 温度传感器 (65)12.1 实时温度采样 (65)12.2 高低温中断触发 (65)12.3 高温自动降频设置 (67)12.4 温度状态检测与控制 (68)12.5 温度传感器的控制 (69)13 DDR4 SDRAM控制器配置 (71)13.1 DDR4 SDRAM控制器功能概述 (71)13.2 DDR4 SDRAM读操作协议 (72)13.3 DDR4 SDRAM写操作协议 (72)13.4 DDR4 SDRAM参数配置格式 (72)13.4.1 内存控制器的参数列表 (72)13.5 软件编程指南 (84)13.5.1 初始化操作 (84)13.5.2 复位引脚的控制 (84)13.5.3 Leveling (86)13.5.4 功耗控制配置流程 (88)13.5.5 单独发起MRS命令 (88)13.5.6 任意操作控制总线 (89)13.5.7 自循环测试模式控制 (89)13.5.8 ECC功能使用控制 (90)13.5.9 出错状态观测 (90)III14 HyperTransport控制器 (94)14.1 HyperTransport硬件设置及初始化 (94)14.2 HyperTransport协议支持 (96)14.3 HyperTransport中断支持 (97)14.3.1 PIC中断 (97)14.3.2 本地中断处理 (98)14.3.3 扩展中断处理 (98)14.4 HyperTransport地址窗口 (99)14.4.1 HyperTransport空间 (99)14.4.2 HyperTransport控制器内部窗口配置 (99)14.5 配置寄存器 (100)14.5.1 Bridge Control (104)14.5.2 Capability Registers (105)14.5.3 Error Retry 控制寄存器 (107)14.5.4 Retry Count 寄存器 (108)14.5.5 Revision ID 寄存器 (108)14.5.6 Interrupt Discovery & Configuration (109)14.5.7 中断向量寄存器 (110)14.5.8 中断使能寄存器 (113)14.5.9 Link Train 寄存器 (115)14.5.10 接收地址窗口配置寄存器 (116)14.5.11 配置空间转换寄存器 (120)14.5.12 POST地址窗口配置寄存器 (121)14.5.13 可预取地址窗口配置寄存器 (122)14.5.14 UNCACHE地址窗口配置寄存器 (123)14.5.15 P2P地址窗口配置寄存器 (126)14.5.16 控制器参数配置寄存器 (128)14.5.17 接收诊断寄存器 (130)14.5.18 PHY 状态寄存器 (131)14.5.19 命令发送缓存大小寄存器 (131)14.5.20 数据发送缓存大小寄存器 (132)IVV14.5.22 接收缓冲区初始寄存器 (133)14.5.23 Training 0 超时短计时寄存器 (134)14.5.24 Training 0 超时长计时寄存器 (134)14.5.25 Training 1 计数寄存器 (135)14.5.26 Training 2 计数寄存器 (135)14.5.27 Training 3 计数寄存器 (135)14.5.28 软件频率配置寄存器 (136)14.5.29 PHY阻抗匹配控制寄存器 (137)14.5.30 PHY 配置寄存器 (138)14.5.31 链路初始化调试寄存器 (139)14.5.32 LDT调试寄存器 (139)14.5.33 HT TX POST ID窗口配置寄存器 (141)14.5.34 外部中断转换配置 (142)14.6 HyperTransport总线配置空间的访问方法 (143)15 低速IO控制器配置 (144)15.1 UART控制器 (144)15.1.1 数据寄存器(DAT) (144)15.1.2 中断使能寄存器(IER) (145)15.1.3 中断标识寄存器(IIR) (145)15.1.4 FIFO控制寄存器(FCR) (146)15.1.5 线路控制寄存器(LCR) (147)15.1.6 MODEM控制寄存器(MCR) (148)15.1.7 线路状态寄存器(LSR) (149)15.1.8 MODEM状态寄存器(MSR) (151)15.1.9 接收FIFO计数值(RFC) (151)15.1.10 发送FIFO计数值(TFC) (152)15.1.11 分频锁存器 (152)15.1.12 新增寄存器的使用 (153)15.2 SPI控制器 (153)15.2.1 控制寄存器(SPCR) (154)VI15.2.3 数据寄存器(TxFIFO) (155)15.2.4 外部寄存器(SPER) (156)15.2.5 参数控制寄存器(SFC_PARAM) (156)15.2.6 片选控制寄存器(SFC_SOFTCS) (157)15.2.7 时序控制寄存器(SFC_TIMING) (157)15.2.8 自定义控制寄存器(CTRL) (158)15.2.9 自定义命令寄存器(CMD) (158)15.2.10 自定义数据寄存器0(BUF0) (158)15.2.11 自定义数据寄存器1(BUF1) (159)15.2.12 自定义时序寄存器0(TIMER0) (159)15.2.13 自定义时序寄存器1(TIMER1) (159)15.2.14 自定义时序寄存器2(TIMER2) (159)15.2.15 SPI双线四线使用指南 (160)15.3 I2C控制器 (161)15.3.1 分频锁存器低字节寄存器(PRERlo) (161)15.3.2 分频锁存器高字节寄存器(PRERhi) (161)15.3.3 控制寄存器(CTR) (162)15.3.4 发送数据寄存器(TXR) (162)15.3.5 接收数据寄存器(RXR) (163)15.3.6 命令控制寄存器(CR) (163)15.3.7 状态寄存器(SR) (163)15.3.8 从设备控制寄存器(SLV_CTRL) (164)龙芯3C5000L处理器寄存器使用手册图目录VII 图目录图1-1龙芯3号系统结构 (1)图1-2龙芯3号结点结构 (2)图1-3龙芯3C5000L芯片互连结构 (3)图1-4龙芯3C5000L每硅片结构 (4)图6-1多片互连时的Stable复位控制 (38)图11-1龙芯3C5000L处理器中断路由示意图 (56)图13-1 DDR4 SDRAM读操作协议 (72)图13-2 DDR4 SDRAM写操作协议 (72)图14-1龙芯3C5000L中HT协议的配置访问 (143)表目录表2-1 控制引脚说明 (5)表3-1 结点级的系统全局地址分布 (7)表3-2 结点内的地址分布 (8)表3-3 SCID_SEL地址位设置 (8)表3-4 结点内44位物理地址分布 (9)表3-5 MMAP字段对应的该空间访问属性 (9)表3-6地址窗口寄存器表 (10)表3-7MMAP寄存器位域说明 (15)表3-8从设备号与所述模块的对应关系 (15)表3-9 MMAP字段对应的该空间访问属性 (16)表4-1 版本寄存器 (17)表4-2 芯片特性寄存器 (17)表4-3 厂商名称寄存器 (18)表4-4 芯片名称寄存器 (18)表4-5 功能设置寄存器 (18)表4-6 引脚驱动设置寄存器 (19)表4-7 功能采样寄存器 (19)表4-8 温度采样寄存器 (20)表4-9 结点时钟软件倍频设置寄存器 (21)表4-10 内存时钟软件倍频设置寄存器 (22)表4-11 处理器核软件分频设置寄存器 (23)表4-12 处理器核软件分频设置寄存器 (23)表4-13 芯片路由设置寄存器 (24)表4-14 其它功能设置寄存器 (24)表4-15 温度观测寄存器 (26)表4-16 处理器核SRAM调节寄存器 (26)表4-17 FUSE观测寄存器 (26)表4-18 FUSE观测寄存器 (27)表5-1 处理器内部时钟说明 (28)VIIIIX表5-2 处理器核软件分频设置寄存器 (29)表5-3 其它功能设置寄存器 (29)表5-4 其它功能设置寄存器 (30)表5-5 处理器核私有分频寄存器 (30)表5-6 功能设置寄存器 (31)表5-7 其它功能设置寄存器 (31)表5-8高温降频控制寄存器说明 (32)表5-9 功能设置寄存器 (32)表5-10 其它功能设置寄存器 (33)表5-11 其它功能设置寄存器 (33)表5-12 GPIO 输出使能寄存器 (34)表6-1地址访问方式 (35)表6-2 配置寄存器指令访问方式 (36)表6-3 寄存器含义 (36)表6-4其它功能设置寄存器 (36)表6-5 Node counter 寄存器 (38)表7-1 输出使能寄存器 (39)表7-2 输入输出寄存器 (39)表7-3 中断控制寄存器 (39)表7-4 GPIO 功能复用表 (40)表7-5 中断控制寄存器 (41)表8-1 3C5000L 实现的指令集功能配置信息列表 (44)表9-1 共享Cache 锁窗口寄存器配置 (48)表10-1处理器核间中断相关的寄存器及其功能描述 (51)表10-2 0号处理器核的核间中断与通信寄存器列表 (51)表10-3 1号处理器核的核间中断与通信寄存器列表 (52)表10-4 2号处理器核的核间中断与通信寄存器列表 (52)表10-5 3号处理器核的核间中断与通信寄存器列表 (52)表10-6 当前处理器核核间中断与通信寄存器列表 (53)表10-7 处理器核核间通信寄存器 (53)表10-8 处理器核核间通信寄存器 (55)X表11-1中断控制寄存器 (57)表11-2 IO 控制寄存器地址 (58)表11-3中断路由寄存器的说明 (58)表11-4中断路由寄存器地址 (58)表11-5 处理器核私有中断状态寄存器 (59)表11-6 其它功能设置寄存器 (60)表11-7 扩展IO 中断使能寄存器 (60)表11-8 扩展IO 中断自动轮转使能寄存器 (60)表11-9 扩展IO 中断状态寄存器 (60)表11-10 各处理器核的扩展IO 中断状态寄存器 (61)表11-11中断引脚路由寄存器的说明 (61)表11-12中断路由寄存器地址 (62)表11-13 中断目标处理器核路由寄存器的说明 (62)表11-14 中断目标处理器核路由寄存器地址 (62)表11-15中断目标结点映射方式配置 (63)表11-16当前处理器核的扩展IO 中断状态寄存器 (63)表11-17扩展IO 中断触发寄存器 (63)表12-1温度采样寄存器说明 (65)表12-2扩展IO 中断触发寄存器 (65)表12-3高低温中断寄存器说明 (66)表12-4高温降频控制寄存器说明 (67)表12-5温度状态检测与控制寄存器说明 (69)表12-6温度传感器配置寄存器说明 (69)表12-7温度传感器监测点说明 (70)表13-1 内存控制器软件可见参数列表 (72)表13-2 0号内存控制器出错状态观测寄存器 (90)表13-3 1号内存控制器出错状态观测寄存器 (92)表14-1 HyperTransport 总线相关引脚信号 (94)表14-2 HyperTransport 接收端可接收的命令 (96)表14-3 两种模式下会向外发送的命令 (97)表14-4 其它功能设置寄存器 (98)XI表14-5 默认的4个HyperTransport 接口的地址窗口分布 (99)表14-6 龙芯3号处理器HyperTransport 接口内部的地址窗口分布 (99)表14-7 龙芯3C5000L 处理器HyperTransport 接口中提供的地址窗口 (100)表14-8 Bus Reset Control 寄存器定义 (104)表14-9 Command ,Capabilities Pointer ,Capability ID 寄存器定义 (105)表14-10 Link Config ,Link Control 寄存器定义 (105)表14-11 Revision ID ,Link Freq ,Link Error ,Link Freq Cap 寄存器定义 (106)表14-12 Feature Capability 寄存器定义 (107)表14-13 Error Retry 控制寄存器 (107)表14-14 Retry Count 寄存器 (108)表14-15 Revision ID 寄存器 (108)表14-16 Interrupt Capability 寄存器定义 (109)表14-17 Dataport 寄存器定义 (109)表14-18 IntrInfo 寄存器定义(1) (109)表14-19 IntrInfo 寄存器定义(2) (109)表14-20 HT 总线中断向量寄存器定义(1) (111)表14-21 HT 总线中断向量寄存器定义(2) (111)表14-22 HT 总线中断向量寄存器定义(3) (112)表14-23 HT 总线中断向量寄存器定义(4) (112)表14-24 HT 总线中断向量寄存器定义(6) (112)表14-25 HT 总线中断向量寄存器定义(7) (112)表14-26 HT 总线中断向量寄存器定义(8) (113)表14-27 HT 总线中断使能寄存器定义(1) (114)表14-28 HT 总线中断使能寄存器定义(2) (114)表14-29 HT 总线中断使能寄存器定义(3) (114)表14-30 HT 总线中断使能寄存器定义(4) (114)表14-31 HT 总线中断使能寄存器定义(5) (115)表14-32 HT 总线中断使能寄存器定义(6) (115)表14-33 HT 总线中断使能寄存器定义(7) (115)表14-34 HT 总线中断使能寄存器定义(8) (115)表14-35 Link Train 寄存器 (116)表14-37 HT总线接收地址窗口0基址(外部访问)寄存器定义 (117)表14-38 HT总线接收地址窗口1使能(外部访问)寄存器定义 (117)表14-39 HT总线接收地址窗口1基址(外部访问)寄存器定义 (118)表14-40 HT总线接收地址窗口2使能(外部访问)寄存器定义 (118)表14-41 HT总线接收地址窗口2基址(外部访问)寄存器定义 (118)表14-42 HT总线接收地址窗口3使能(外部访问)寄存器定义 (119)表14-43 HT总线接收地址窗口3基址(外部访问)寄存器定义 (119)表14-44 HT总线接收地址窗口4使能(外部访问)寄存器定义 (119)表14-45 HT总线接收地址窗口4基址(外部访问)寄存器定义 (120)表14-46配置空间扩展地址转换寄存器定义 (120)表14-47扩展地址转换寄存器定义 (121)表14-48 HT总线POST地址窗口0使能(内部访问) (121)表14-49 HT总线POST地址窗口0基址(内部访问) (121)表14-50 HT总线POST地址窗口1使能(内部访问) (122)表14-51 HT总线POST地址窗口1基址(内部访问) (122)表14-52 HT总线可预取地址窗口0使能(内部访问) (122)表14-53 HT总线可预取地址窗口0基址(内部访问) (123)表14-54 HT总线可预取地址窗口1使能(内部访问) (123)表14-55 HT总线可预取地址窗口1基址(内部访问) (123)表14-56 HT总线Uncache地址窗口0使能(内部访问) (124)表14-57 HT总线Uncache地址窗口0基址(内部访问) (124)表14-58 HT总线Uncache地址窗口1使能(内部访问) (124)表14-59 HT总线Uncache地址窗口1基址(内部访问) (125)表14-60 HT总线Uncache地址窗口2使能(内部访问) (125)表14-61 HT总线Uncache地址窗口2基址(内部访问) (126)表14-62 HT总线Uncache地址窗口3使能(内部访问) (126)表14-63 HT总线Uncache地址窗口3基址(内部访问) (126)表14-64 HT总线P2P地址窗口0使能(外部访问)寄存器定义 (127)表14-65 HT总线P2P地址窗口0基址(外部访问)寄存器定义 (127)表14-66 HT总线P2P地址窗口1使能(外部访问)寄存器定义 (127)XII表14-68 控制器参数配置寄存器0定义 (128)表14-69 控制器参数配置寄存器1定义 (129)表14-70接收诊断寄存器 (130)表14-71 PHY状态寄存器 (131)表14-72 命令发送缓存大小寄存器 (131)表14-73 数据发送缓存大小寄存器 (132)表14-74发送缓存调试寄存器 (132)表14-75接收缓冲区初始寄存器 (134)表14-76 Training 0 超时短计时寄存器 (134)表14-77 Training 0 超时长计数寄存器 (134)表14-78 Training 1 计数寄存器 (135)表14-79 Training 2 计数寄存器 (135)表14-80 Training 3 计数寄存器 (135)表14-81 软件频率配置寄存器 (137)表14-82 阻抗匹配控制寄存器 (137)表14-83 PHY 配置寄存器 (138)表14-84 链路初始化调试寄存器 (139)表14-85 LDT调试寄存器1 (139)表14-86 LDT调试寄存器2 (140)表14-87 LDT调试寄存器3 (140)表14-88 LDT调试寄存器4 (140)表14-89 LDT调试寄存器5 (140)表14-90 LDT调试寄存器5 (141)表14-91 HT TX POST ID WIN0 (141)表14-92 HT TX POST ID WIN1 (141)表14-93 HT TX POST ID WIN2 (141)表14-94 HT TX POST ID WIN3 (142)表14-95 HT RX INT TRANS LO (142)表14-96 HT RX INT TRANS Hi (142)表15-1 SPI控制器地址空间分布 (154)XIIIXIV11 概述1.1 龙芯系列处理器介绍龙芯处理器主要包括三个系列。
多核龙芯3A上二级BLAS库的优化

BA L S库是传 统的线性数学 函数库 标准 ,具备较
好 的稳定性 以及较 高的性 能 ,能够为关 于矩 阵的应用
提供较优的基础运算支持。It 和 A ne l MD 都有 分别针
对 它们处理器 的商用 B AS库……MKL和 A ML 而 L C , 基于 MIS架构 的龙芯没有专用 的 B A P L S库 ,所 以需 要大量的移植工作才 能保证 高性能数学库:龙 芯 3 A;B A :优化;G m ;Ge:访存 ;多线程 L S ev r
Op i ia i n o tm z to fBLAS Le l s d o uliCo eLo n s n 3 ve Ba e n M 2 t- r o g o A
l 引 言
11多核龙芯 3 . A介绍
位访存部件 , 此外和 龙芯 2 F一样具备 四发射超标量结
构 ,支持动态调度 、寄存器重命名 、转移预测等乱序
高性能 计算( ihP r r ac o p t g Hg -e o n eC m ui ,简 称 fm n r ) WC 作为一种尖端计算机技术 ,广泛用于科学计算、 气象预报 、地质 勘探 、金融统计 、电子 商务、高分子 材料研究等领域 , 现有 的 H C核心处理 部件……通用 P 处理器基本都是 国外制造 ,龙芯作为 中国科学 院计算
s fwa eo ut— o eLo n s n 3 o t r n m l c r o g o A. i
Ke wo d :Lo n s n3 BLAS; p i z to ; mv; r me r a c s ; y rs o g o A; o tmiai n Ge Ge ; mo y c e s mul -h e d n t tr a i g i
龙芯

龙芯2G 龙芯2G在设计规格上相当于龙芯3A的单核版。与上一代龙芯2F相比,在二级缓存容 量、IO总线带宽,配套桥片性能上都有大幅提升。龙芯2G在1GHz情况下运行稳定,可提供 更好地用户体验,并适用于笔记本电脑与瘦客户机等移动与桌面市场。
龙芯2H 龙芯2H已于2012年底完成了流片,64nm工艺,它在一个芯片中集成了CPU,GPU, 北桥芯片,南桥芯片,内存控制器,显卡,网卡,声卡,USB模块等各种IO接口。芯片高 度SOC设计,最大功耗为4W,主频1GHz,是龙芯家族中集成度最高的芯片。主要面向移 动终端,笔记本电脑,平板电脑等移动处理器。
龙芯3A
中国第一个具有完全自主知识产权的四核CPU ,龙芯3号处理器采用的是65nm(纳米)工艺 ,主频1GHz,晶体管数目4.25亿个, 单颗龙 芯3A的最大功耗为15W,理论峰值为16Gflops ,每颗CPU单瓦特能效比1.06Gflops/W是目前 X86 CPU的2倍以上,达到了世界先进水平。 龙芯3号多核CPU系列产品定位服务器和高性 能计算机应用。 龙芯3A集成了四个64位超标量处理器核、4MB 的二级Cache、两个DDR2/3内存控制器、两个 高性能HyperTransport控制器、一个 PCI/PCIX控制器以及LPC、SPI、UART、GPIO 等低速I/O控制器。龙芯3A的指令系统与 MIPS64兼容并通过指令扩展支持X86二进制翻 译。
Thanks
龙芯1号 龙芯1号(英文名称Godson-1)于2002年研发完成,32位,主频 266 MHz。
龙芯1D 龙芯1D于2012年6月完成设计并进入流片状态,是专门为超声波热量表定制的高精度,低 功耗测量SoC。 龙芯1D集成的时间数字转换器设计测量分辨率可达15ps,能够检测极其微小的流量变 化。在电源管理方面,龙芯1D包含11个电源域,可将待机电流控制在10uA以下。测量过程 的软硬件协同设计使得龙芯1D在热量表中用一个电池能工作五年以上。 除了热量表,龙芯1D还可以应用在水表、激光测距、重量测量等场合,是一个非常值 得期待的产品。
排序算法在龙芯3A上的优化实现

2 归并排序 优化 . 1
归并排序使用一个与原空问 b等大的空间 t 用作临 时存
储空 间,主要有递归实现与迭代实现两种实现方式 。递归实 现 由上至下进行 , 将待排序的数组划分为 2 等长 的子数组 , 个
分别排序后再将其归并为一个有序 数组 。 迭代 实现 由下至 上, 将相邻的长为 k的子数组 两两 归并 ,k l n2 从 -  ̄ 倍增 。
引入拷贝优化 、循环展开、交换操作优化和不 同基本排序混 用等优化 技术 。测试结果表 明,在不影 响排序稳定性 的前提 下 ,与 G i . lc2 1 b 1
库 中的排序 函数相比 ,2种优化算法均能提升 1 . 9 .%的排序性 能。 69 %- 05
关健诃 :龙芯 3 A;归并排序 ;快速排序 ;优化算法 ;循环展开
U iesyo cec dT cn lg f ia H fi 30 7 C ia、 nvri f in e eh oo yo n , ee2 0 2 , hn ) t S n a Ch
[ sr elT ru ha a ss fh hrcei is f rigsr n n uc o ig tip p r rsnst p mi dag r ms p cal r Abtat ho g nl i o e aa t s c gn t gadq iksr n , s ae eet woo t z loi e i yf y t c r t o me oi t h p i e h t s l o
能和具有稳定性 ,但未有结合龙芯 3 的体系结构特点进一 A
在实 际应 用中也经常使 用。() 2基于元素值特性 ,即非比较排
序算法 ,如基 数排序 、计数 排序 、桶排序 等 ,排序 算法在线
关于龙芯三号简单介绍

关于龙芯三号简单介绍
龙芯系列处理器芯片是龙芯中科技术有限公司研发的具有自主知识产权的处理器芯片,产品以32位和64位单核及多核CPU/SOC为主,主要面向国家安全、高端嵌入式、个人电脑、服务器和高性能机等应用。
产品线包括龙芯1号小CPU、龙芯2号中CPU和龙芯3号大CPU三个系列。
本文带大家来了解一下龙芯3号系列的功能特点以及硬件开发系统。
仅供参考。
龙芯3号系列功能及技术特点
龙芯3号系列处理器集成多个64位处理器核,可满足高端嵌入式计算机、桌面计算机、服务器、高性能计算机等应用,具有高带宽,高性能,低功耗的特征。
目前龙芯3号系列产品包括龙芯3A1000、3B1500、
3A2000/3B2000及3A3000/3B3000几款芯片。
三款芯片采用相同的封装设计,3A3000/3B3000封装向下兼容3A2000/3B2000主板、3A2000/3B2000封装向下兼容3A1000主板,而3A3000/3B3000、3B1500与3A1000相比信号引脚定义基本一致,但电源设计上有一些差异。
龙芯3A1000与3B1500采用GS464处理器核结构;龙芯3B1500采用在GS464结构基本上增加了向量及私有二级缓存的GS464V处理器核结构;而龙芯3A2000/3B2000、3A3000/3B3000则采用了全新的GS464E处理器核结构,相比GS464架构,性能大幅提升。
龙芯的持久战

龙芯的持久战自从我们在2001年初正式开始龙芯处理器的设计以来,龙芯已经走过了八年的历史。
在这八年中,我们从无到有地掌握了高性能处理器的核心技术及其质量设计技术,我们设计的龙芯系列处理器达到了世界先进水平(最近流片的四核龙芯3号处理器采用65nm工艺,主频1GHz,晶体管数目达到4.25亿个);我们进行了龙芯产业化的推广并取得了很好的成绩,龙芯处理器在军工和工业控制、网络以及低成本电脑等方面的应用正在蓬勃展开;我们形成了龙芯处理器的系列产品,明确了龙芯1号CPU及其IP面向嵌入式应用,龙芯2号CPU及其IP 面向高端嵌入式和桌面应用,龙芯3号多核CPU面向服务器和高性能机应用的定位;我们打造了一支以“科研为国分忧、创新为民造福”为理念的,勇于拼搏、敢于创新、求实奋进的龙芯团队。
在2008年底举行的学习实践科学发展观活动中,我们就思想作风和龙芯发展战略两个方面展开了全员大讨论,大家提出了一些深刻的问题。
有人说,八年的时间抗战都胜利了,要是风险投资,三五年见不到效果就撤了,我们为什么到现在还没有做成规模品牌企业。
有人说,CPU已经发展了这么多年,国外已经形成了垄断,要打破垄断,让数以亿计的电脑使用者改变习惯,我们不是与国外垄断企业竞争,而是与数以亿计的电脑使用者为敌。
有人说,我们应该放弃通用CPU的技术路线,结合专门的应用设计产业链短的芯片,尽快形成产品形成规模。
类似的问题还很多,总结起来,就是目前我们面临着急躁的情绪和悲观的情绪,这两种情绪都是不利于龙芯的持续发展的。
产生上述急躁情绪与悲观情绪的根本原因,是对龙芯的任务与使命认识不够,对龙芯的特殊性认识不足,对龙芯面临的形势没有正确的分析和估计,因此对龙芯研发和产业化工作的长期性和持久性缺少必要的心理准备,对龙芯通过持久的努力取得最后胜利缺少必要的信心。
本文从龙芯的使命和任务、为什么龙芯的事业能够成功、为什么龙芯的发展需要持久的努力以及龙芯的发展阶段几个方面说明经过持久的努力,我们一定能够打破国外垄断,建立起自主可控的信息产业,实现龙芯的持续发展。
简介中国科学院计算技术研究所成立于1956年,是我国计算机领域第

简介中国科学院计算技术研究所成立于1956年,是我国计算机领域第一个综合性研究所,被誉为“中国计算机事业的摇篮”,计算所为我国发展计算机科学技术、促进高技术产业和人才培养作出了重要贡献。
目前,计算所已进入“历史上最好的发展时期”。
科技成果层出不穷,是近几年国内获得国家科技进步奖最多的基层单位之一。
所内人才辈出,凝聚了一支高水平的科研队伍。
计算所本部现有三个研究部和两个研究中心。
系统结构研究部主要从事与计算机系统相关的研究。
网络科学与技术研究部研究网络科学的基础理论体系、新一代网络通信/互连标准与关键技术、网络体系结构与系统软件平台、惠及大众的低成本网络服务软件以及网络与信息安全关键技术与系统。
智能信息处理主要从事智能信息处理相关的基础理论研究和技术前沿的探索性、创新性研究。
前瞻研究中心从事基础性、前瞻性和交叉学科的研究。
普适计算研究中心目标聚焦在面向低成本信息化重大需求的相关先进技术研发上。
到2010年,计算所要成为具有世界影响的国家研究所,为促进我国信息类企业真正成为技术创新主体做出实质性贡献,担当我国信息化建设领域中的“排头兵、领头雁”。
应聘简历请发送至*********.cn,并请注明岗位编号、应聘部门和应聘岗位。
计算所2008年招聘岗位详细信息岗位编号:0801招聘部门:国家智能计算机研究开发中心招聘岗位:助理研究员岗位职责:操作系统研究:体系结构研究;高性能计算算法研究岗位要求:1、博士学历,计算机相关专业;2、具备计算机体系结构相关知识和并行计算相关知识;3、具有体系结构相关项目的科研经历、并行算法研究项目的科研经历、大规模并行计算相关科研经历者优先。
岗位编号:0802招聘部门:国家智能计算机研究开发中心招聘岗位:助理研究员岗位职责:文件系统研发岗位要求:1、硕士以上学历,计算机相关专业;2、具备计算机体系结构相关知识及Linux操作系统相关知识;3、具有体系结构相关科研学习经历;4、具有文件系统方向的实践经历,有分布式文件系统研究经历者优先;岗位编号:0803招聘部门:国家智能计算机研究开发中心招聘岗位:研究实习员岗位职责:从事操作系统研究岗位要求:1、硕士以上学历,计算机相关专业;2、具备计算机体系结构相关知识及Linux操作系统相关知识,对Linux操作系统核心模块有深入了解;3、具有体系结构相关科研学习经历;4、具有Linux系统软件的实践经历、有Linux操作系统核心编码者优先。
龙芯 2 号和 3 号处理器嵌入式开发指南说明书

我们希望通过本手册,能够为龙芯用户建立起一个调试开发基本的概念。能够让用户快 速上手使用龙芯处理器的相关产品。
龙芯中................................................................................................................................................. 1 第一章资源获取............................................................................................................................... 2 第二章 Pmon ...................................................................................................................................4
2.2.1 安装 makedepand......................................
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙芯3号多核处理器设计及其挑战
多核处理器的发展趋势是,处理器结构正处在转折期,主频至上的时代已
经结束,性能功耗比继性能价格比后成为重要的设计指标。
网络和媒体的普及导致计算机应用发生很大变化,处理器经历着由简单到复杂,再到简单和复杂的过程。
从2002年龙芯l号开始,到龙芯2号,可以说实现了一个“三级跳”跨越。
龙芯2B性能是龙芯1号3倍,龙芯2C性能是龙芯2B的3倍,龙芯3号是多核结构。
龙芯1号面向IP和嵌入式应用,龙芯2号面向高端应用,龙芯3号面向多内容的服务器应用。
龙芯2E是64位四发射,乱序执行,现在量产基本完成,已经向市场批量供应。
龙芯2E在单处理器结构方面设计比较成熟,达到国际最好水平。
功耗测试中,750MHz主频的CPU,加上北桥和内存条,功耗只有7.5W。
媒体播放性能测试中,750MHz龙芯比奔腾4要快一些。
龙芯部分应用产品包括笔记本电脑、一些处理平台和低成本电脑等。
龙芯3号多核处理器正在设计中。
我们阶段目标是:到2008年,龙芯3号有8到16个核;2010年,有32到64个核。
龙芯3号结构特征是多平台并行虚拟机结构。
功耗问题使我们现在面临应用变化等很多转折点。
我们只要抓住这个转折点,完全可以利用后发优势取得突破。
主频的游戏已经结束了,并行结构设计上我们有很大机会。
我们设计的方法正确,有10个核以上,国外厂商更多是运用静态电路。
在具体实现时,不可能把10多个100W的核集成在一起。
龙芯3号的第一个目标是要建设和谐的计算,一个是机机和谐,就是兼容问题;另外一
胡伟武
个是人机和谐,串行程序并行化的问题。
要做一个多平台并行虚拟机结构。
我们有一个理想,就是让所有可执行文件都可以在龙芯上正确快速地运行。
第二个目标要实现可扩展的互连结构。
设计刚开始考虑可伸缩的分布式结构和可伸缩的缓存一致性协议,全局共享统一编址的二级缓存,也就是相当于把CC-NUMAl做在片内,把SMPz做在片内,4个处理器四个缓存,一个8×8开关。
这些设计都已基本完成。
龙芯3号在策略上采用伸缩设计、有限实现。
在一般桌面应用中,4核处理器已经足够了。
龙芯面临的挑战首先是结构方面。
我们要采用可伸缩的结构设计,还要支持并行虚拟机。
这样软硬件都需要考虑,需要有一致性的缓存协议。
我们还要做到低功耗。
例如,对于16核芯片,要求功耗低于80W,因此,一定把每个核功耗控制在2~3W之内。
还有一个难题是I/O瓶。
如果把16个64位龙芯2号核放在一起,I/O将成为最大的瓶颈。
就是内部处理速度很快,而I/O速度跟不上,这样使得整体效果不佳。
最后是验证问题。
像龙芯这样庞大的设计,如何保证没有错误P过去,处理器的验证都是采用形式验证和随机验证的方法。
在一个芯片设计过程中,60%-70%的精力花费在验证方面。
对于新出现的设计问题,如互连和缓存一致性协议的验证、后仿真的验证,这些都是很大的挑战。
尤其是验证的FPGAs实现。
现在,龙芯2号的面积比较大,如果有16个核,主板会很大,实现非常困难。
国外也没有案例可以借鉴。
■
i一致性高速缓存非均匀存储访问模型2对称多处理
3现场可编程门阵列胡伟武
中科院计-g.所研究员,博--L--生导师。
中科院计算所微处理器技求研究中心主任。
龙芯系列处理器恿设计师。
中国计算机学会高级会员。
龙芯3号多核处理器设计及其挑战
作者:胡伟武
作者单位:中科院计算所
1.冯子军.胡伟武龙芯1号IP核AMBA接口验证方法[会议论文]-2006
2.冯子军.肖俊华.胡伟武.Feng Zijun.Xiao Junhua.Hu Weiwu龙芯1号处理器结构级功耗评估有效性分析[期刊论文]-计算机辅助设计与图形学学报2007,19(9)
3.余玮胡伟武:创"芯"与创新的传奇[期刊论文]-职业2010(19)
4.胡伟武为了龙芯的跳动[期刊论文]-中国高新区2006(8)
5.刘惠颖基于组件的实时信息发布系统的研究与实现[学位论文]2005
6.本刊记者他们的一小步,中国的一大步--访中科院计算技术研究所研究员、"龙芯"课题组组长胡伟武博士[期刊论文]-高科技与产业化2005(4)
7.唐志敏龙芯系列CPU芯片[会议论文]-2003
8.吴亮.王全胜.Wu Liang.Wang Quansheng基于龙芯2F的智能1553B节点设计与实现[期刊论文]-计算机光盘软件与应用2010(4)
9.王焕东.高翔.陈云霁.胡伟武.Wang Huandong.Gao Xiang.Chen Yunji.Hu Weiwu龙芯3号互联系统的设计与实现[期刊论文]-计算机研究与发展2008,45(12)
10.张晓辉.程归鹏.从明龙芯处理器上的TLB性能优化技术[会议论文]-2010
本文链接:/Conference_6291458.aspx。