化工原理课程设计筛板式精馏塔设计
化工原理(含化工设备机械基础)课程设计板式精馏塔设计

化工原理(含化工设备机械基础)课程设计板式精馏塔设计专业班级:化工工艺06-3班本组成员:指导老师:设计时间:2009年4月27日至2009年5月15日目录1、摘要 (2)2、设计任务书 (3)3、前言 (4)4、回流比优化 (6)4、塔板的工艺设计 (8)5、塔板的流体力学计算 (18)6、塔附件设计 (25)7、塔总体高度的设计 (27)8、附属设备设计 (27)9、精馏塔主体设备机械设计 (28)10、参考文献 (36)11、附录 (39)摘要:本设计采用筛板塔精馏分离乙醇-水溶液,利用VB语言优化回流比,并算出理论塔板数为40,最优回流比2.66。
对塔的工艺尺寸进行计算得出塔径为0.8 米,塔总高42米。
对塔的流体力学进行验证后,符合筛板塔的操作性能。
经过对塔设备的强度计算,12mm满足设计要求。
本次设计内容对提高化工原理课程设计的能力有明显作用。
关键词:筛板塔、乙醇、最小回流比、经济衡算精馏塔优化设计任务书1、设计任务:年处理2.8万吨乙醇-水溶液系统2、设计条件:●料液含乙醇13wt%;●馏出液含乙醇不少于94wt%;●残液含乙醇不大于0.05wt%。
3、操作条件:●泡点进料,回流比由经济衡算优化;●塔釜加热方式及蒸汽压力:间接,0.2Mpa(表压);●塔顶全凝器冷却水进口温度20℃,出口温度50℃;●常压操作,年工作日300天,每天工作24小时;●塔板形式:筛板塔;●安装地点:合肥。
4、主要设计内容:●工艺流程的确定;●塔和塔板的工艺尺寸计算;●塔板的流体力学验算及复合性能图;●主体设备的机械设计;●辅助设备的计算设备的机械设计。
前言精馏是通过汽液两相的直接接触,利用组分挥发度的不同,使易挥发组分由液相向气相传递,难挥发组分由气相向液相传递,来达到分离液相混合物的一种常用操作。
蒸馏操作在化工,石油化工,轻工等工业生产中占有重要的地位。
为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择,设计和分析分离过程中的各种参数是非常重要的。
化工原理_课程设计_精馏塔_(筛板式)

化工原理课程设计任务书设计题目:乙醇——水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)设计条件: 1. 常压操作,P=1 atm(绝压)。
2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。
因沿程热损失,进精馏塔时原料液温度降为90℃。
3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。
4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。
5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。
6.操作回流比R=(1.1——2.0)R min。
设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。
2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。
3.写出该精流塔的设计说明书,包括设计结果汇总和对自己设计的评价。
指导教师:时间1设计任务1.1 任务1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。
2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。
因沿程热损失,进精馏塔时原料液温度降为90℃。
3.塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为40吨/日。
4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。
5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶采用全凝器,泡点回流。
6.操作回流比R=(1.1—2.0)R。
min1.1.3 设计任务1.完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。
2.画出带控制点的工艺流程示意图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。
3.写出该精馏塔的设计说明书,包括设计结果汇总和对自己设计的评价。
1.2 设计方案论证及确定1.2.1 生产时日设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。
化工原理课程设计精馏塔详细版

广西大学化学化工学院化工原理课程设计任务书专业:班级:姓名:学号:设计时间:设计题目:乙醇——水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)设计条件: 1. 常压操作,P=1 atm(绝压)。
2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。
因沿程热损失,进精馏塔时原料液温度降为90℃。
3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为40吨/日。
4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。
5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。
6.操作回流比R=(1.1——2.0)R min。
设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。
2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。
3.写出该精流塔的设计说明书,包括设计结果汇总和对自己设计的评价。
指导教师:时间1设计任务1.1 任务1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。
2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。
因沿程热损失,进精馏塔时原料液温度降为90℃。
3.塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为40吨/日。
4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。
5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶采用全凝器,泡点回流。
R。
6.操作回流比R=(1.1—2.0)min1.1.3 设计任务1.完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。
2.画出带控制点的工艺流程示意图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。
3.写出该精馏塔的设计说明书,包括设计结果汇总和对自己设计的评价。
1.2 设计方案论证及确定1.2.1 生产时日设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。
筛板式精馏塔的设计

进料方式一般有冷液进料,泡点进料,气液混合物进料,露点进料,加热蒸汽进料五种。 泡点进料对塔操作方便,不受季节温度影响。由于泡点进料时塔的制造比较方便,而其他进 料方式对设备的要求高,设计起来难度相对加大,所以采用泡点进料。 2.3回流比选择 由乙醇-水的气液平衡数据,绘出 X-Y 图 常压下乙醇-水的气液平衡与温度关系(mol/%) 温 度 t/℃ 100 95.5 89.0 86.7 85.3 84.1 82.7 82.3 81.5
1. 概述 本设计为分离乙醇-水混合物,采用筛板式精馏塔。 1.1本设计在生产上的实用意义 乙醇的结构简式为 C2H5OH,俗称酒精,它在常温、常压下是一种易燃、易挥发的无色 透明液体,它的水溶液具有特殊的、令人愉快的香味,并略带刺激性。乙醇是一种很好的溶 剂,既能溶解许多无机物,又能溶解许多有机物,所以常用乙醇来溶解植物色素或其中的药 用成分,也常用乙醇作为反应的溶剂,使参加反应的有机物和无机物均能溶解,增大接触面 积,提高反应速率。乙醇的用途很广,可用乙醇来制造醋酸、饮料、香精、染料、染料等, 是农药、医药、橡胶、塑料、人造纤维、洗涤剂等的制造原料。医疗上也常用体积分数为 70%——75%的乙醇作消毒剂等。 工业上一般用淀粉发酵法或乙烯直接水化法制取乙醇。 1.发酵法制乙醇是在酿酒的基础上发展起来的,在相当长的历史时期内,曾是生产乙醇的 唯一工业方法。发酵法的原料可以是含淀粉的农产品,如谷类、薯类或野生植物果实等;也 可用制糖厂的废糖蜜;或者用含纤维素的木屑、植物茎秆等。这些物质经一定的预处理后, 经水解(用废蜜糖作原料不经这一步) 、发酵,即可制得乙醇。 2.乙烯直接水化法,就是在加热、加压和有催化剂存在的条件下,是乙烯与水直接反应, 生产乙醇:CH2═CH2 + H─OH→C2H5OH(该反应分两步进行,第一步是与醋酸汞等汞 盐在水-四氢呋喃溶液中生成有机汞化合物,而后用硼氢化钠还原) 。 若想要获得不同浓度的乙醇,可以采取精馏这种方法。譬如,75%的乙醇可以用蒸馏的方 法蒸馏到95.5%,此后形成恒沸物,不能提高纯度。 化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的。 互溶液体混合物 的分离有多种方法, 精馏是其中最常用的一种。 精馏是一种利用回流使液体混合物得到高纯 度分离的蒸馏方法, 精馏操作其基本原理是利用互溶液体混合物相对挥发度的不同, 实现各 组分分离的单元操作,是工业上应用最广的液体混合物分离操作,广泛用于石油、化工、轻 工、食品、冶金等部门。 1.2 流程、设备及操作条件的确定 流程可由以下5个方面来确定。 (一)加料方式 加料分两种方式:泵加料和高位槽加料。高位槽加料通过控制液位高度,可以得到稳定流 量, 但要求搭建塔台, 增加基础建设费用; 泵加料属于强制进料方式, 本次加料可选泵加料, 泵和自动调节装置配合控制进料。 (二)加料状态 进料方式一般有冷液进料,泡点进料,气液混合物进料,露点进料,加热蒸汽进料五种。 泡点进料对塔操作方便,不受季节温度影响。由于泡点进料时塔的制造比较方便,而其他进 料方式对设备的要求高,设计起来难度相对加大,所以采用泡点进料。 (三)冷凝方式 选全凝器,塔顶出来的气体温度不高。冷凝后回流液和产品温度不高,无需再次冷凝,且 本次分离是为了分离乙醇和水,制造设备较为简单,为节省资金,选全凝器。 (四)回流方式 宜采用重力回流,对于小型塔,冷凝液由重力作用回流如塔。优点:回流冷凝器无需支撑 结构;缺点:回流控制较难安装,但强制回流需用泵,安装费用、点耗费用大,故不用强制 回流,塔顶上升蒸汽采用冷凝回流入塔内。 (五)加热方式
[工学]化工原理筛板精馏塔课程设计
![[工学]化工原理筛板精馏塔课程设计](https://img.taocdn.com/s3/m/499a890caaea998fcc220e71.png)
[工学]化工原理筛板精馏塔课程设计[工学]化工原理筛板精馏塔课程设计吉林化工学院化工原理课程设计I 吉吉林林化化工工学学院院化化工工原原理理课课程程设设计计题目题目筛板精馏塔分离苯筛板精馏塔分离苯——甲苯工艺设计甲苯工艺设计教教学学院院化工与材料工程学院化工与材料工程学院专业班级专业班级学生姓名学生姓名学生学号学生学号指导教师指导教师20102010 年年6 6 月月1414 日日吉林化工学院化工原理课程设计II 目录摘要一绪论二第一章流程及流程说明1 第二章精馏塔工艺的设计2 2.1 产品浓度的计算.2 2.1.1 原料液及塔顶、塔底产品的摩尔分率.2 2.1.2 原料液及塔顶、塔底产品的平均摩尔质量2 2.2 最小回流比的确定.3 2.3 物料衡算 3 2.4 精馏段和提馏段操作线方程.3 2.4.1 求精馏塔的气液相负荷3 2.4.2 求操作线方程 3 2.5 精馏塔理论塔板数及理论加料位置3 2.6 实际板数的计算3 2.7 实际塔板数及实际加料位置. 3 第三章精馏塔主要工艺尺寸的设计计算5 3.1 物性数据计算.5 3.2 精馏塔主要工艺尺寸的计算.9 3.3 筛板流体力学验算13 3.4 塔板负荷性能图16 第四章热量衡算21 4.1 塔顶气体上升的焓.21 V Q 4.2 回流液的焓.21 R Q 4.3 塔顶馏出液的焓.21 D Q 4.4 冷凝器消耗焓.21 C Q 4.5 进料的焓.21 F Q 4.6 塔底残液的焓.21 W Q 4.7 再沸器的焓.22 B Q 第五章塔的附属设备的计算23 5.1 塔顶冷凝器设计计算23 5.2 泵的选型24 5.4 塔总体高度的设计25 结论27 致谢28 参考文献.29 主要符号说明30 吉林化工学院化工原理课程设计I 摘要在此筛板精馏塔分离苯-甲苯的设计中,给定的条件为:进料量为F=85kmol/h 塔顶组成为:进料馏出液组成为:塔釜组成: W x =0.03 加料热状态:q=1 塔顶操作压强:(表压首先根据精馏塔的物料衡算,求得D 和W,通过图解法确定最小回流比;再根据操作线方程,运用图解法求得精馏塔理论板数,确定温度奥康奈尔公式求的板效率,继而求得实际板数,确定加料位置。
化工原理课程设计--苯-甲苯连续筛板式精馏塔的设计

0.0045
0.458
0.472
0.489
0.503
由上表数据可作出漏液线1
3.6.2 液沫夹带线
以 为限,求出 关系如下:
由
精馏段:
,
整理得:
在操作范围内,任取几个 值,依上式计算出 值
表2-4
0.0006
0.0015
0.0030
0.0045
2.457
2.362
2.24
2.138
提馏段:
提馏段:
板上不设进口堰,
故在本设计中不会发生液泛现象
3.6.1
由
,
得
精馏段:
=
在操作线范围内,任取几个 值,依上式计算出
表2-2
0.0006
0.0015
0.0030
0.0045
0.564
0.579
0.598
0.613
提馏段:
=4.870
操作线范围内,任取几个 值,依上式计算出
表2-3
0.0006
0.0015
对于进料: =93.52℃
得:
又
精馏段平均相对挥发度:
提馏段平均相对挥发度:
由液体平均粘度公式: 可求得不同温度下苯和甲苯的粘度
对于苯(A),其中 , 即:
当 ℃时,
当 ℃时,
对于甲苯(B),其中 , 即:
当 ℃时,
当 ℃时
又精馏段的液相组成:
提馏段的液相组成:
精馏段平均液相粘度:
提馏段的平均液相粘度:
塔设备是化工、炼油生产中最重要的设备类型之一。本次设计的筛板塔是化工生产中主要的气液传质设备。此设计针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完整的精馏设计过程,该设计方法被工程技术人员广泛的采用。
化工原理课程设计——筛板精馏塔设计

溢流装置(10×20cm)
② 降液管形式和底隙 降液管:弓形、圆形。 降液管截面积:由Af /AT 确定; 底隙高度 h0:通常在 40 ~ 60 mm。
③ 溢流堰(出口堰) 作用:维持塔板上一定液层,使液体均匀横向流过。 型式:平直堰、溢流辅堰、三角形齿堰及栅栏堰。
0
本设计采用:
采用弓形降液管,平堰及平型受液盘,l w =0.7D=0.56 m
L xfi Li
回流比
表2 塔板计算结果
理论板数
板效率
实际板数
理论加料位置
实际加料位置
4. 塔板结构设计
包括板间距的初估,塔径的计算,塔板溢流 形式的确定,板上清液高度、堰长、堰高的初 估与计算,降液管的选型及系列参数的计算, 塔板布置和筛孔/阀孔的布置等,最后是水力 学校核和负荷性能图。
进料流量F, kmol/h
塔顶产品流量D, kmol/h
塔釜残液流量W, kmol/h
进料组成,xF(摩尔分数) 塔顶产品组成,xD(摩尔分数) 塔釜残液组成,xW(摩尔分数)
3.4 实际板数及进料位置的确定
1. 确定最小回流比Rmin
Rmi n xyD q xyqq00..69 880.706.38070.76
径、实际板数及加料板位置。 2. 精馏塔塔板工艺设计内容:塔板结构设计、流体力学计算、
负荷性能图、工艺尺寸装配图。 3. 换热器设计:确定冷热流体流动方式,根据换热面积初选换
热器;核算总传热系数;计算实际传热面积;选定换热器型号, 计算管程、壳程压降。
说明: 1. 写出详细计算步骤,并注明选用数据的来源。 2. 每项设计结束后,列出计算结果明细表。 3. 设计说明书要求字迹工整,按规范装订成册。
化工原理课程设计说明书板式精馏塔设计

前言化工生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。
生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离为较纯净或几乎纯态的物质。
精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。
精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。
实现原料混合物中各组成分离该过程是同时进行传质传热的过程。
本次设计任务为设计一定处理量的分离四氯化碳和二硫化碳混合物精馏塔。
板式精馏塔也是很早出现的一种板式塔,20世纪50年代起对板式精馏塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。
与泡罩塔相比,板式精馏塔具有下列优点:生产能力(2 0%——40%)塔板效率(10%——50%)而且结构简单,塔盘造价减少40%左右,安装,维修都较容易。
化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。
在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。
在设计过程中应考虑到设计的业精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。
节省能源,综合利用余热。
经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。
另一方面影响到所需传热面积的大小。
即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。
本课程设计的主要内容是过程的物料衡算,工艺计算,结构设计和校核。
【精馏塔设计任务书】一设计题目精馏塔及其主要附属设备设计二工艺条件生产能力:10吨每小时(料液)年工作日:自定原料组成:34%的二硫化碳和66%的四氯化碳(摩尔分率,下同)产品组成:馏出液 97%的二硫化碳,釜液5%的二硫化碳操作压力:塔顶压强为常压进料温度:58℃进料状况:自定加热方式:直接蒸汽加热回流比:自选三设计内容1 确定精馏装置流程;2 工艺参数的确定基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 确定最小回流比
一般是先求出最小回流比,然后根据
R 1.1 — 2 Rmin ,确定回流比
Rmin
是根据汽液相平衡方程
y
1x 源自1 q 线方程 y q x xF q 1 q 1
联 立 求 得 交 点 xq
yq , 然 后 代 入 方 程
Rmin
由上式算出的塔径按部颁发塔盘标准圆整,圆整后的塔径除了必
须满足板间距与塔径的关系外,还须进行空塔气速校核。
2019/5/25
C20 exp[4.531 1.6562Z 5.5496Z 2 6.4695Z 3 (0.474675
0.079Z 1.39Z 2 1.3212Z 3 ) ln Lv (0.07291 0.088307Z
进行选型设计。
4.编写设计说明书 设计说明书应根据设计指导思想阐明设计特点,列出设计主
要技术数据,对有关工艺流程和设备选型作出技术上和经济上的 论证和评价。应按设计程序列出计算公式和计算结果;对所选用 的物性数据和使用的经验公式图表应注明来历。
设计说明书应附有带控制点工艺流程图,塔板结构简图和计算 机程序框图和原程序。
xD yq
yq xq
其中利用 t~x~y 关系,并借助二次样条插入的方法,求得
塔顶塔底的温度,进而求取全塔的平均温度,从而可以根据全
塔平均温度求取全塔平均相对挥发度。
式中: R ---回流
Rmin —最小回流比
—全塔平均相对挥发度
3.理 论 板 数 和 实 际 板 数 的 确 定
(1)逐板法计算理论板数,交替使用操作线方程和相平衡关系。
2019/5/25
(3)加料板位置的确定
求出精馏段操作线和提馏段操作线的交点 xq 、yq ,并以xq 为分
界线,当交替使用操作线方程和相平衡关系逐板往下计算到
xn xq 且 xn1 xq 时,就以第 n 块板为进料板。
(4)实际板数的确定
板效率:利用奥康奈尔的经验公式
E T 0 .4 9 L 0 .2 4 5 其中:
5 2
hOW 超过齿顶时 LS
0.735
lW hn
hOW
5 2
hOW
hn
5 2
LS —塔内液体流量,m3 S hn —齿深, m;可取为 0.015m
(3).堰高 hW
堰高与板上液层高度及堰上液层高度的关系:
hW hL hOW
2019/5/25
5、降液管的设计
(1).堰长lW : 依据溢流型式及液体负荷决定堰长,单溢流型塔板堰
长 lW 一般取为(0.6 ~0.8)D;双溢流型塔板,两侧堰长取为(0.5 ~
0.7)D,其中 D 为塔径
(2).堰上液层高度hOW :
堰上液层高度应适宜,太小则堰上的液体均布差,太大则塔板压
强增大,物沫夹带增加。对平直堰,设计时hOW 一般应大于 0.006m, 若低于此值应改用齿形堰。hOW 也不宜超过 0.06~0.07m,否则可改
0.49123Z 2 0.43196Z 3 ) (ln Lv )2 ]
Z HT hL
Lv
L V
( L V
)0.5
2019/5/25
3 液流型式的选择
3、液流型式的选择
液体在板上的流动型式主要有,U 型流、单流型、双流型和阶梯流型
等,其中常选择的则为单流型和双流型。(图见附录 1)
4000
11 以下 110 以下 110~230 230~350
5000
11 以下 110 以下 110~250 250~400
6000
11 以下
110~250 250~450
应用 用于较低 一般应用 高 液 气 比 极 高 液 气 极
场合
液气比
和大型塔板 大型塔板
2019/5/25
4、溢流堰(出口堰)的设计
(1)、精馏段气液负荷计算
V R 1D
L RD
VS
VMVm
3600 Vm
LS
LM Lm
3600 Lm
V—塔内气体摩尔流量 kmol/h
Vs—塔内气体体积流量 m 3 s
MVm 、 MLm —分别为精馏段气相平均分子量、液相平均分子量
Vm、 Lm —分别为精馏段气相平均密度、液相平均密度 kg m3
5.注意事项: 写出详细计算步骤,并注明选用数据的来源; 每项设计结束后,列出计算结果明细表; 设计说明书要求字迹工整,装订成册上交。
第二部分:筛板式精馏塔设计方法
一. 工艺计算 二. 设备计算 三. 辅助设备计算 四. 塔体结构 五. 带控制点工艺流程图
一.工艺计算
主要内容是(1)物料衡算 (2)确定回流比 (3)确定理论板数和实 际板数 (4)塔的气液负荷计算 (5)热量衡算
—塔顶与塔底的平均温度下的相对挥发度
L —塔顶与塔底的平均温度下的液相粘度, mpa s
对于多组分的液相粘度: L
xi Li
L i —液态组分 i 的粘度, mpa s
x i — 液相中组分 i 的摩尔分率
实际理论板数
N实
N理 ET
2019/5/25
4、塔的气液负荷计算
塔设备的生产能力一般以千克/小时或吨/年表示,但在理论板 计算时均须转换成kmol/h,在塔板设计时,气液流量又须用体积 流量m3/s表示。因此要注意不同的场合应使用不同的流量单位。
1.全塔物料衡算:
F=D+W FxF=DxD+WxW 塔顶产品易挥发组分回收率η为: η= DxD/FxF 式中:F、D、W分别为进料、塔顶产品、塔底馏出液的摩尔流 量(kmol/h), xF、xD、xW分别为进料、塔顶产品、塔底馏出液组 成的摩尔分率
u —空 塔 气 速 , m/s u 0.6 ~ 0.8 umax
umax C
L V V
umax —最 大 空 塔 气 速 , m/s
L、V — 分 别 为 液 相 与 气 相 密 度 , k g m 3
负荷系数
C
C
20
20
0 .2
(C20 值 可 由 S m i t h 关 联 图 求 取 )
精馏段操作线方程: yn1
L LD
xn
D LD
xD
提馏段操作线方程:
yn1
L qF L qF W
xn
W L qF W
Xw
xn1 yn (利用操作线方程)
yn xn (利用相平衡关系)
2019/5/25
(2)塔顶冷凝器的类型
(i)当塔顶为全凝器时, y1 xd
则自第一块塔板下降的液相组成 x1 与 y1 成相平衡,故可应用相平衡 方程由 y1 计算出 x1,自第二块塔板上升蒸汽组成 y2 与 x1 满足操作线方 程,由操作线方程以小 x1 计算得出 y2.
(ii)当塔顶为分凝器时, x0 xd K
先求出分凝器内与 xd 成相平衡的 x0,再由操作线方程以 x0 计算得出 y1,然后由相平衡方程由 y1 计算出 x1,如此交替地使用操作线方程和相 平衡关系逐板往下计算,直到规定的塔底组成为止,得到理论板数和加 料位置。
用双溢流型塔板。
2
平直堰的 hOW 按下式计算
hOW
2.84 1000
E
Lh
3
lW
式中 lW —堰长, m; Lh —塔内液体流量,m3 h
E —液流收缩系数,查图求取。一般可取为 1,误差不大
2019/5/25
齿形堰
hOW 不超过齿顶时
hOW
1.17
LS hn
lW
三. 设计任务
完成精馏塔工艺设计,精馏设备设计,有关附属设备的设计和 选用,绘制带控制点工艺流程图,塔板结构简图,编制设计说明书。
四. 设计内容
1. 工艺设计 (1)选择工艺流程和工艺条件
a.加料方式 b. 加料状态 c. 塔顶蒸汽冷凝方式 d. 塔釜加热方式 e. 塔顶塔底产品的出料状态 塔顶产品由塔顶产品冷却器冷却至常温。 (2)精馏工艺计算:
3. 附属设备设计和选用 (1)加料泵选型,加料管规格选型 加料泵以每天工作3小时计(每班打1小时)。 大致估计一下加料管路上的管件和阀门。 (2)高位槽、贮槽容量和位置 高位槽以一次加满再加一定裕量来确定其容积。 贮槽容积按加满一次可生产10天计算确定。 (3)换热器选型 对原料预热器,塔底再沸器,塔顶产品冷却器等进行选型。 (4)塔顶冷凝器设计选型 根据换热量,回流管内流速,冷凝器高度,对塔顶冷凝器
(2)、提馏段气液负荷计算(同上)
2019/5/25
5、热量衡算
总热量衡算 QV QW Q L QB QF QR
式中: QV 、QW 、QL、QB、QF 、QR 分别是塔顶蒸汽带出的热
量、塔底产品带出的热量、塔设备的热损失、塔釜加热量、进料带入 的热量、回流带入热量、
其中:塔设备的热损失 Q L 0.1Q B
化工原理课程设计 ——筛板式精馏塔设计
江苏工业学院 马江权 2006年9月
化工原理课程设计
——筛板式精馏塔设计
第一部分:化工原理课程设计任务书 第二部分:设计方法 第三部分:化工塔器CAD设计软件介绍 第四部分:设计示例
2019/5/25
第一部分:化工原理课程设计任务书
一. 设计题目:苯——甲苯混合液筛板(浮阀)精馏塔设计
再沸器热负荷 QB 1.1 QV QW QR QF