小学四年级奥数题精选各类题型-无答案说课材料
四年级全册奥数精品讲义1-20讲(全册奥数)

目录◆第一讲找规律(一) (2)◆第二讲找规律(二) (5)◆第三讲长方形和正方形(一) (8)◆第四讲长方形和正方形(二) (11)◆第五讲算式谜(一) (14)◆第六讲算式谜(二) (17)◆第七讲植树问题(一) (19)◆第八讲植树问题(二) (22)◆能力测试(一) (25)◆第九讲和差问题(一) (28)◆第十讲和倍问题(一) (31)◆第十一讲和倍问题(二) (33)◆第十二讲差倍问题 (35)◆第十三讲年龄问题(一) (38)◆第十四讲年龄问题(二) (41)◆第十五讲还原问题(一) (43)◆第十六讲还原问题(二) (45)◆能力测试(二) (48)◆第17讲周期问题(一) (2)◆第18讲周期问题(二) (7)◆第19讲假设问题(一) (12)◆第20讲假设问题(二) (16)◆第21讲计数问题(一) (17)◆第22讲计数问题(二) (19)◆第23讲容斥问题(一) (23)◆第24讲容斥问题(二) (26)◆能力测试(一) (26)◆第25讲行程问题(一) (28)◆第26讲行程问题(二) (31)◆第27讲平均数问题 (35)◆第28讲推理问题(一) (37)◆第29讲推理问题(二) (39)◆第30讲巧算(一) (40)◆第31讲巧算(二) (45)◆第32讲巧算(二) (45)◆第33讲巧算(三) (45)◆第34讲等量代换 (45)◆第35讲拼拼算算 (45)◆能力测试(二) (63)第一讲 找规律(一)事物的发展中有规律的,只有认为观察事物,找到事物发展变化的规律,才能深入地了解和掌握它,从而找到解决问题的方法和途径。
在数学竞赛中,常常出现按规律填数的题目,找规律的方法是根据已知数的前后(可上下)之间的联系,找出其中的规律。
例题与方法例1. 请找出下列各组数排列的规律,并根据规律在括号里填上适当的数。
(1)1,5,9,13,( ),21,25。
(2)3,6,12,24,( ),96,192。
小学四年级奥数全册精品讲义

7.把一条长 15cm 的线段截为三段,使每条线段的长度是整数,用这三条线 段可以组成多少个不同的三角形?(当且仅当两三角形的三条边可以对应相等 时,我们称这两个三角形是相同的.)
如果 M 位上放置标有数码“3”的纸片,一共有_____种不同的放置方法.
M
4.如下图,在 2×2 方格中,画一条直线最多可穿过 3 个方格,在 3×3 方格中, 画一条直线最多可穿过 5 个方格.那么 10×10 方格中,画一条直线最多可穿过 _____个方格.
5. 有一批长度分别为 1,2,3,4,5,6,7,8,9,10 和 11 厘米的细木条,它们的 数量都足够多,从中适当选取 3 根木条作为三条边.可围成一个三角形,如果规定 底边是 11 厘米长,你能围成多少个不同的三角形?
第一讲 加乘原理
加法原理:完成一件工作共有 N 类方法。在第一类方法中有 m1种不同的方法,在第二 类方法中有 m2种不同的方法,……,在第 N 类方法中有 mn 种不同的方法,那么完成这件工 作共有 N=m1+m2+m3+…+mn 种不同方法。
运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以 独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任 何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不 同的问题,分类的标准往往不同,需要积累一定的解题经验。
这两个基本原理是排列和组合的基础,教学时要先通过生活中浅显的实例,如购物问题、 行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。
【小学数学】小学四年级奥数题精选各类题型及答案.docx

基本公式:
解决牛吃草问题常用到四个基本公式;分别是∶
(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数 ×吃的较少天数 ÷(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数×吃的天数-草的生长速度 ×吃的天数;
(3)吃的天数=原有草量÷(牛头数-草的生长速度);
3.把210拆成7个自然数的和;使7个数从小到大排成一行后;相 两个数的差都是5;那么;第1个数与第6个数分 是多少?
有28岁了”。小象又问: “您像我这么大时;我有几岁呢?”妈妈回答: “你才1岁。”问大象妈妈有多少岁了?
5、大熊猫的年龄是小熊猫的3倍;再过4年;大熊猫的年龄与小熊猫年龄的和为28岁。
问大、小熊猫各几岁?
6、15年前父亲年龄是儿子的7倍;10年后;父亲年龄是儿子的2倍。求父亲、儿子各多
少岁。
7、王涛的爷爷比奶奶大2岁;爸爸比妈妈大2岁;全家五口人共200岁。已知爷爷年龄
解答:
1)草的生长速度:(21×8-24×6)÷(8-6)=12(份)
原有草量:21×8-12×8=72(份)
16头牛可吃:72÷(16-12)=18(天)
2)要使牧草永远吃不完;则每天吃的份数不能多于草每天的生长份数所以最多只能放12头牛。
5 / 12
小学四年级奥数题及答案和题目分析
一、按 律填数。
小学四年级奥数题:统筹规划
1、烧水沏茶时;洗水壶要用1分钟;烧开水要用10分钟;洗茶壶要用2分钟;洗茶杯用2分钟;拿茶叶要用1分钟;如何安排才能尽早喝上茶。
2、有137吨货物要从甲地运往乙地;大卡车的载重量是5吨;小卡车的载重量是2吨;大
小学四年级奥数培训教材(精讲版)

第一讲简单推理例1:一包巧克力的重量等于两袋饼干的重量,4袋牛肉干的重量等于一包巧克力的重量,一袋饼干等于几袋牛肉干的重量?1、一只菠萝的重量等于4根香蕉的重量,两只梨子的重量等于一只菠萝的重量,一只梨的重量等于几根香蕉的重量?2、3包巧克力的重量等于两袋糖的重量,12袋牛肉干的重量等于3包巧克力的重量,一袋糖的重量等于几袋牛肉干的重量?3、一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量,一只小猪的重量等于几只鸭的重量?例2:一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量,一头象的重量等于几头小猪的重量?1、一只西瓜的重量等于两个菠萝的重量,一个菠萝的重量等于4个苹果的重量,1个苹果的重量等于两个橘子的重量,一只西瓜的重量等于几个橘子的重量?2、一头牛一天吃草的重量和一只兔子9天吃草的重量相等,也和6只羊一天吃草的重量相等。
已知一头牛每天吃青草18千克,一只兔子和一只羊一天一共吃青草多少千克?3、一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量,两只鸭的重量等于6条鱼的重量,问两只小猪的重量等于几条鱼的重量?例3:根据下面两个算式,求○和□各代表多少?○+○+○=18○+□=101、根据下面两个算式,求○和□各代表多少?○+○+○+○=32□-○=202、根据下面两个算式,求○和□各代表多少?○+○+○=15○+○+□+□+□=403、根据下面两个算式,求○和□各代表多少?□-○=8例4:根据下面两个算式,求○和□各代表多少?△-○=2○+○+△+△+△=561、根据下面两个算式,求○和□各代表多少?□-○=8○+○+□+□=202、根据下面两个算式,求○和□各代表多少?△+△+△+○+○=78△+△+○+○+○=723、根据下面两个算式,求○和□各代表多少?△+△+△-□-□=12□+□+□-△-△=2第二讲应用题例1:某玩具厂把630件玩具分别装在5个塑料箱和6个纸箱里,1个塑料箱与3个纸箱装的玩具同样多,每个塑料箱和纸箱各装多少件玩具?1、百货商店运来300双球鞋分别装在两个木箱和6个纸箱里。
小学四年级奥数竞赛试题选讲教案

小学四年级奥数竞赛试题选讲教案1 计算:1+2+22+23+…+29+210分析这是首项系数是2的等比数列求和问题,可采用“错位相减法”求解.解:设S=1+2+22+23+…+29+210 (1)用2乘以上式的两边可得2S=2+22+23+…=210+211 (2)用(2)式减去(1)式的两边,得S=(2+22+2 3+…+2 10+2 11)-(1+2+2 2+2 3+…+2 9+2 10) =2 11-1 =2048-1 =2047.例2 计算:1×0.5+3×(0.5)2+5×(0.5)3+7×(0.5)4+…+17×(0.5)9+19×(0.5)10分析这个和式中的每一项都是两个数的乘积,把各乘积的前一个数依次排在一起构成一个公差为2的等差数列,把各乘积的后一个数依次排在一起构成一个公比是0.5的等比数列,这种数列通常称为混合数列,它的求和方法也采用“错位相减法”.解:设S=1×0.5+3×(0.5)2+5×(0.5)3+…+17×(0.5)9+19×(0.5)10 (1)用2乘以上式的两边可得2S=1+3×0.5+5×(0.5)2+7×(0.5)3+…+17×(0.5)8+19×(0.5)9 (2)用(2)式减去(1)式的两边,得S=1+2×0.5+2×(0.5)2+2×(0.5)3+…+2×(0.5)8+2×(0.5)9-19×(0.5)10=1+1+0.5+(0.5)2+…+(0.5)7+(0.5)8-19×(0.5)10 再设A=1+0.5+(0.5)2+…+(0.5)7+(0.5)8 (3)用2乘以(3)式的两边可得:2A=2+1+0.5+…+(0.5)7 (4)用(4)式减去(3)式两边,得A=2-(0.5)8=2-0.00390625=1.99609375 于是,有:S=1+1.99609375-19×(0.5)10 =2.99609375-19×0.0009765625 =2.99609375-0.0185546875=2.9775390625.例 3 计算:11×12×13+12×13×14+13×14×15+…+100×101×102解:利用裂项法,有11×12×13=(11×12×13×14-10×11×12×13)÷4,12×13×14=(12×13×14×15-11×12×13×14)÷4,13×14×15=(13×14×15×16-12×13×14×15)÷4,…100×101×102=(100×101×102×103-99×100×101×102)÷4,把这90个等式相加,得原式=(100×101×102×103-10×11×12×13)÷4=25×101×102×103-10×11×3×13 =26527650-4290 =26523360.网络搜集整理,仅供参考。
【精选】小学四年级数学奥数题题型汇总图文百度文库

【精选】小学四年级数学奥数题题型汇总图文百度文库一、拓展提优试题1.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.2.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.3.甲乙两所学校共有学生864人.新学期开学前,由甲校调入乙校32人,这时甲校还比乙校多48人.原来甲校有个学生.4.《好少年》上下两册书的页码共用了888个数码,且下册比上册多用8页,下册书有页.5.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是分.6.在□中填上适当的数,使竖式成立.7.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.8.(7分)有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.9.如果,那么=.10.一列火车身长90米,火车以每分钟160米的速度通过山洞,用了3分钟,山洞长390米.11.五个人站成一排,每个人戴一顶不同的帽子,编号为1、2、3、4、5.每人只能看到前面的人的帽子.小王一顶都看不到;小孔只看到4号帽子;小田没有看到3号帽子,但看到了1号帽子;小严看到了有3顶帽子,但没有看到3号帽子;小韦看到了3号帽子和2号帽子,小韦戴号帽子.12.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生名.13.买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,那么,每斤西红柿的价格是元角.14.(8分)有一棵神奇的树上长了123个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按照规律进行新的一轮,如此继续,那么第天树上的果子会都掉光.15.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有组.【参考答案】一、拓展提优试题1.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).2.【分析】本题主要考察等差数列中最小的项.解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.3.解:甲校比乙校多的人数:32×2+48=112人,甲校的人数:(864+112)÷2,=976÷2,=488(人).答:原来甲校有488人.故答案为:488.4.解:个位数1~9页共有9个数码;两位数10~99共用2×90=180个数码;此时还剩888﹣9﹣180=699个数码,699÷3=233,699个数码可组成233个三位数,所以上下册共有:233+100﹣1=332页,则下册书有:(332+8)÷2=340÷2,=170(页).即下册书有170页.故答案为:170.5.【分析】要想四轮得分的平均分不低于96分,总分应该达到96×4=384分,用这一分数减去小光前三轮的得分即可解答.解:96×4﹣95﹣97﹣94,=384﹣95﹣97﹣94,=98(分);答:第四轮的得分至少是98分.【点评】本题主要考查简单规划问题,熟练掌握平均数的定义与求法是解答本题的关键.6.解:根据题干分析可得:7.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③通过等量代换,解决问题.解:设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③由①+②得:2a+2b+2c=29+43=72即a+b+c=36即第三个靶的得分为36分.答:他在第三个箭靶上得了36分故答案为:36.8.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.解:2007÷3=669,又因为,每一个循环周期中有2个奇数,1个偶数,所以前2007个数中偶数的个数是:1×669=669;答:前2007个数中,有699是偶数.故答案为:699.9.解:因为,所以(b+10a)×65=4800+10a+b,即10a+b=75,因此b=5,a=7.即=75.故答案为:75.10.解:160×3﹣90,=480﹣90,=390(米),答:山洞长390米.故答案为:390.11.解:根据分析,首先从“小王一顶都看不到”判断出小王排在第一位的位置上;然后从“小孔只看到4号帽子”判断出小孔排在第二的位置上;接着从“小严看到了有3顶帽子”判断出小严在第四的位置上;结合小田没看到3,小韦看到3对比可知小田在第三位,小韦在第五位;由于第二位的小孔只看到4,所以小王的帽子编号为4;由第三位的小田看到1,可知第二位的小孔的帽子编号为1;因为第四位的小严没看到3,而第五位的小韦看到了3和2,所以小田帽子编号为2,小严帽子编号为3,小韦帽子编号为5.故答案是:5.12.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.解:(730﹣16)÷17=714÷17=42(名);答:这个班共有学生42名.故答案为:42.【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.13.【分析】先根据买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,求出西红柿买需要的钱数,再根据单价=总价÷数量即可解答.解:11元8角=11.8元,1元4角=1.4元(11.8+1.4)÷4=13.2÷4=3.3(元);3.3元=3元3角;答:每斤西红柿的价格是3元3角.故答案为:3,3.【点评】本题主要考查学生依据单价,数量以及总价之间数量关系解决问题的能力.14.解:因为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120当到第十六天时不够16个需要重新开始.1+2=3即1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+1+2=123(个)故答案为:17天15.解:128÷2=64(组)100﹣64=36(组)36÷2=18(组)答:那么同组2只动物都是狐狸的共有18组.故答案为:18.。
四年级奥数(完整资料).doc

【最新整理,下载后即可编辑】四年级第3周简单推理例题1.桌面上反扣着一张红桃,两张黑桃,共三张牌。
甲乙两人各莫一张牌,各自翻看手中牌,并根据自己手中牌的颜色判断剩下一张牌的颜色。
几分钟后,甲首先判断出剩下的一张牌是红桃。
你知道他是怎样判断的吗?例题2.有两个油桶,大油桶可以装油5千克,小油桶可以装油3千克。
你能用这两个油桶称出7千克油吗?例题3.三只贴着标签的盒子,分别装着两个白球、两个黑球以及一黑一白两个球,但是标签全部贴错了。
你能从一只盒子里摸一个球就判断出三只盒子分别装的是什么颜色的球吗?例题4.学校举行冬季运动会,有5位运动员的编号依次是257,361,638,781,953.林翔的编号与五位运动员的编号恰好在同一数位上有一个相同的数字。
林翔的编号是多少?例题5.甲、乙、丙三人分别是一小、二小和三小的学生,在区运动会上他们分别获得跳高、跳远和垒球冠军。
已知:二小的是跳远冠军;一小的不是垒球冠军;甲不是跳高冠军;乙既不是二小的,也不是跳高冠军。
他们三个人分别是哪个学校的,获得哪个冠军?练习1,A,B,C,D,E五个人如下排列:A在C前面6米,B 在C后面8米,A在E前面2米,E在D前面7米。
请问:1.C与E之间有多少米?2.紧跟在C后面的是谁?相距多少米?3.最前面的与最后面的之间有多少米?三年级第34周例题5.徐老师、周老师和黄老师三位老师,其中一位教语文,一位教数学,一位教英语。
已知:(1)徐老师比教英语的老师年龄大;(2)周老师和教英语的老师是邻居;(3)教数学的老师经常和周老师在一起打球。
问三位老师各教什么课?四年级第4周解决问题(一)例题1. 某玩具厂把630件玩具分别装在5个塑料箱和6个纸箱里,1个玩具塑料箱与3个纸箱装的玩具同样多,每个塑料箱和纸箱个装多少件玩具?例题2. 一桶油连桶180千克,卖出一半油后连桶还有100千克,问原来油和桶各多少千克?例题3. 有5盒一样的茶叶,如果从每盒中取出200克,那5盒茶叶中剩下的茶叶正好和原来的4盒茶叶的质量相等。
小学生四年级奥数题大全

小学生四年级奥数题大全篇一:小学四年级奥数题及答案小学四年级奥数题及答案1、甲、乙两人相距10千米,甲在前,乙在后,甲每小时行5千米,乙每小时行6千米。
两人同时出发同向而行,乙几小时能追上甲?2、书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。
(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同的科目两本,有多少种不同的取法?3、进行篮球比赛,上场时10名队员互相握了一次手,一共握了多少次手?4、小林为家里做饭,他择菜要5分钟,淘米要2分钟,煮饭要15分钟,切菜花4分钟。
如果只有单火头煤气灶,做完这些事情至少需要多少分钟?5、24辆卡车一次能运货物192吨,同样的卡车36辆,一次能运货物多少吨?6、张师傅计划加工552个零件,前五天加工345个,照这样计算,这批零件还要几天加工完?7、修一条长1944米的水渠,54人12天修好。
若增加18人,天数缩小到原来的一半,可以修水渠多少米?1、[解答]10/(6-5)=10(小时)答:乙10小时能追上甲2[解答](1)3+5+6=14(种)答。
(2)3*5*6=90(种)(3)3*5+3*6+5*6=63(种)3【解答】9+8+7+6+5+4+3+2+1=454【解答】小林先淘米2分钟,接着煮饭15分钟,在煮饭的同时,可以择菜8分钟,洗菜5分钟,接着用2分钟切完菜花,取下饭后再用2分钟切菜花,最后炒菜用时6分钟。
一共2+15+2+6=25(分钟) 5【解答】一份量:192/24=8(吨),总数量:8*36=288(吨),综合算式:192/24*36=288(吨)6【解答】552-345=207(个)345/5=69(个/天)207/69=3(天)答:------7【解答】1944/54/12=3米/(人*天)54+18=72(人)12/2=6(天)3*72*6=1296(米)篇二:奥数题及(小学上学期)奥数题及答案(小学四年级上学期)四年级上学期奥数培训综合测试(A级)姓名_________ 成绩__________要求:90分钟完成,满分150分,一定要独立完成哦!一、填空题Ⅰ(每题10分,共60分)1、计算:⑴ 454十999×999十545⑵ 999十998十997十996十1000十1004十1003十1002十10012、数一数下面的图形.()条线段()个长方形3、要使上下两排的小猫一样多,应该怎样移?4、按下面图形的排列情况,算出第24个图形是什么?(1)○○△□○○△□○○△□??第24个图形是()(2)☆◇◇△△☆◇◇△△☆◇◇△△??第24个图形是()5、用火柴棍拼成的数字和符号如下图所示,那么用火柴棍拼成一个减法等式最少要用_____________根火柴6、有学生若干人参加植树活动,如果每组12人,就多11人,如果每组14人,就少9人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学四年级奥数题精选各类题型-无答案
小学四年级奥数题:统筹规划
1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?
3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?
4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
5、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。
因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的
载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。
现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。
最短时间是多少分钟呢?
6、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。
要过河时间最少?是多少?
四年级奥数题:速算与巧算(一)
1.【试题】计算9+99+999+9999+99999
2【试题】计算199999+19999+1999+199+19
3【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999) 4【试题】计算 9999×2222+3333×3334
5.【试题】56×3+56×27+56×96-56×57+56
6.【试题】计算98766×98768-98765×98769
四年级奥数题:年龄问题
1、父亲45岁,儿子23岁。
问几年前父亲年龄是儿子的2倍?
2、李老师的年龄比刘红的2倍多8岁,李老师10年前的年龄和王刚8年后的年龄相等。
问李老师和王刚各多少岁?
3、姐妹两人三年后年龄之和为27岁,妹妹现在的年龄恰好等于姐姐年龄的一半,求姐妹二人年龄各为多少。
4、小象问大象妈妈:“妈妈,我长到您现在这么大时,你有多少岁了?”妈妈回答说:“我有28岁了”。
小象又问:“您像我这么大时,我有几岁呢?”妈妈回答:“你才1岁。
”问大象妈妈有多少岁了?
5、大熊猫的年龄是小熊猫的3倍,再过4年,大熊猫的年龄与小熊猫年龄的和为28岁。
问大、小熊猫各几岁?
6、15年前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍。
求父亲、儿子各多少岁。
7、王涛的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。
已知爷爷年龄是王涛的5倍,爸爸年龄在四年前是王涛的4倍,问王涛全家人各是多少岁?
小学四年级奥数题及答案和题目分析
一、按规律填数。
1)64,48,40,36,34,( )
2)8,15,10,13,12,11,( )
3)1、4、5、8、9、()、13、()、()
4)2、4、5、10、11、()、()
5)5,9,13,17,21,( ),( )
二、等差数列
1.在等差数列3,12,21,30,39,48,…中912是第几个数?
2.求1至100内所有不能被5或9整除的整数和
3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?
4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和
三、平均数问题
1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ .
2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ .
3.今年前5个月,小明每月平均存钱
4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?
4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.
23, 26, 30, 33
A、B、C、D 4个数的平均数是多少?
5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是。
四、加减乘除的简便运算
1)100-98+96-94+92-90+……+8-6+4-2=()
2)1976+1977+……2000-1975-1976-……-1999=()
3)26×99 =()
4)67×12+67×35+67×52+67=()
5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)
五、数阵图
1、△、□、〇分别代表三个不同的数,并且;
△+△+△=〇+〇;〇+〇+〇+〇=□+□+□;△+〇+〇+□=60
求:△= 〇= □=
2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.
3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等.
4 用1至9这9个数编制一个三阶幻方,写出所有可能的结果。
所谓幻方是指在正方形的方格表的每个方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的数。
六、和差倍问题
1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?
2.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。
3.甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的3倍,两个数各是多少?
4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?
5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?
6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
七、年龄问题
1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?
2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?
3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?
4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?
八、假设问题
1、有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,男生比女生多种56棵.男、女生各多少人?
2.某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了多少道题?
3.一张试卷有25道题,答对一题得4分,答错或不答均倒扣1分,某同学共得60分,他答对了多少道题?
4.小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?
5. 育才小学五年级举行数学竞赛,共10道题,每做对一道题得8分,错一题倒扣
5分,张小灵最终得分为41分,她做对了多少道题?
和差倍
果园里有梨树、桃树、核桃树共526棵,梨树比桃树的2倍多24棵,核桃树比桃树少18棵.求梨树、桃树及核桃树各有多少棵?
1、在□中填入适当的数字,使乘法竖式成立。
2、在□中填入适当的数字,使除法竖式成立。
1、天天带了一些苹果和梨到敬老院慰问。
每次从篮里取出2个梨和4个苹果送给老人,最后当梨正好分完时,还剩下27个苹果。
这时他才想起原来苹果是梨的3倍多3个。
原有苹果、梨各多少个?
2、40名同学在做3道数学题时,有25人做对第一题,有28人做对第二题,有31人做对第三题。
那么至少有多少人做对了三道题?。