2015届高考数学大一轮复习 不等式的概念和性质精品试题 文(含2014模拟试题)

合集下载

(新课标)北京市2015届高考数学一轮复习 第5讲 不等式课后练习 理

(新课标)北京市2015届高考数学一轮复习 第5讲 不等式课后练习 理

第5讲 不等式经典精讲题一:解不等式|x 2-2x +3|<|3x -1|.题二:解关于x 的不等式|2x -1|<2m -1(m ∈R).题三:求函数y x =的值域.题四:设x ,y 为实数.若4x 2+y 2+xy =1,则2x +y 的最大值是________题五:若bc -ad ≥0,bd >0,求证:a +b b ≤c +dd.题六:已知m ∈R ,a >b >1,f (x )=mxx -1,试比较f (a )与f (b )的大小.题七:函数f (x )=-sin 2x +sin x +a ,若1≤f (x )≤174对任意的x ∈R 恒成立,求实数a 的取值范围.题八:已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.题九:设不等式2(log 21x )2+9(log 21x )+9≤0的解集为M ,求当x ∈M 时函数f (x )=(log 22x )(log 28x)的最大、最小值.题十:设函数f (x )=|x -1|+|x -a |.(1) 若a =-1,解不等式f (x )≥3;(2)如果∀x ∈R,f (x )≥2,求a 的取值范围.题十一:证明:关于x 的不等式(3k -2)x 2+2kx +k -1<0与(k 2-112)x 2+kx +1>0,当k 为任意实数时,至少有一个恒成立.题十二:已知f (x )=32x -(k +1)·3x+2,对任意的x ∈R ,恒有f (x )>0,则k 的取值范围是( ).A .(-∞, -1)B .(-∞, 22-1)C .(-1, 22-1)D .(-22-1, 22-1)题十三:解关于x 的不等式x 2-2ax -3a 2>0.题十四:已知集合A ={x |2x 2-3x -2≤0},B ={x |x 2-ax +3a ≤0,a ∈R},且B ⊆A ,求a的取值范围.题十五:若不等式ax 2-bx +c >0的解集是(-12,2),则以下结论中:①a >0;②b <0;③c >0;④a +b +c >0;⑤a -b +c >0,正确结论的序号是( ). A .①②③ B .②③④ C .②③⑤ D .③⑤题十六:函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0有两根x 1,x 2满足0<x 1<x 2<1a,当x∈(0,x 1)时,证明:x <f (x )<x 1.第5讲 不等式经典精讲题一: {x |1<x <4}.详解:原不等式⇔(x 2-2x +3)2<(3x -1)2⇔[(x 2-2x +3)+(3x -1)][(x 2-2x +3)-(3x -1)]<0⇔(x 2+x +2)(x 2-5x +4)<0 ⇔x 2-5x +4<0(因为x 2+x +2恒大于0)⇔1<x <4. 所以原不等式的解集是{x |1<x <4}.题二: 当m ≤12时,解集为∅;当m >12时,解集为:{x |1-m <x <m }.详解:若2m -1≤0,即m ≤12,则|2x -1|<2m -1恒不成立,此时,原不等式无解;若2m -1>0,即m >12.则-(2m -1)<2x -1<2m -1,所以1-m <x <m . 综上所述:当m ≤12时,原不等式的解集为∅,当m >12时,原不等式的解集为:{x |1-m <x <m }.题三:.详解:函数y x =的定义域为,1],设sin ()22x t t ππ=-≤≤,则原函数y x =可化为sin cos y t t =+)4t π+∵22t ππ-≤≤∴3444t πππ-≤+≤看图象(图2)可知sin()124t π-≤+≤∴1)4t π-≤+≤∴1y -≤≤即原函数的值域为].题四:2105. 详解:依题意有(2x +y )2=1+3xy =1+32×2x ×y ≤1+32 · (2x +y 2)2,得58(2x +y )2≤1,即|2x +y |≤2105.当且仅当2x =y =105时,2x +y 达到最大值2105.题五: 见详解.证明:∵bc -ad ≥0,bd >0,∴bc ≥ad ,1bd>0,∴c d ≥a b .∴c d +1≥a b +1,即c +d d ≥a +b b ,即a +b b ≤c +dd.题六: 当m >0时,f (a )<f (b );当m =0时,f (a )=f (b );当m <0时,f (a )>f (b ).详解: f (x )=mxx -1=m (1+1x -1),f (a )=m (1+1a -1),f (b )=m (1+1b -1).∵a >b >1,∴a -1>b -1>0,∴1+1a -1<1+1b -1.①当m >0时,m (1+1a -1)<m (1+1b -1),即f (a )<f (b );②当m =0时,f (a )=f (b );③当m <0时,m (1+1a -1)>m (1+1b -1),即f (a )>f (b ).综上所述,当m >0时,f (a )<f (b );当m =0时,f (a )=f (b );当m <0时,f (a )>f (b ).题七: 3≤a ≤4.详解:令t =sin x ,t ∈[-1,1],则f (x )=-sin 2x +sin x +a =-t 2+t +a =-(t -12)2+a +14,当t =12时,f (x )有最大值a +14,当t =-1时,f (x )有最小值a -2.故函数f (x )(x ∈R)的值域为[a -2,a +14],从而⎩⎪⎨⎪⎧a +14≤174a -2≥1,解得3≤a ≤4.题八: (1)a =2,b =-5;(2) g (x )的单调增区间为⎝⎛⎦⎥⎤k π,k π+π6,k ∈Z ;g (x )的单调减区间为⎝⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .详解: (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6.∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,∴-2a sin ⎝⎛⎭⎪⎫2x +π6∈[-2a ,a ].∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5.(2)由(1)得a =2,b =-5,∴f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1, g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝ ⎛⎭⎪⎫2x +7π6-1=4sin ⎝⎛⎭⎪⎫2x +π6-1,又由lg g (x )>0得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝⎛⎭⎪⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎥⎤k π,k π+π6,k ∈Z 又∵当2k π+π2<2x +π6 <2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .题九: y mi n =-1;y max =0.详解:∵2(21log x )2+9(21log x )+9≤0∴(221log x +3)(21log x +3)≤0.∴-3≤21log x ≤-23. 即21log (21)-3≤21log x ≤21log (21)23-∴(21)23-≤x ≤(21)-3,∴22≤x ≤8即M ={x |x ∈[22,8]}又f (x )=(log 2x -1)(log 2x -3)=log 22x -4log 2x +3=(log 2x -2)2-1.∵22≤x ≤8 ∴23≤log 2x ≤3 ∴当log 2x =2,即x =4时,y mi n =-1;当log 2x =3,即x =8时,y max =0.题十: (1) ⎝⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞;(2) (-∞,-1]∪[3,+∞). 详解:(1)当a =-1时,f (x )=|x -1|+|x +1|. 由f (x )≥3得|x -1|+|x +1|≥3. ① 当x ≤-1时,不等式化为1-x -1-x ≥3,即-2x ≥3.不等式组⎩⎪⎨⎪⎧x ≤-1,f (x )≥3的解集为⎝ ⎛⎦⎥⎤-∞,-32.②当-1<x ≤1时,不等式化为1-x +x +1≥3,此不等式不成立,不等式组⎩⎪⎨⎪⎧-1<x ≤1f (x )≥3的解集为∅.③当x >1时,不等式化为x -1+x +1≥3,即2x ≥3.不等式组⎩⎪⎨⎪⎧x >1,f (x )≥3的解集为⎣⎢⎡⎭⎪⎫32,+∞.综上得,f (x )≥3的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞.(2)若a =1,f (x )=2|x -1|,不满足题设条件. 若a <1,f (x )=⎩⎪⎨⎪⎧-2x +a +1,x ≤a ,1-a ,a <x <1,2x -(a +1),x ≥1. f (x )的最小值为1-a .若a >1,f (x )=⎩⎪⎨⎪⎧-2x +a +1,x ≤1,a -1,1<x <a ,2x -(a +1),x ≥a .f (x )的最小值为a -1.所以∀x ∈R,f (x )≥2的充要条件是|a -1|≥2,从而a 的取值范围为(-∞,-1]∪[3,+∞).题十一: 证明:由(3k -2)x 2+2kx +k -1<0恒成立.①当k =23时,不等式变为43x -13<0,不恒成立,∴k ≠23.②当k ≠23时,对应抛物线恒在x 轴下方,∴⎩⎪⎨⎪⎧3k -2<0,4k 2-k -k -⇒k <12.由(k 2-112)x 2+kx +1>0恒成立,并有k 2≠112.∴对应抛物线恒在x 轴上方,∴⎩⎪⎨⎪⎧k 2-112>0,k 2-k 2-112⇒k <-13或k >13.由不等式(3k -2)x 2+2kx +k -1<0恒成立或(k 2-112)x 2+kx +1>0恒成立,∴k 的范围是{k |k <12}∪{k |k >13或k <-13}=R .∴k 为任意实数时,上述两个不等式至少有一个恒成立,命题得证.题十二: B .详解:函数f (x )=32x -(k +1)·3x +2是关于3x 的二次函数,记t =3x>0,函数转化成f (t )=t 2-(k +1)t +2对任意的t >0,恒有f (t )>0.当Δ=[-(k +1)]2-4×1×2<0,即(k +1)2-8<0时,条件成立, 所以-22-1<k <22-1;当Δ=[-(k +1)]2-4×1×2≥0,k ≤-22-1或k ≥22-1时.由⎩⎪⎨⎪⎧k +12≤0,f=2≥0解得k ≤-1,所以k ≤-22-1.综上所述,1k <,即)122,(--∞∈k .题十三: 若a >0,则x >3a 或x <-a ;若a =0,则x ≠0,x ∈R ;若a <0,则x <3a 或x >-a . 详解:原不等式可以化为:(x -3a )(x +a )>0, 若a >0即3a >-a ,则x >3a 或x <-a ;若a =0即3a =-a ,则x 2>0,x ≠0,x ∈R ; 若a <0即3a <-a ,则x <3a 或x >-a .题十四: a ∈[-114,12).详解:A ={x |-12≤x ≤2},设f (x )=x 2-ax +3a ,(1)当Δ=a 2-4·3a <0,即0<a <12时,B =Ø,满足B ⊆A ;(2)当Δ=a 2-12a ≥0,要使B ⊆A ,则f (x )=x 2-ax +3a 的图象满足下图所示,即⎩⎪⎨⎪⎧-12≤a 2≤2Δ=a 2-12a ≥0f-12f,解得-114≤a ≤0,综上可得a ∈[-114,12).题十五: C .详解:∵不等式ax 2-bx +c >0的解集是(-12,2),∴方程ax 2-bx +c =0的根是-12,2,且a <0.由韦达定理,得b a =32>0,ca=-1<0.∵a <0,∴b <0,c >0.又当x =1时,不等式成立,即得a -b +c >0.题十六: 证明:∵x 1、x 2是方程f (x )-x =0的两根,∴f (x )-x =a (x -x 1)(x -x 2).∵x ∈(0,x 1), ∴x -x 1<0,x -x 2<0,∵a >0,∴f (x )-x >0,即f (x )>x .f (x )-x 1=f (x )-x +x -x 1=a (x -x 1)(x -x 2)+(x -x 1)=(x -x 1)(ax -ax 2+1).∵0<x 2<1a,∴ax 2<1,1-ax 2>0,ax >0,∴ax -ax 2+1>0,x -x 1<0,∴(x -x 1)(ax -ax 2+1)<0,f (x )-x 1<0,f (x )<x 1,综上所述:x <f (x )<x 1.。

2015届高考数学一轮总复习 7-1不等式的性质及解法

2015届高考数学一轮总复习 7-1不等式的性质及解法

2015届高考数学一轮总复习 7-1不等式的性质及解法基础巩固强化一、选择题1.已知函数f (x )=3ax +1-2a ,在(-1,1)上存在x 0,使f (x 0)=0,则a 的取值范围是( ) A .-1<a <15B .a >15C .a <-1或a >15D .a <-1[答案] C[分析] a ≠0时,f (x )为一次函数,故由x 0∈(-1,1)时,f (x 0)=0知,f (-1)与f (1)异号. [解析] 由题意得f (-1)·f (1)<0, 即(-3a +1-2a )·(3a +1-2a )<0,即(5a -1)(a +1)>0,∴a <-1或a >15.故选C.2.(文)(2013·北京东城区统一检测)“x 2-2x -3>0成立”是“x >3成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[答案] B[解析] 由x 2-2x -3>0得x <-1或x >3,所以x 2-2x -3>0是x >3成立的必要不充分条件. (理)(2012·河北保定模拟)若a >0且a ≠1,b >0,则“log a b >0”是“(a -1)(b -1)>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[答案] C[解析] ∵a >0且a ≠1,b >0,∴log a b >0⇔⎩⎪⎨⎪⎧ 0<a <1,0<b <1,或⎩⎪⎨⎪⎧a >1,b >1.⇔(a -1)(b -1)>0.3.(文)(2013·西安模拟)设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是( )A .(0,5π6)B .(-π6,5π6)C .(0,π)D .(-π6,π)[答案] D[解析] 由题设得0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,∴-π6<2α-β3<π.(理)(2013·汉中一模)若a 、b 均为不等于零的实数,给出下列两个条件.条件甲:对于区间[-1,0]上的一切x 值,ax +b >0恒成立;条件乙:2b -a >0,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] ∵当x ∈[-1,0]时,恒有ax +b >0成立, ∴当x =-1时,b -a >0,当x =0时,b >0, ∴2b -a >0,∴甲⇒乙;但乙推不出甲, 例如:a =32b ,b >0时,则2b -a =12b >0,但是,当x =-1时,a ·(-1)+b =-32b +b =-12b <0,∴甲是乙的充分不必要条件.4.(文)(2013·天津)设a 、b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件[答案] A[解析] 因为a 2≥0,而(a -b )a 2<0,所以a -b <0,即a <b ;由a <b ,a 2≥0,得到(a -b )a 2≤0,所以(a -b )a 2<0是a <b 的充分不必要条件.(理)(2013·安徽盟校联考)已知a ,b ∈R ,下列四个条件中,使ab >1成立的必要不充分条件是( )A .a >b -1B .a >b +1C .|a |>|b |D .ln a >ln b[答案] C[解析] 由a b >1⇔ab -1>0⇔a -b b >0⇔(a -b )b >0⇔a >b >0或a <b <0⇒|a |>|b |,但由|a |>|b |不能得到a >b >0或a <b <0,即得不到a b >1,故|a |>|b |是使ab>1成立的必要不充分条件.故选C.5.(文)(2013·安徽名校模拟)已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( )A .(-∞,2)∪(3,+∞)B .(-∞,1)∪(2,+∞)C .(-∞,1)∪(3,+∞)D .(1,3) [答案] C[解析] 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +(x 2-4x +4),则f (a )>0对于任意的a ∈[-1,1]恒成立,易知只需f (-1)=x 2-5x +6>0且f (1)=x 2-3x +2>0即可,联立方程并解得x <1或x >3.(理)已知p :∃x ∈R ,mx 2+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( )A .m ≥1B .m ≤-1C .m ≤-1或m ≥1D .-1≤m ≤1[答案] A[解析] ∵p ∨q 为假命题,∴p 和q 都是假命题. 由p :∃x ∈R ,mx 2+2≤2为假,得∀x ∈R ,mx 2+2>0, ∴m ≥0. ①由q :∀x ∈R ,x 2-2mx +1>0为假,得∃x 0∈R ,x 20-2mx 0+1≤0, ∴Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1. ② 由①和②得m ≥1,故选A.6.(文)已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f ⎝⎛⎭⎫12=2,则不等式f (log 4x )>2的解集为( )A .(0,12)∪(2,+∞)B .(2,+∞)C .(0,22)∪(2,+∞) D .(0,22) [答案] A[解析] 作出函数f (x )的示意图如图,则log 4x >12或log 4x <-12,解得x >2或0<x <12.故选A.(理)(2013·北京西城区期末)已知a >b >0,给出下列四个不等式:①a 2>b 2;②2a >2b -1;③a -b >a-b ;④a 3+b 3>2a 2b .其中一定成立的不等式为( ) A .①②③ B .①②④ C .①③④ D .②③④[答案] A[解析] 由a >b >0可得a 2>b 2,①正确;由a >b >0可得a >b -1,而函数f (x )=2x 在R 上是增函数,∴2a >2b -1,②正确;∵a >b >0,∴a >b ,∴(a -b )2-(a -b )2=2ab -2b =2b (a -b )>0,∴a -b >a -b ,③正确;若a =3,b =2,则a 3+b 3=35,2a 2b =36,a 3+b 3<2a 2b ,④错误.二、填空题7.(文)(2013·烟台模拟)已知关于x 的不等式ax 2+2x +c >0的解集为(-13,12),则不等式-cx 2+2x -a >0的解集为________.[答案] (-2,3)[解析] 由条件知-13,12是方程ax 2+2x +c =0的两根,由根与系数的关系可得,⎩⎨⎧-13+12=-2a ,-13×12=c a ,∴⎩⎪⎨⎪⎧a =-12,c =2. ∴不等式-cx 2+2x -a >0化为,x 2-x -6<0, 解之得-2<x <3,∴所求不等式的解集为(-2,3).(理)规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a 、b 为正实数),若1⊙k <3,则k 的取值范围为________.[答案] (0,1)[解析] 由题意得1⊙k =k +1+k <3,即(k +2)(k -1)<0,所以0<k <1.8.(文)(2013·扬州期末)若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是________. [答案] a 1b 1+a 2b 2>a 1b 2+a 2b 1[解析] 作差可得(a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=(a 1-a 2)(b 1-b 2),∵a 1<a 2,b 1<b 2,∴(a 1-a 2)(b 1-b 2)>0,即a 1b 1+a 2b 2>a 1b 2+a 2b 1.(理)(2013·南京一模)给出下列四个命题: ①若a >b >0,则1a >1b ;②若a >b >0,则a -1a >b -1b ;③若a >b >0,则2a +b a +2b >ab;④设a ,b 是互不相等的正数,则|a -b |+1a -b≥2.其中正确命题的序号是________(把你认为正确命题的序号都填上). [答案] ②[解析] ①作差可得1a -1b =b -a ab ,而a >b >0,则b -a ab <0,∴①错误.②若a >b >0,则1a <1b ,进而可得-1a >-1b ,所以可得a -1a >b -1b 正确.∵2a +b a +2b -a b =b (2a +b )-a (a +2b )(a +2b )b =b 2-a 2(a +2b )b =(b -a )(b +a )(a +2b )b <0,∴③错误.④当a -b <0时此式不成立,∴④错误.9.(2013·黄山模拟)定义a *b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b .已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c =________.(结果用a ,b ,c 表示)[答案] c[解析] ∵log 30.3<0<0.33<1<30.3, ∴c <b <a ,∴(a *b )*c =b *c =c .10.若关于x 的不等式m (x -1)>x 2-x 的解集为{x |1<x <2},则实数m 的值为________. [答案] 2[解析] 解法1:由m (x -1)>x 2-x 整理得(x -1)(m -x )>0,即(x -1)(x -m )<0,又m (x -1)>x 2-x 的解集为{x |1<x <2},所以m =2.解法2:由条件知,x =2是方程m (x -1)=x 2-x 的根, ∴m =2.能力拓展提升一、选择题11.(文)(2013·长沙模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)[答案] C[解析] ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0, ∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点, 又f (x )在(-2,-1)上有一个零点, 则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0, ∴-32<a <-56,又a ∈Z ,∴a =-1,不等式f (x )>1即为-x 2-x >0,解得-1<x <0.(理)对于实数x ,规定[x ]表示不大于x 的最大整数,那么使不等式4[x ]2-36[x ]+45<0成立的x 的取值范围是( )A .(32,152)B .[2,8]C .[2,8)D .[2,7][答案] C[解析] 由4[x ]2-36[x ]+45<0,得32<[x ]<152,又[x ]表示不大于x 的最大整数,所以2≤x <8.12.(文)(2012·包头一中期末)设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}[答案] B[解析] 令t =x -2,则f (x -2)>0化为f (t )>0,∴t ≥0时,2t -4>0,∴t >2,又f (x )为偶函数,∴t <0时,f (t )>0的解为t <-2,∴x -2>2或x -2<-2,∴x >4或x <0,故选B.[点评] 也可以先由偶函数定义求出f (x )在R 上的解析式,再代入f (x -2)>0中化为关于x 的不等式组求解.(理)(2013·山西诊断)已知定义在R 上的函数f (x )满足f (1)=1,且f (x )的导数f ′(x )在R 上恒有f ′(x )<12,则不等式f (x 2)<x 22+12的解集为( ) A .(1,+∞) B .(-∞,-1)C .(-1,1)D .(-∞,-1)∪(1,+∞)[答案] D[解析] 记g (x )=f (x )-12x -12,则有g ′(x )=f ′(x )-12<0,g (x )是R 上的减函数,且g (1)=f (1)-12×1-12=0.不等式f (x 2)<x 22+12,即f (x 2)-x 22-12<0,即g (x 2)<0,即g (x 2)<g (1),由g (x )是R 上的减函数得x 2>1,解得x <-1或x >1,即不等式f (x 2)<x 22+12的解集是(-∞,-1)∪(1,+∞),选D.13.(2013·银川一中二模)已知函数y =f (x )是定义在R 上的增函数,函数y =f (x -1)的图象关于点(1,0)对称,若对任意的x ,y ∈R ,不等式f (x 2-6x +21)+f (y 2-8y )<0恒成立,则当x >3时,x 2+y 2的取值范围是( )A .(3,7)B .(9,25)C .(13,49)D .(9,49)[答案] C[解析] 因为函数y =f (x -1)的图象关于点(1,0)对称,所以函数y =f (x )的图象关于原点对称,所以函数y =f (x )为R 上的奇函数,不等式f (x 2-6x +21)+f (y 2-8y )<0恒成立,即为f (x 2-6x +21)<-f (y 2-8y )=f (8y -y 2)恒成立,因为函数y =f (x )是定义在R 上的增函数,所以x 2-6x +21<8y -y 2恒成立,即x 2+y 2-6x -8y +21<0恒成立,即点(x ,y )恒在圆(x -3)2+(y -4)2=4内,当x >3时,x 2+y 2表示半圆(x -3)2+(y -4)2=4(x >3)上的点到原点的距离的平方,所以最大为(32+42+2)2=49,最小为点(3,2)到原点的距离的平方,即为32+22=13,所以x 2+y 2的取值范围是(13,49).二、填空题14.(2013·徐州调研)用锤子以均匀的力敲击铁钉进入木板,随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板部分的铁钉长度为前一次的1k (k ∈N *).已知一个铁钉受击3次后全部进入木板,且第1次受击后进入木板部分的铁钉长度是铁钉长的47,则从中提炼出一个不等式组为________.[答案] ⎩⎨⎧47+47k<147+47k +47k 2≥1(k ∈N *)[解析] ∵每次钉入木板部分的铁钉长度是前一次的1k ,且第一次钉入木板部分是铁钉长的47,∴第二、三次钉入木板部分的铁钉长度依次为铁钉总长的47k ,47k 2,由题意知,第二次铁钉还没有全部进入木板, ∴47+47k<1, 第三次铁钉已经全部进入木板,∴47+47k +47k2≥1,∴不等式组为⎩⎨⎧47+47k<1,47+47k +47k 2≥1.[点评] 没说“铁钉受击3次后恰好..全部进入木板”,第二个不等式就必须是“≥”号. 15.(文)若关于x 的不等式4x -2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为________.[答案] (-∞,0][解析] ∵4x -2x +1-a ≥0在[1,2]上恒成立,∴4x -2x +1≥a 在[1,2]上恒成立.令y =4x -2x +1=(2x )2-2×2x +1-1=(2x -1)2-1.∵1≤x ≤2,∴2≤2x ≤4.由二次函数的性质可知:当2x =2,即x =1时,y 有最小值0,∴a ∈(-∞,0].(理)已知a >1,若不等式log a +1x -log a x +5<n +6n 对任意n ∈N *恒成立,则实数x 的取值范围是________.[答案] (1,+∞)[解析] ∵n >0,n +6n ≥26,当n =6时取等号,但n ∈N *,∴n =2或3,当n =2时,n +6n =5,当n =3时,n +6n =5,∴n +6n ≥5,由条件知,log a +1x -log a x +5<5,∴log a +1x <log a x ,又a >1,∴x >1.三、解答题16.(文)(2013·淮南质检)已知抛物线y =(m -1)x 2+(m -2)x -1(x ∈R ). (1)当m 为何值时,抛物线与x 轴有两个交点?(2)若关于x 的方程(m -1)x 2+(m -2)x -1=0的两个不等实根的倒数平方和不大于2,求m 的取值范围.[解析] (1)根据题意,m ≠1且Δ>0,由Δ=(m -2)2-4(m -1)(-1)>0, 得m 2>0,所以m ∈R ,且m ≠1,m ≠0. (2)在m ≠0且m ≠1的条件下, ⎩⎪⎨⎪⎧x 1+x 2=m -21-m ,x 1·x 2=11-m,因为1x 1+1x 2=x 1+x 2x 1x 2=m -2,所以1x 21+1x 22=(1x 1+1x 2)2-2x 1x 2=(m -2)2+2(m -1)≤2. 得m 2-2m ≤0,所以0≤m ≤2.所以m 的取值范围是{m |0<m <1或1<m ≤2}.(理)(2013·金华模拟)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小.[解析] (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n )(a ≠0), 当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0. ∴f (x )-m <0,即f (x )<m .考纲要求1.了解现实世界和日常生活中的不等关系. 2.了解不等式(组)的实际背景.3.了解证明不等式的基本方法——比较法. 4.会从实际情境中抽象出一元二次不等式模型.5.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系. 6.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. 补充说明1.实际应用中不等关系与数学语言间的关系将实际问题中的不等关系写成相应的不等式(组)时,应注意关键性的文字语言与对应数学符号之间的正确转换.2.利用不等式性质求数(式)的取值范围应用不等式的性质求多个变量线性组合的范围问题时,由于变量间相互制约,“取等号”的条件会有所不同,故解此类题目要特别小心.一般来说,可采用整体换元或待定系数法解决.3.数的大小比较比较数或式的大小时,可以利用不等式的性质进行比较;也可以作差(与0比)和作商(与1比)比较;还可以利用函数的单调性进行比较,要注意结合题目的特点选取恰当的方法.4.含参数的不等式问题一般分为两类:一类是已知参数的取值范围,求不等式的解;另一类是求使不等式有解(或恒成立)的参数的取值范围,求解时要注意分类讨论.对于含参数的一元二次不等式,往往既要按二次项系数a 的正负分类,又要按判别式Δ的符号分类.5.恒成立问题一般地,a >f (x )恒成立,f (x )的最大值为M ,则a >M ; a <f (x )恒成立,f (x )的最小值为m ,则a <m . 6.不等式的解法 (1)分式不等式的解法 先通分化为一边为f (x )g (x ),一边为0的形式,再等价转化为整式不等式.注意A B >0⇔A ·B >0;AB <0⇔A ·B <0;A B ≥0⇔⎩⎪⎨⎪⎧ A ·B ≥0B ≠0;AB ≤0⇔⎩⎪⎨⎪⎧A ·B ≤0B ≠0.如果用去分母的方法,一定要考虑分母的符号. (2)高次不等式的解法只要求会解可化为一边为0,另一边可分解为一次或二次的积式的,解法用穿根法,要注意穿根时“奇过偶不过”.(3)含绝对值不等式的解法:一是令每个绝对值式为0,找出其零点作为分界点,分段讨论;二是平方法.(4)含根号的不等式解法,一是换元法,二是平方法.(5)解含参数的不等式时,要对参数分类讨论(常见的有一次项系数含字母、二次项系数含字母、二次不等式的判别式Δ、指对不等式中的底数含参数等).(6)超越不等式讨论解的个数可用图解法.7.(1)无理不等式和含绝对值的不等式多数题目都可以用平方法求解,平方后要注意取值范围是否发生变化.(2)关于不等式解集的选择题,大多能用检验排除法求解.(3)去掉绝对值号时可以用绝对值的定义.(4)含无理式时,必须注意定义域的制约.(5)注意方程的根、函数的零点,不等式解集的端点三者之间的关系.8.求解含参不等式恒成立问题的常用方法 (1)变换主元,转化为一次函数问题;(2)转化为二次函数或二次方程,利用根的判别式或数形结合思想求解. (3)分离参变量,构造函数求最值. 备选习题1.(2012·哈尔滨三中模拟)已知f (x )是周期为2的奇函数,当0<x <1时,f (x )=lg x .设a =f (65),b=f (32),c =f (52),则( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b[答案] D[解析] ∵f (x )是周期为2的奇函数, ∴f (52)=f (12),f (32)=-f (12),f (65)=-f (45),∵0<x <1时,f (x )=lg x ,∴f (12)<f (45)<0,∴f (12)<0<-f (45)<-f (12),即c <a <b .2.关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,则a 的最大值与最小值的和是( ) A .2 B .1 C .0 D .-1 [答案] C[解析] 方程x 2-ax -20a 2=0的两根是x 1=-4a ,x 2=5a ,则由关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,得|x 1-x 2|=|9a |≤9,即-1≤a ≤1,且a ≠0,故选C.3.(2013·山东期末)下列四个条件中,使a >b 成立的充分而不必要的条件是( ) A .(a +b 2)2>abB .ac >bcC .a 2>b 2D .a -b >1[答案] D[解析] 对于选项A ,由(a +b 2)2>ab 可得a 2+2ab +b 2>4ab ,即a 2-2ab +b 2>0,(a -b )2>0,故(a +b 2)2>ab 不能推出a >b 成立,排除A ;对于选项B ,由ac >bc 可得(a -b )c >0,当c >0时,a >b 成立,当c ≤0时,a >b 不成立,排除B ;对于选项C ,由a 2>b 2可得(a +b )(a -b )>0,不能推得a >b 成立,排除C ;对于选项D ,由a -b >1可得a >b ,但由a >b 不能推得a >b +1,即a -b >1成立,故a -b >1是a >b 成立的充分不必要条件,故选D.4.已知0<x <y <a <1,m =log a x +log a y ,则有( ) A .m <0B .0<m <111 C .1<m <2D .m >2[答案] D [解析] 由0<x <y <a 得,0<xy <a 2,又0<a <1,故m =log a x +log a y =log a (xy )>log a a 2=2,故选D.5.若规定⎪⎪⎪⎪⎪⎪a b c d =|ad -bc |,则不等式log 2⎪⎪⎪⎪⎪⎪111x <0的解集为________. [答案] (0,1)∪(1,2) [解析] 据题意⎪⎪⎪⎪⎪⎪111x =|x -1|, ∴不等式log 2⎪⎪⎪⎪⎪⎪111x <0化为log 2|x -1|<0, ∴0<|x -1|<1,∴1<x <2或0<x <1.。

2015年高考数学一轮复习 真题模拟汇编 6-1 不等关系与不等式 理

2015年高考数学一轮复习 真题模拟汇编 6-1 不等关系与不等式 理

2015年高考数学一轮复习 真题模拟汇编 6-1 不等关系与不等式 理1. [2013·某某七校联考]若a <b <0,则下列不等式不能成立的是( )A. 1a >1bB. 2a >2bC. |a |>|b |D. (12)a >(12)b 解析:由a <b <0知ab >0,因此a ·1ab <b ·1ab ,即1a >1b成立;由a <b <0,得-a >-b >0,因此|a |>|b |>0成立;又y =(12)x 是减函数,所以(12)a >(12)b 成立. 答案:B2. [2014·某某模拟]设α∈(0,π2),β∈[0,π2],那么2α-β3的取值X 围是( ) A. (0,5π6) B. (-π6,5π6) C. (0,π) D. (-π6,π) 解析:由题设得0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,∴-π6<2α-β3<π. 答案:D3. [2012·某某高考]设a >b >1,c <0,给出下列三个结论:①c a >c b ;②a c <b c ;③log b (a -c )>log a (b -c ).其中所有正确结论的序号是( )A. ①B. ①②C. ②③D. ①②③解析:由a >b >1,c <0,得1a <1b ,c a >c b;因为幂函数y =x c (c <0)在(0,+∞)上是减函数,所以a c <b c;因为a -c >b -c >0,所以log b (a -c )>log a (a -c )>log a (b -c ).故①②③均正确.答案:D4. [2014·某某期末]若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是________. 解析:作差可得(a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=(a 1-a 2)·(b 1-b 2),∵a 1<a 2,b 1<b 2,∴(a 1-a 2)(b 1-b 2)>0,即a 1b 1+a 2b 2>a 1b 2+a 2b 1.答案:a 1b 1+a 2b 2>a 1b 2+a 2b 15. [2014·某某模拟]若变量x ,y 满足约束条件⎩⎪⎨⎪⎧ 3≤2x +y ≤96≤x -y ≤9,则z =x +2y 的最小值为________.解析:令z =x +2y =λ(2x +y )+μ(x -y )=(2λ+μ)x +(λ-μ)y , ∴⎩⎪⎨⎪⎧ 2λ+μ=1λ-μ=2,∴⎩⎪⎨⎪⎧ λ=1μ=-1,∴z =(2x +y )-(x -y ),又∵3≤2x +y ≤9,-9≤-(x -y )≤-6,∴-6≤(2x +y )-(x -y )≤3,即-6≤z ≤3,∴z min =-6.答案:-6。

2015届高考数学大一轮复习 函数的基本性质精品试题 文(含2014模拟试题)

2015届高考数学大一轮复习 函数的基本性质精品试题 文(含2014模拟试题)

精品题库试题文数1.(河北省衡水中学2014届高三下学期二调) 给定命题p:函数为偶函数;命题q:函数为偶函数,下列说法正确的是( )A.是假命题 B.是假命题C.是真命题 D.是真命题[解析] 1.因为且定义域关于原点对称,所以为偶函数,为真命题,若,则,所以为奇函数,为真命题,得为假命题.2.(河南省豫东豫北十所名校2014届高中毕业班阶段性检测(四)) 已知为偶函数,且在区间(1,+∞) 上单调递减,,,则有(A) a< b< c (B) b< c< a (C) c< b< a (D) a< c< b [解析] 2.因为为偶函数,所以,关于对称,由在区间(1,+∞) 上单调递减,得在区间上单调递增,因为,,所以.3.(重庆市名校联盟2014届高三联合考试)已知定义在R上的偶函数f(x) 满足f(x-4) =f(x), 且在区间[0,2]上f(x) =x,若关于x的方程有且只有三个不同的根,则a的范围为()A. (2,4)B. (2, )C.D.[解析] 3.因为,所以函数的周期为4,又因为为偶函数,且时,,所以可以作出当时,的草图,如图所示,,再由关于的方程有三个不同根,可得,解得.4.(重庆市杨家坪中学2014届高三下学期第一次月考) 设函数,则下列结论错误的是()A. D(x)的值域为{0,1}B. D(x)是偶函数C. D(x)不是周期函数D. D(x)不是单调函数[解析] 4.A、D项显然正确,若为有理数,则若为无理数,则所以D(x)是偶函数也是周期函数,故B正确,C错误.5.(重庆市杨家坪中学2014届高三下学期第一次月考) 下列区间中,函数,在其上为增函数的是()A. B. C. D.[解析] 5.因为是增函数,所以只需求的增区间,将先关于轴对称得,然后向右平移2个单位得,最后将轴下方的关于对称得的图象如图所示,由图像可知在上为增函数.6.(江西省重点中学协作体2014届高三第一次联考)已知函数(k≠0),定义函数,给出下列命题:①函数是奇函数;②;③当k<0,若mn<0,m+n<0,总有成立,其中所有正确命题的个数是()A.0 B.1 C.2 D.3[解析] 6.若,则,,若,则,,所以是奇函数,故①正确,若,则当时,,当时,,所以,故②错误,因为若mn<0,m+n<0,所以不妨设,因为k<0,所以当时,为减函数,所以,得,即,故③正确.7.(重庆一中2014年高三下期第一次月考) 定义在实数集函数满足,且为奇函数,现有以下三种叙述:(1)是函数的一个周期;(2)的图像关于点对称;(3)是偶函数. 其中正确的是()A (2)(3) B (1)(2) C (1)(3) D (1)(2)(3)[解析] 7.因为,所以,的周期为4,又因为为奇函数,所以,即,,所以,即,奇函数,因为为奇函数,所以关于原点对称,则关于对称,根据周期为4得关于对称,所以(1)(2)(3)都正确.8.(山西省忻州一中、康杰一中、临汾一中、长治一中四校2014届高三第三次联考) 定义在上的函数满足且时,则( )A.-1 B.4/5 C.1 D.-4/5[解析] 8.由得,所以函数的周期为4,又因为,所以,由得。

2015届高考数学大一轮复习基本不等式精品试题理[含2014模拟考试题]

2015届高考数学大一轮复习基本不等式精品试题理[含2014模拟考试题]

2015届高考数学大一轮复习基本不等式精品试题理(含2014模拟试题)1.(2014重庆一中高三下学期第一次月考,4)已知实数满足,则的值域为()(A)(B)(C)(D)[解析] 1. 由得,所以.2. (2014湖北黄冈高三4月模拟考试,7) 若实数、、满足,则的取值范围是()A.B.C.D.[解析] 2.因为,所以,所以,即;又因为,所以,所以的取值范围是.3. (2014河南郑州高中毕业班第一次质量预测, 10) 已知,是两个互相垂直的单位向量,且,则对任意的正实数,的最小值是()A. 2B.C. 4D.[解析] 3.是互相垂直的单位向量,设,,,由,,即,,,,,,当且仅当时取等号,,故的最小值为.4.(2013年广东省广州市高三4月综合测试,7,5分)某辆汽车购买时的费用是15万元,每年使用的保险费、路桥费、汽油费等约为1.5万元.年维修保养费用第一年3000元,以后逐年递增3000元,则这辆汽车报废的最佳年限(即使用多少年的年平均费用最少)是( )A. 8年B. 10年C. 12年D. 15年[解析] 4.设使用年的年平均费用为万元,则,当且仅当,即时等号成立,故这辆汽车报废的最佳年限是10年.5.(2013山东,12,5分)设正实数x, y, z满足x2-3xy+4y2-z=0. 则当取得最大值时, +-的最大值为( )A. 0B. 1C.D. 3[解析] 5.由x2-3xy+4y2-z=0, 得z=x2-3xy+4y2,∴==.又x、y、z为正实数, ∴+≥4,当且仅当x=2y时取等号, 此时z=2y2.∴+-=+-=-+=-+1, 当=1, 即y=1时, 上式有最大值1, 故选B.6.(2014山东青岛高三第一次模拟考试, 14) 已知均为正实数,且,则的最小值为__________.[解析] 6. 因为均为正数,且,所以,解得或(舍去),所以9,当且仅当时取等号.故的最小值为9.7. (2014广东广州高三调研测试,12) 已知点在曲线(其中为自然对数的底数)上,为曲线在点处的切线的倾斜角,则的取值范围是_______.[解析] 7. 由导数的几何意义,又因为,所以,故.8.(2014山东潍坊高三3月模拟考试数学(理)试题,13)若,则的最大值为.[解析]8.(当且仅当时等号成立).9.(2014湖北八校高三第二次联考数学(理)试题,12)已知正数x, y, z满足x+2y+3z=1, 则的最小值为.[解析]9.,而,所以的最小值为18.10. (2014湖南株洲高三教学质量检测(一),10) 已知是内的一点,且,,若,和的面积分别为,,,则的最小值是 .[解析] 10. 由已知得,,,即,而.11. (2014天津七校高三联考, 12) 若点(-2, -1) 在直线上,其中,则的最小值为.[解析] 11. 点在直线上,,即,又,,当且仅当,即时取等号.故的最小值为8.12.(2014广州高三调研测试, 12) 已知点在曲线(其中为自然对数的底数)上,为曲线在点处的切线的倾斜角,则的取值范围是.[解析] 12. ,又,,即的取值范围是.13.(2013湖北黄冈市高三三月质量检测,14,5分)已知椭圆是椭圆上两点,有下列三个不等式①②③. 其中不等式恒成立的序号是. (填所有正确命题的序号)[解析] 13.对于①,不妨设,易知当直线与椭圆在第一象限相切时,取得最大值,由,得,,令,得,此时,故此时. 故. 故.故①正确;对于②,在①式中,令,得,故②正确;对于③,由两式相乘得,故.故. 故. 故③正确.14.(2013年四川成都市高新区高三4月月考,13,5分)已知向量的模长都为,且,若正数满足,则的最大值为 .[解析] 14. 由平方,得, 得,化简得,解得. 即的最大值为2.15.(2013陕西,15A, 5分)已知a, b, m, n均为正数, 且a+b=1, mn=2, 则(am+bn) (bm+an) 的最小值为.[解析] 15.(am+bn) (bm+an) =ab(m2+n2) +mn(a2+b2) ≥2mnab+mn(a2+b2) =mn(a+b) 2=mn=2, 当且仅当m=n=时等号成立.16.(2013江苏,13,5分)在平面直角坐标系xOy中, 设定点A(a, a), P是函数y=(x> 0)图象上一动点. 若点P, A之间的最短距离为2, 则满足条件的实数a的所有值为.[解析] 16.设P,则|PA|2=(x-a) 2+=-2a+2a2-2,令t=x+≥2(当且仅当x=1时取“=” 号),则|PA|2=t2-2at+2a2-2.(1) 当a≤2时, (|PA|2) min=22-2a×2+2a2-2=2a2-4a+2,由题意知, 2a2-4a+2=8, 解得a=-1或a=3(舍).(2) 当a> 2时, (|PA|2) min=a2-2a×a+2a2-2=a2-2.由题意知, a2-2=8, 解得a=或a=-(舍),综上知, a=-1或.17.(2013天津,14,5分) 设a+b=2, b> 0, 则当a= 时, +取得最小值.[解析] 17.∵a+b=2, ∴+=+=+=++≥+2=+1.当且仅当=且a< 0, 即b=-2a, a=-2时, +取得最小值.18.(2014江苏苏北四市高三期末统考, 21C) 在平面直角坐标系中,已知直线的参数方程是(为参数);以为极点,轴正半轴为极轴的极坐标系中,圆的极坐标方程为. 由直线上的点向圆引切线,求切线长的最小值.[解析] 18.因为圆的极坐标方程为,所以,所以圆的直角坐标方程为,圆心为, 半径为1, (4分)因为直线的参数方程为(为参数),所以直线上的点向圆C 引切线长是,所以直线上的点向圆C引的切线长的最小值是. (10分)D. (2014江苏苏北四市高三期末统考, 21D) 已知均为正数, 证明:.证法一因为均为正数,由均值不等式得,因为,所以 . (5分)故.又3,所以原不等式成立. (10分)证法二因为均为正数,由基本不等式得,,.所以.同理,(5分)所以.所以原不等式成立. (10分)19. (2014江苏苏北四市高三期末统考, 17) 某单位拟建一个扇环面形状的花坛(如图所示) ,该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成. 按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米. 设小圆弧所在圆的半径为米,圆心角为(弧度).(Ⅰ)求关于的函数关系式;(Ⅱ)已知在花坛的边缘(实线部分) 进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米. 设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?[解析] 19. 解析(Ⅰ)设扇环的圆心角为,则,所以,(4分)(Ⅱ)花坛的面积为.装饰总费用为,(9分)所以花坛的面积与装饰总费用的比,令,则,当且仅当t=18时取等号,此时.答:当时,花坛的面积与装饰总费用的比最大. (14分)(注:对也可以通过求导,研究单调性求最值,同样给分)20. (本题满分12分)设关于不等式的解集为,且,. (1), 恒成立,且,求的值;(2)若,求的最小值并指出取得最小值时的值.[解析] 20.(1),,即,,又 . (5分)(2),当且仅当,即时上式取等号又所以,的最小值是,取最小值时 . (12分)21.(2013年湖北七市高三4月联考,22,14分) 已知函数f(x) =lnx,g(x) =k·.(I) 求函数F(x) = f(x) - g(x) 的单调区间;(Ⅱ) 当x> 1时,函数f(x) > g(x) 恒成立,求实数k的取值范围;(Ⅲ) 设正实数a1,a2,a3,…,a n满足a1+a2+a3+…+a n=1,求证:ln(1+) +ln(1+) +…+ln(1+) > .21.22.(2013课标Ⅱ,24,10分)设a, b, c均为正数, 且a+b+c=1, 证明:(Ⅰ) ab+bc+ca≤;(Ⅱ) ++≥1.22.23.(2013课标Ⅱ,17,12分)△ABC的内角A, B, C的对边分别为a, b, c, 已知a=bcos C+csinB.(Ⅰ) 求B;(Ⅱ) 若b=2, 求△ABC面积的最大值.23.答案和解析理数[答案] 1. C[解析] 1. 由得,所以.[答案] 2. A[解析] 2.因为,所以,所以,即;又因为,所以,所以的取值范围是.[答案] 3. B[解析] 3.是互相垂直的单位向量,设,,,由,,即,,,,,,当且仅当时取等号,,故的最小值为.[答案] 4.B[解析] 4.设使用年的年平均费用为万元,则,当且仅当,即时等号成立,故这辆汽车报废的最佳年限是10年.[答案] 5.B[解析] 5.由x2-3xy+4y2-z=0, 得z=x2-3xy+4y2,∴==.又x、y、z为正实数, ∴+≥4,当且仅当x=2y时取等号, 此时z=2y2.∴+-=+-=-+=-+1, 当=1, 即y=1时, 上式有最大值1, 故选B.[答案] 6. 9[解析] 6. 因为均为正数,且,所以,解得或(舍去),所以9,当且仅当时取等号.故的最小值为9.[答案] 7.[解析] 7. 由导数的几何意义,又因为,所以,故.[答案] 8.[解析]8.(当且仅当时等号成立).[答案] 9. 18[解析]9.,而,所以的最小值为18.[答案] 10. 18[解析] 10. 由已知得,,,即,而.[答案] 11. 8[解析] 11. 点在直线上,,即,又,,当且仅当,即时取等号.故的最小值为8.[答案] 12.[解析] 12. ,又,,即的取值范围是. [答案] 13.①②③[解析] 13.对于①,不妨设,易知当直线与椭圆在第一象限相切时,取得最大值,由,得,,令,得,此时,故此时. 故. 故.故①正确;对于②,在①式中,令,得,故②正确;对于③,由两式相乘得,故.故. 故. 故③正确.[答案] 14.2[解析] 14. 由平方,得, 得,化简得,解得. 即的最大值为2.[答案] 15.2[解析] 15.(am+bn) (bm+an) =ab(m2+n2) +mn(a2+b2) ≥2mnab+mn(a2+b2) =mn(a+b) 2=mn=2, 当且仅当m=n=时等号成立.[答案] 16.-1或[解析] 16.设P,则|PA|2=(x-a) 2+=-2a+2a2-2,令t=x+≥2(当且仅当x=1时取“=” 号),则|PA|2=t2-2at+2a2-2.(1) 当a≤2时, (|PA|2) min=22-2a×2+2a2-2=2a2-4a+2,由题意知, 2a2-4a+2=8, 解得a=-1或a=3(舍).(2) 当a> 2时, (|PA|2) min=a2-2a×a+2a2-2=a2-2.由题意知, a2-2=8, 解得a=或a=-(舍),综上知, a=-1或.[答案] 17.-2[解析] 17.∵a+b=2, ∴+=+=+=++≥+2=+1.当且仅当=且a< 0, 即b=-2a, a=-2时, +取得最小值.[答案] 18.查看解析[解析] 18.因为圆的极坐标方程为,所以,所以圆的直角坐标方程为,圆心为, 半径为1, (4分)因为直线的参数方程为(为参数),所以直线上的点向圆C 引切线长是,所以直线上的点向圆C引的切线长的最小值是. (10分)D. (2014江苏苏北四市高三期末统考, 21D) 已知均为正数, 证明:.证法一因为均为正数,由均值不等式得,因为,所以 . (5分)故.又3,所以原不等式成立. (10分)证法二因为均为正数,由基本不等式得,,. 所以.同理,(5分)所以.所以原不等式成立. (10分)[答案] 19.查看解析[解析] 19. 解析(Ⅰ)设扇环的圆心角为,则,所以,(4分)(Ⅱ)花坛的面积为.装饰总费用为,(9分)所以花坛的面积与装饰总费用的比,令,则,当且仅当t=18时取等号,此时.答:当时,花坛的面积与装饰总费用的比最大. (14分)(注:对也可以通过求导,研究单调性求最值,同样给分)[答案] 20.查看解析[解析] 20.(1),,即,,又 . (5分)(2),当且仅当,即时上式取等号又所以,的最小值是,取最小值时 . (12分)[答案] 21.(Ⅰ).由的判别式①当即时,恒成立,则在单调递增②当时,在恒成立,则在单调递增③当时,方程的两正根为则在单调递增,单调递减,单调递增综上,当时,只有单调递增区间当时,单调递增区间为,单调递减区间为(Ⅱ)即时,恒成立当时,在单调递增∴当时,满足条件当时,在单调递减则在单调递减此时不满足条件故实数的取值范围为.(Ⅲ)由(2)知,在恒成立.令则,∴.又,∴∴.21.[答案] 22.(Ⅰ) 由a2+b2≥2ab, b2+c2≥2bc, c2+a2≥2ca得a2+b2+c2≥ab+bc+c a.由题设得(a+b+c) 2=1, 即a2+b2+c2+2ab+2bc+2c a=1.所以3(ab+bc+ca) ≤1, 即ab+bc+ca≤.(Ⅱ) 因为+b≥2a, +c≥2b, +a≥2c,故+++(a+b+c) ≥2(a+b+c),即++≥a+b+c.所以++≥1.22.[答案] 23.(Ⅰ) 由已知及正弦定理得sin A=sin Bcos C+sin C·sin B. ①又A=π-(B+C),故sin A=sin(B+C) =sin Bcos C+cos Bsin C. ②由①, ②和C∈(0, π) 得sin B=cos B.又B∈(0, π), 所以B=.(Ⅱ) △ABC的面积S=acsin B=ac.由已知及余弦定理得4=a2+c2-2accos.又a2+c2≥2ac, 故ac≤, 当且仅当a=c时, 等号成立. 因此△ABC面积的最大值为+1.23.。

2015届高考数学(人教,理科)大一轮配套第六章不等式、推理与证明第1节不等关系与不等式

2015届高考数学(人教,理科)大一轮配套第六章不等式、推理与证明第1节不等关系与不等式

2009~2013年高考真题备选题库第6章 不等式、推理与证明及不等式选讲(选修4-5)第1节 不等关系与不等式考点 不等关系与不等式1.(2013浙江,5分)若α∈R ,则“α=0”是“sin α<cos α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:本题主要考查充要条件的判断、三角函数值等基础知识,意在考查考生的推理论证能力.当α=0时,sin α=0,cos α=1,∴sin α<cos α;而当sin α<cos α时,α=0或α=π6,…. 答案:A2.(2013天津,5分)设a ,b ∈R 则“(a -b )·a 2<0”是“a <b ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:本题主要考查充分条件、必要条件的判断,意在考查考生的逻辑推理能力.若(a -b )·a 2<0,则a ≠0,且a <b ,所以充分性成立;若a <b ,则a -b <0,当a =0时,(a -b )·a 2=0,所以必要性不成立.故“(a -b )·a 2<0”是“a <b ”的充分而不必要条件.答案:A3.(2011浙江,5分)若a ,b 为实数,则“0<ab <1”是“a <1b 或b >1a”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:对于0<ab <1,如果a >0,则b >0,a <1b 成立,如果a <0,则b <0,b >1a成立,因此“0<ab <1”是“a <1b 或b >1a ”的充分条件;反之,若a =-1,b =2,结论“a <1b或b >1a ”成立,但条件0<ab <1不成立,因此“0<ab <1”不是“a <1b 或b >1a”的必要条件;即“0<ab <1”是“a <1b 或b >1a”的充分而不必要条件. 答案:A4.(2010浙江,5分)设0<x <π2,则“x sin 2x <1”是“x sin x <1”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:当0<x <π2时,0<sin x <1, 故x sin x <1⇒x sin x sin x <sin x <1⇒x sin 2x <1,但x sin 2x <1⇒x sin x <1sin x ,而1sin x>1,故不能保证x sin x <1.答案:B5.(2010江苏,5分)设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y 4的最大值是________. 解析:由题设知,实数x ,y 均为正实数,则条件可化为lg3≤lg x +2lg y ≤lg8,lg4≤2lg x-lg y ≤lg9,令lg x =a ,lg y =b ,则有⎩⎪⎨⎪⎧lg3≤a +2b ≤3lg22lg2≤2a -b ≤2lg3,又设t =x 3y 4,则lg t =3lg x -4lg y =3a -4b ,令3a -4b =m (a +2b )+n (2a -b ),解得m =-1,n =2,即lg t =-(a +2b )+2(2a -b )≤-lg3+4lg3=lg27,∴x 3y 4的最大值是27. 另解:将4≤x 2y ≤9两边分别平方得,16≤x 4y 2≤81,① 又由3≤xy 2≤8可得,18≤1xy 2≤13,② 由①×②得,2≤x 3y 4≤27,即x 3y 4的最大值是27. 答案:276.(2011安徽,12分)(1)设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y+xy ; (2)设1<a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c .解:(1)由于x ≥1,y ≥1,所以x +y +1xy ≤1x +1y+xy ⇒⇐ xy (x +y )+1≤y +x +(xy )2. 将上式中的右式减左式,得[y +x +(xy )2]-[xy (x +y )+1]=[(xy )2-1]-[xy (x +y )-(x +y )]=(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1).既然x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0,从而所要证明的不等式成立.(2)设log a b =x ,log b c =y ,由对数的换底公式得log c a =1xy ,log b a =1x ,log c b =1y,log a c =xy .于是,所要证明的不等式即为x+y+1xy≤1x+1y+xy,其中x=log a b≥1,y=log b c≥1.故由(1)可知所要证明的不等式成立.。

2015年高考数学不等式(文)

不等式1.【2015高考天津,文2】设变量,y x 满足约束条件2020280x x y x y -≤⎧⎪-≤⎨⎪+-≤⎩,则目标函数3y z x =+的最大值为( )(A) 7 (B) 8 (C) 9 (D)14 【答案】C【解析】()()513y 2289922z x x x y =+=-++-+?,当 2,3x y == 时取得最大值9,故选C.此题也可画出可行域,借助图像求解,2.【2015高考浙江,文6】有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是( )A .ax by cz ++B .az by cx ++C .ay bz cx ++D .ay bx cz ++ 【答案】B【解析】由x y z <<,a b c <<,所以()()()ax by cz az by cx a x z c z x ++-++=-+-()()0x z a c =-->,故ax by cz az by cx ++>++;同理,()ay bz cx ay bx cz ++-++ ()()()()0b z x c x z x z c b =-+-=--<,故ay bz cx ay bx cz ++<++.因为()az by cx ay bz cx ++-++()()()()0a z y b y z a b z y =-+-=--<,故az by cx ay bz cx ++<++.故最低费用为az by cx ++.故选B.3.【2015高考重庆,文10】若不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形,且其面积等于43,则m 的值为( )(A)-3 (B) 1 (C) 43(D)3 【答案】B【解析】如图,,由于不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为ABC ∆,且其面积等于43,再注意到直线:20AB x y +-=与直线:20BC x y m -+=互相垂直,所以ABC ∆是直角三角形, 易知,(2,0),(1,1)A B m m -+,2422(,)33m m C -+;从而112222122223ABC m S m m m ∆+=+⋅+-+⋅=43, 化简得:2(1)4m +=,解得3m =-,或1m =,检验知当3m =-时,已知不等式组不能表示一个三角形区域,故舍去,所以1m =;故选B. 4.【2015高考湖南,文7】若实数,a b 满足12ab a b+=,则ab 的最小值为( ) A 2 B 、2 C 、2 D 、4 【答案】C 【解析】12121220022ab a b ab ab a b a b a b ab+=∴=+≥⨯=∴≥QQ ,>,>,,(当且仅当2b a =时取等号),所以ab 的最小值为22 C.5.【2015高考四川,文9】设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为( )(A )252 (B )492(C )12 (D )146.【2015高考广东,文4】若变量x,y满足约束条件224x yx yx+≤⎧⎪+≥⎨⎪≤⎩,则23z x y=+的最大值为()A.10 B.8 C.5 D.2【答案】C【解析】作出可行域如图所示:作直线:l230x y+=,再作一组平行于l的直线:l23x y z+=,当直线l经过点A时,23z x y=+取得最大值,由224x yx+=⎧⎨=⎩得:41xy=⎧⎨=-⎩,所以点A的坐标为()4,1-,所以()max24315z=⨯+⨯-=,故选C.7.【2015高考重庆,文14】设,0,5a b a b>+=,1++3a b+________.【答案】23【解析】由222ab a b≤+两边同时加上22a b+得222()2()a b a b+≤+两边同时开方即得:222()a b a b+≤+(0,0a b>>且当且仅当a b=时取“=”),从而有1++3a b+2(13)2932a b≤+++=⨯=(当且仅当13a b+=+,即73,22a b==时,“=”成立),故填:23.8.【2015高考新课标1,文15】若x,y满足约束条件20210220x yx yx y+-≤⎧⎪-+≤⎨⎪-+≥⎩,则z=3x+y的最大值为.【答案】4【解析】作出可行域如图中阴影部分所示,作出直线l:30x y+=,平移直线l,当直线l:z=3x+y过点A时,z取最大值,由2=021=0x yx y+-⎧⎨-+⎩解得A(1,1),∴z=3x+y的最大值为4.9.【2015高考陕西,文11】某企业生产甲乙两种产品均需用A,B两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元.4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元D.18万元【答案】D【解析】设该企业每天生产甲乙两种产品分别x,y吨,则利润34z x y=+由题意可列0,0321228x yx yx y≥≥⎧⎪+≤⎨⎪+≤⎩,其表示如图阴影部分区域:当直线340x y z +-=过点(2,3)A 时,z 取得最大值324318z =⨯+⨯=,故答案选D 。

(人教A版,理科)2015届高考数学一轮细讲精练【第六篇】不等式

第六篇 不等式A第1讲 不等关系与不等式[最新考纲]1.了解现实世界和日常生活中的不等关系. 2.了解不等式(组)的实际背景. 3.掌握不等式的性质及应用.知 识 梳 理1.两个实数比较大小的方法(1)作差法⎩⎨⎧a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b ;(2)作商法⎩⎪⎨⎪⎧ab >1⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ∈R ,b >0),a b <1⇔a <b (a ∈R ,b >0).2.不等式的性质 (1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇔a >c ;(3)可加性:a >b ⇔a +c >b +c ,a >b ,c >d ⇒a +c >b +d ; (4)可乘性:a >b ,c >0⇒ac >bc ;a >b >0,c >d >0⇒ac >bd ; (5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥1); (6)可开方:a >b >0⇒n a >nb (n ∈N ,n ≥2).辨 析 感 悟1.对两个实数大小的比较的认识(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.(√) (2)若ab >1.则a >b .(×) 2.对不等式性质的理解(3)在一个不等式的两边同乘以一个非零实数,不等式仍然成立.(×) (4)同向不等式具有可加性和可乘性.(×)(5)(2014·丽水模拟改编)设a ,b 为实数,则“0<ab <1”是“b <1a ”成立的既不充分也不必要条件.(√)(6)(2013·北京卷改编)若a >b ,则1a <1b .(×) 若a >b ,则a 2>b 2.(×) 若a >b ,则a 3>b 3.(√) [感悟·提升]两个防范 一是在使用不等式时,一定要搞清它们成立的前提条件,不可强化或弱化成立的条件,如“同向不等式”才可相加、“同向且两边同正的不等式”才可相乘;“可乘性中的”c 的符号等都需注意,如(2)、(3)、(4).二是利用特值法判断两个式子大小时,错误的关系式,只需取特值举反例即可,而正确的关系式,则需推理论证.如(6)中当a =1,b =-2时,1a <1b 不成立;当a =-1,b =-2时,a 2>b 2不成立.学生用书第94页考点一 用不等式(组)表示不等关系【例1】 某商人如果将进货单价为8元的商品按每件10元销售,每天可销售100件,现在他采用提高售价,减少进货量的办法增加利润.已知这种商品的单价每提高1元,销售量就相应减少10件.若把提价后商品的单价设为x 元,怎样用不等式表示每天的利润不低于300元?解 若提价后商品的单价为x 元,则销售量减少x -101×10件,因此,每天的利润为(x -8)[100-10(x -10)]元,则“每天的利润不低于300元”可以表示为不等式(x -8)[100-10(x -10)]≥300.规律方法 对于不等式的表示问题,关键是理解题意,分清变化前后的各种量,得出相应的代数式,然后用不等式表示.而对于涉及条件较多的实际问题,则往往需列不等式组解决.【训练1】 某化工厂制定明年某产品的生产计划,受下面条件的制约:生产此产品的工人不超过200人;每个工人的年工作时间约为2 100 h ;预计此产品明年的销售量至少为80 000袋;生产每袋产品需用4 h ;生产每袋产品需用原料20 kg ;年底库存原料600 t ,明年可补充1 200 t .试根据这些数据预测明年的产量.解设明年的产量为x 袋,则⎩⎨⎧4x ≤200×2 100,x ≥80 000,0.02x ≤600+1 200,解得80 000≤x ≤90 000.预计明年的产量在80 000袋到90 000袋之间.考点二 比较大小【例2】 (1)若a =ln 22,b =ln 33,c =ln 55,则 A .a <b <cB .c <b<aC .c <a <bD .b <a<c(2)已知a ≠1且a ∈R ,试比较11-a与1+a 的大小. (1)解析 易知a ,b ,c 都是正数,b a =2ln 33ln 2=log 89>1,所以b >a ;a c =5ln 22ln 5=log 2532>1,所以a >c .即c <a <b .故选C. 答案 C(2)解 ∵11-a -(1+a )=a 21-a,当a=0时,a21-a=0,∴11-a=1+a;当a<1,且a≠0时,a21-a>0,∴11-a>1+a;当a>1时,a21-a<0,∴11-a<1+a.规律方法(1)比较大小时,要把各种可能的情况都考虑进去,对不确定的因素需进行分类讨论,每一步运算都要准确,每一步推理都要有充分的依据.(2)用作商法比较代数式的大小一般适用于分式、指数式、对数式,作商只是思路,关键是化简变形,从而使结果能够与1比较大小.【训练2】(2012·四川卷)设a,b为正实数.现有下列命题:①若a2-b2=1,则a-b<1;②若1b-1a=1,则a-b<1;③若|a-b|=1,则|a-b|<1;④若|a3-b3|=1,则|a-b|<1.其中的真命题有________(写出所有真命题的编号).解析①中,a2-b2=(a+b)(a-b)=1,a,b为正实数,若a-b≥1,则必有a+b>1,又a-b=1a+b,不合题意,故①正确.②中,1b-1a=a-bab=1,只需a-b=ab即可.如取a=2,b=23满足上式,但a-b=43>1,故②错.③中,a,b为正实数,所以a+b>|a-b|=1,且|a-b|=|(a+b)(a-b)|=|a+b|>1,故③错.④中,|a3-b3|=|(a-b)(a2+ab+b2)|=|a-b|(a2+ab+b2)=1.若|a-b|≥1,不妨取a>b>1,则必有a2+ab+b2>1,不合题意,故④正确.答案①④考点三不等式的性质及其应用【例3】 (1)(2014·泉州模拟)若x >y ,a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤a y >bx 这五个式子中,恒成立的所有不等式的序号是________.(2)(2012·湖南卷)设a >b >1,c <0,给出下列三个结论: ①c a >cb ;②ac <b c ;③log b (a -c )>log a (b -c ). 其中所有的正确结论的序号是 ( ). A.① C .②③审题路线解析 (1)令x =-2,y =-3,a =3,b =2,符合题设条件x >y ,a >b , ∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不成立. 又∵a y =3-3=-1,b x =2-2=-1,∴a y =bx ,因此⑤不成立.由不等式的性质可推出②④成立.(2)由不等式性质及a >b >1知1a <1b ,又c <0,所以c a >cb ,①正确;构造函数y =xc ,∵c <0,∴y =x c 在(0,+∞)上是减函数,又a >b >1,∴a c <b c ,知②正确;∵a >b>1,a -c >0,∴a -c >b -c >1,∵a >b >1,∴log b (a -c )>log a (a -c )>log a (b -c ),知③正确. 答案 (1)②④ (2)D规律方法 (1)判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.(2)在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数,指数函数的性质等.【训练3】 若1a <1b <0,则下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b-1b ;④ln a 2>ln b 2中,正确的不等式是 ( ).A .①④ C .①③解析 法一 由1a <1b <0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b <0,1ab >0.故有1a +b <1ab ,即①正确;②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误;③中,因为b <a <0,又1a <1b <0,所以a -1a >b -1b ,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确.法二 因为1a <1b <0,故可取a =-1,b =-2. 显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0,所以④错误.综上所述,可排除②④.答案 C1.判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便. 2.倒数关系在不等式中的作用:⎩⎨⎧ ab >0,a >b ⇒1a <1b ;⎩⎨⎧ab >0,a <b ⇒1a >1b . 3.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,作差法的主要步骤为:作差——变形——判断正负.在所给不等式是积、商、幂的形式时,可考虑比商.易错辨析6——多次使用同向不等式的可加性而致误【典例】 设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________.[错解] 由⎩⎨⎧ 1≤f (-1)≤2,2≤f (1)≤4,得⎩⎨⎧1≤a -b ≤2, ①2≤a +b ≤4. ② ①+②得32≤a ≤3.②-①得12≤b ≤1. 由此得4≤f (-2)=4a -2b ≤11. 所以f (-2)的取值范围是[4,11]. [答案] [4,11][错因] 本题错解的主要原因是多次使用同向不等式的可加性而导致了f (-2)的范围扩大.[正解] 法一 设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ),即4a -2b =(m +n )a +(n -m )b . 于是得⎩⎨⎧ m +n =4,n -m =-2,解得⎩⎨⎧m =3,n =1,∴f (-2)=3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10. 法二 由⎩⎨⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎪⎨⎪⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4, ∴5≤3f (-1)+f (1)≤10, 故5≤f (-2)≤10.法三 由⎩⎨⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分, 当f (-2)=4a -2b 过点 A ⎝ ⎛⎭⎪⎫32,12时, 取得最小值4×32-2×12=5, 当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, ∴5≤f (-2)≤10. [答案] [5,10][防范措施] 利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题一般是利用整体思想,通过“一次性”不等关系的运算求得待求整体的范围,是避免错误的有效途径.【自主体验】如果-1<a+b<3,3<a-b<5,那么2a-3b的取值范围是().A.(2,8) B.(5,14)C.(6,13) D.(7,13)解析设a+b=x,a-b=y,∴-1<x<3,3<y<5,a=x+y2,b=x-y2,∴2a-3b=x+y-32(x-y)=-12x+52y.又∵-32<-12x<12,152<52y<252,∴6<-12x+52y<13,∴2a-3b的取值范围是(6,13).答案 C对应学生用书P297基础巩固题组(建议用时:40分钟)一、选择题1.(2014·深圳一模)设x,y∈R,则“x≥1且y≥2”是“x+y≥3”的().A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析 由不等式性质知当x ≥1且y ≥2时,x +y ≥3;而当x =2,y =32时满足x +y ≥3,但不满足x ≥1且y ≥2,故“x ≥1且y ≥2”是“x +y ≥3”的充分而不必要条件. 答案 A2.(2014·保定模拟)已知a >b ,则下列不等式成立的是( ). A .a 2-b 2≥0 B .ac >bc C .|a |>|b | D .2a >2b解析 A 中,若a =-1,b =-2,则a 2-b 2≥0不成立;当c =0时,B 不成立;当0>a >b 时,C 不成立;由a >b 知2a >2b 成立,故选D. 答案 D3.(2014·河南三市三模)已知0<a <1,x =log a 2+log a 3,y =12log a 5,z =log a 21-log a 3,则( ). A .x >y >z B .z >y >x C .z >x >y D .y >x >z解析 由题意得x =log a 6,y =log a 5,z =log a 7,而0<a <1,∴函数y =log a x 在(0,+∞)上单调递减,∴y >x >z . 答案 D4.已知a <0,-1<b <0,那么下列不等式成立的是( ). A .a >ab >ab 2 B .ab 2>ab >a C .ab >a >ab 2 D .ab >ab 2>a解析 由-1<b <0,可得b <b 2<1,又a <0, ∴ab >ab 2>a . 答案 D5.(2014·晋城模拟)已知下列四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推出1a <1b 成立的有( ).A .1个B .2个C .3个D .4个解析 运用倒数性质,由a >b ,ab >0可得1a <1b ,②、④正确.又正数大于负数,①正确,③错误,故选C. 答案 C 二、填空题6.(2013·扬州期末)若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是________.解析 作差可得(a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=(a 1-a 2)·(b 1-b 2),∵a 1<a 2,b 1<b 2,∴(a 1-a 2)(b 1-b 2)>0,即a 1b 1+a 2b 2>a 1b 2+a 2b 1. 答案 a 1b 1+a 2b 2>a 1b 2+a 2b 17.若角α,β满足-π2<α<β<π2,则2α-β的取值范围是________. 解析 ∵-π2<α<β<π2, ∴-π<2α<π,-π2<-β<π2,∴-3π2<2α-β<3π2,又∵2α-β=α+(α-β)<α<π2, ∴-3π2<2α-β<π2. 答案 ⎝ ⎛⎭⎪⎫-3π2,π28.(2014·大庆模拟)对于实数a ,b ,c 有下列命题:①若a >b ,则ac <bc ;②若ac 2>bc 2,则a >b ;③若a <b <0,则a 2>ab >b 2;④若c >a >b >0,则ac -a>b c -b;⑤若a >b ,1a >1b ,则a >0,b <0.其中真命题是________(把正确命题的序号写在横线上).解析 若c >0,则①不成立;由ac2>bc2知c2≠0,则a>b,②成立;由a<b<0知a2>ab>b2,③成立;由c>a>b>0,得0<c-a<c-b,则1c-a>1c-b,则ac-a>bc-b,④成立;若a>b,1a-1b=b-aab>0,则a>0,b<0,⑤成立.答案②③④⑤三、解答题9.比较下列各组中两个代数式的大小:(1)3x2-x+1与2x2+x-1;(2)当a>0,b>0且a≠b时,a a b b与a b b a.解(1)∵3x2-x+1-2x2-x+1=x2-2x+2=(x-1)2+1>0,∴3x2-x+1>2x2+x -1.(2)a a b ba b b a=aa-b b b-a=a a-b⎝⎛⎭⎪⎫1ba-b=⎝⎛⎭⎪⎫aba-b.当a>b,即a-b>0,ab>1时,⎝⎛⎭⎪⎫aba-b>1,∴a a b b>a b b a.当a<b,即a-b<0,0<ab<1时,⎝⎛⎭⎪⎫aba-b>1,∴a a b b>a b b a.∴当a>0,b>0且a≠b时,a a b b>a b b a.10.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,试判断谁先到教室?解设从寝室到教室的路程为s,甲、乙两人的步行速度为v1,跑步速度为v2,且v1<v2.甲所用的时间t甲=s2v1+s2v2=s(v1+v2)2v1v2,乙所用的时间t乙=2sv1+v2,∴t 甲t 乙=s (v 1+v 2)2v 1v 2×v 1+v 22s =(v 1+v 2)24v 1v 2=v 21+v 22+2v 1v 24v 1v2>4v 1v 24v 1v 2=1.∵t 甲>0,t 乙>0,∴t 甲>t 乙,即乙先到教室.能力提升题组 (建议用时:25分钟)一、选择题1.下面四个条件中,使a >b 成立的充分不必要条件是( ). A .a >b +1 B .a >b -1 C .a 2>b 2 D .a 3>b 3解析 由a >b +1,得a >b +1>b ,即a >b ,而由a >b 不能得出a >b +1,因此,使a >b 成立的充分不必要条件是a >b +1. 答案 A2.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( ). A .c ≥b >a B .a >c ≥b C .c >b >a D .a >c >b解析 c -b =4-4a +a 2=(2-a )2≥0,∴c ≥b ,将已知两式作差得2b =2+2a 2,即b =1+a 2,∵1+a 2-a =⎝ ⎛⎭⎪⎫a -122+34>0,∴1+a 2>a ,∴b =1+a 2>a ,∴c ≥b >a . 答案 A 二、填空题3.(2014·三门峡二模)给出下列条件:①1<a <b ;②0<a <b <1;③0<a <1<b .其中,能推出log b 1b <log a 1b <log a b 成立的条件的序号是________.解析 若1<a <b ,则1b <1a <1<b ,∴log a 1b <log a 1a =-1=log b 1b ,故条件①不成立;若0<a <b <1,则b <1<1b <1a ,∴log a b >log a 1b >log a 1a =-1=log b 1b ,故条件②成立;若0<a <1<b ,则0<1b <1,∴log a 1b >0,log a b <0,故条件③不成立. 答案 ② 三、解答题4.设0<x <1,a >0且a ≠1,比较|log a (1-x )|与|log a (1+x )|的大小. 解 法一 作差比较 当a >1时,由0<x <1知, log a (1-x )<0,log a (1+x )>0, ∴|log a (1-x )|-|log a (1+x )|=-log a (1-x )-log a (1+x )=-log a (1-x 2), ∵0<1-x 2<1,∴log a (1-x 2)<0,从而-log a (1-x 2)>0,故|log a (1-x )|>|log a (1+x )|. 当0<a <1时,同样可得|log a (1-x )|>|log a (1+x )|. 法二 平方作差 |log a (1-x )|2-|log a (1+x )|2 =[log a (1-x )]2-[log a (1+x )]2 =log a (1-x 2)·log a 1-x1+x=log a (1-x 2)·log a ⎝ ⎛⎭⎪⎫1-2x 1+x >0.∴|log a (1-x )|2>|log a (1+x )|2, 故|log a (1-x )|>|log a (1+x )|. 法三 作商比较∵|log a (1-x )||log a (1+x )|=⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=|log (1+x )(1-x )|, ∵0<x <1,∴log (1+x )(1-x )<0,故|log a (1-x )||log a (1+x )|=-log (1+x )(1-x )=log (1+x )11-x =1+log (1+x )⎝ ⎛⎭⎪⎫11-x ·11+x =1+log (1+x )11-x 2. 由0<x <1知,1+x >1及11-x 2>1, ∴log (1+x )11-x 2>0,故|log a (1-x )||log a (1+x )|>1,∴|log a (1-x )|>|log a (1+x )|.学生用书第96页第2讲 一元二次不等式及其解法[最新考纲]1.会从实际情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的关系. 3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.知 识 梳 理1.一元二次不等式的解法(1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0). (2)计算相应的判别式.(3)当Δ≥0时,求出相应的一元二次方程的根.(4)利用二次函数的图象与x 轴的交点确定一元二次不等式的解集. 2.三个“二次”间的关系 判别式Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2有两相异实根x 1,有两相等实根x 1=x 2=没有实数根+bx +c =0 (a >0)的根 x 2(x 1<x 2)-b 2aax 2+bx +c >0 (a >0)的解集 {x |x >x 2或x <x 1} ⎩⎨⎧⎭⎬⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集{x |x 1<x <x 2}∅ ∅辨 析 感 悟1.对一元二次不等式的解法的理解(1)(2013·广东卷改编)不等式x 2+x -2<0的解集为-2<x <1.(×) (2)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.(√)(3)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.(√)(4)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .(×)2.对一元二次不等式恒成立问题的认识(5)不等式ax 2+bx +c≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.(×) (6)若关于x 的不等式ax 2+x -1≤0的解集为R ,则a ≤-14.(√) (7)若不等式x 2+ax +1≥0对x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为-52.(√)[感悟·提升]三个防范 一是当Δ<0时,不等式ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别,如(4)中当a >0时,解集为R ;当a <0时,解集为∅.二是对于不等式ax 2+bx +c >0求解时不要忘记讨论a =0时的情形,如(5)中当a =b =0,c ≤0时,不等式ax 2+bx +c ≤0在R 上也是恒成立的.三是解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论分类要不重不漏.考点一 一元二次不等式的解法【例1】 (2014·大连模拟)已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( ).A.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫12,+∞B.⎝ ⎛⎭⎪⎫-32,12 C.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫32,+∞ D.⎝ ⎛⎭⎪⎫-12,32 解析 由f (x )>0,得ax 2+(ab -1)x -b >0,又其解集是(-1,3),∴a <0.且⎩⎪⎨⎪⎧1-ab a =2,-b a =-3,解得a =-1或13,∴a =-1,b =-3.∴f (x )=-x 2+2x +3, ∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,得4x 2+4x -3>0, 解得x >12或x <-32,故选A. 答案 A规律方法 解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.学生用书第97页【训练1】 (2013·江苏卷)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________. 解析 ∵f (x )是定义在R 上的奇函数,∴f (0)=0,又当x <0时,-x >0, ∴f (-x )=x 2+4x . 又f (x )为奇函数, ∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0),∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.(1)当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5; (2)当x =0时,f (x )>x 无解;(3)当x <0时,由f (x )>x 得-x 2-4x >x ,解得-5<x <0. 综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞). 答案 (-5,0)∪(5,+∞)考点二 含参数的一元二次不等式的解法【例2】 (2013·烟台期末)解关于x 的不等式:ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1.②当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a 或x ≤-1.③当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即a >-2,解得2a ≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥2a ,或x ≤-1;当-2<a <0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a ≤x ≤-1;当a =-2时,不等式的解集为{x |x =-1};当a <-2时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤2a . 规律方法 解含参数的一元二次不等式分类讨论的依据(1)二次项中若含有参数应讨论是小于0,等于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)当不等式对应方程的根的个数不确定时,讨论判别式Δ与0的关系. (3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.【训练2】 (1)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a 等于A.52B.72C.154D.152(2)解关于x 的不等式(1-ax )2<1.(1)解析 法一 ∵不等式x 2-2ax -8a 2<0的解集为(x 1,x 2),∴x 1,x 2是方程x 2-2ax -8a 2=0的两根.由根与系数的关系知⎩⎪⎨⎪⎧x 1+x 2=2a ,x 1x 2=-8a 2,∴x 2-x 1=(x 1+x 2)2-4x 1x 2=(2a )2-4(-8a 2)=15,又∵a >0,∴a =52,故选A.法二 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0, ∵a >0,∴不等式x 2-2ax -8a 2<0的解集为(-2a,4a ), 又∵不等式x 2-2ax -8a 2<0的解集为(x 1,x 2), ∴x 1=-2a ,x 2=4a .∵x 2-x 1=15, ∴4a -(-2a )=15,解得a =52,故选A.答案 A(2)解 由(1-ax )2<1,得a 2x 2-2ax <0, 即ax (ax -2)<0,当a =0时,x ∈∅.当a >0时,由ax (ax -2)<0,得a 2x ⎝ ⎛⎭⎪⎫x -2a <0,即0<x <2a .当a <0时,2a <x <0.综上所述:当a =0时,不等式解集为空集;当a >0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <2a ;当a <0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a<x <0.考点三 一元二次不等式恒成立问题【例3】 已知函数f (x )=mx 2-mx -1.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围.解 (1)由题意可得m =0或⎩⎨⎧m <0,Δ=m 2+4m <0⇔m =0或-4<m <0⇔-4<m ≤0. 故m 的取值范围是(-4,0].(2)法一 要使f (x )<-m +5在[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0,所以m <67,则0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)⇒m -6<0, 所以m <6,所以m <0. 综上所述:m的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67. 法二 ∵f (x )<-m +5⇔m (x 2-x +1)<6, ∵x 2-x +1>0,∴m <6x 2-x +1对于x ∈[1,3]恒成立,只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈[1,3]上为增函数.则g (x )在[1,3]上为减函数, ∴[g (x )]min =g (3)=67,∴m <67. 所以m 的取值范围是⎝ ⎛⎭⎪⎫-∞,67.规律方法 (1)不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎨⎧a >0,Δ<0.不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎨⎧a <0,Δ<0.(2)含参数的一元二次不等式在某区间内恒成立问题,常有两种处理方法:一是利用二次函数区间上的最值来处理;二是先分离出参数,再去求函数的最值来处理,一般后者比较简单.【训练3】 (1)若关于x 的不等式ax 2+2x +2>0在R 上恒成立,则实数a 的取值范围是________.(2)(2014·淄博模拟)若不等式(a -a 2)(x 2+1)+x ≤0对一切x ∈(0,2]恒成立,则a 的取值范围是A.⎝⎛⎦⎥⎤-∞,1-32 B.⎣⎢⎡⎭⎪⎫1+32,+∞C.⎝⎛⎦⎥⎤-∞,1-32∪⎣⎢⎡⎭⎪⎫1+32,+∞ D.⎣⎢⎡⎦⎥⎤1-32,1+32 解析 (1)当a =0时,原不等式可化为2x +2>0,其解集不为R ,故a =0不满足题意,舍去;当a ≠0时,要使原不等式的解集为R , 只需⎩⎪⎨⎪⎧a >0,Δ=22-4×2a <0,解得a >12.综上,所求实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.(2)∵x ∈(0,2], ∴a 2-a ≥x x 2+1=1x +1x.要使a 2-a ≥1x +1x 在x ∈(0,2]时恒成立,则a 2-a ≥⎝ ⎛⎭⎪⎪⎫1x +1x max , 由基本不等式得x +1x ≥2,当且仅当x =1时,等号成立,即⎝ ⎛⎭⎪⎪⎫1x +1x max =12. 故a 2-a ≥12,解得a ≤1-32或a ≥1+32.答案 (1)⎝ ⎛⎭⎪⎫12,+∞ (2)C学生用书第98页1.解不等式的基本思路是等价转化,分式不等式整式化,使要求解的不等式转化为一元一次不等式或一元二次不等式,进而获得解决.2.当判别式Δ<0时,ax 2+bx +c >0(a >0)解集为R ;ax 2+bx +c <0(a >0)解集为∅.二者不要混为一谈.3.含参数的不等式的求解,注意选好分类标准,避免盲目讨论. 4.对于恒成立问题,常用到以下两个结论: (1)a ≥f (x )恒成立⇔a ≥f (x )max ;(2)a ≤f (x )恒成立⇔a ≤f (x )min .思想方法5——数形结合思想在“三个二次”间关系的应用【典例】 (2012·福建卷)对于实数a 和b ,定义运算“*”;a *b =⎩⎨⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.解析 由定义可知:f (x )=(2x -1)*(x -1)=⎩⎨⎧(2x -1)2-(2x -1)(x -1),x ≤0,(x -1)2-(2x -1)(x -1),x >0,∴f (x )=⎩⎨⎧(2x -1)x ,x ≤0,-(x -1)x ,x >0.作出函数f (x )的图象,如图所示.由图可知,当0<m <14时,f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3. 不妨设x 1<x 2<x 3,易知x 2>0,且x 2+x 3=2×12=1, ∴0<x 2x 3<⎝⎛⎭⎪⎫x 2+x 322,即0<x 2x 3<14. 令⎩⎪⎨⎪⎧(2x -1)x =14,x <0,解得x =1-34或1+34(舍去). ∴1-34<x 1<0, ∴3-14>-x 1>0,∴0<-x 1x 2x 3<3-116, ∴1-316<x 1x 2x 3<0. 答案 ⎝ ⎛⎭⎪⎫1-316,0[反思感悟] “三个二次”间关系,其实质是抓住二次函数y =ax 2+bx +c (a ≠0)的图象与横轴的交点、二次不等式ax 2+bx +c >0(a ≠0)的解集的端点值、二次方程ax 2+bx +c =0(a ≠0)的根是同一个问题.解决与之相关的问题时,可利用函数与方程思想、化归思想将问题转化,结合二次函数的图象来解决. 【自主体验】1.已知函数f (x )=⎩⎨⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析 由函数f (x )的图象可知(如下图),满足f (1-x 2)>f (2x )分两种情况:①⎩⎪⎨⎪⎧1-x 2≥0,x ≥0,1-x 2>2x⇒0≤x <2-1;②⎩⎪⎨⎪⎧1-x 2>0,x <0⇒-1<x <0. 综上可知:-1<x <2-1.答案 (-1,2-1)2.已知函数f (x )=⎩⎨⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.解析 画出f (x )=⎩⎪⎨⎪⎧2x -1,x >0-x 2-2x ,x ≤0的图象,如图.由函数g (x )=f (x )-m 有3个零点,结合图象得:0<m <1,即m ∈(0,1). 答案 (0,1)基础巩固题组(建议用时:40分钟)一、选择题1.(2014·长春调研)已知集合P ={x |x 2-x -2≤0},Q ={x |log 2(x -1)≤1},则(∁R P )∩Q =().A .[2,3]B .(-∞,-1]∪[3,+∞)C .(2,3]D .(+∞,-1]∪(3,+∞)解析 依题意,得P ={x |-1≤x ≤2},Q ={x |1<x ≤3},则(∁R P )∩Q =(2,3]. 答案 C2.(2014·沈阳质检)不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是( ).A .[-4,4]B .(-4,4)C .(-∞,-4]∪[4,+∞)D .(-∞,-4)∪(4,+∞)解析 不等式x 2+ax +4<0的解集不是空集,只需Δ=a 2-16>0,∴a <-4或a >4,故选D. 答案 D3.(2013·南通二模)已知f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2+3x ,x <0,则不等式f (x )<f (4)的解集为( ).A .{x |x ≥4}B .{x |x <4}C .{x |-3<x <0}D .{x |x <-3} 解析 f (4)=42=2,不等式即为f (x )<2. 当x ≥0时,由x2<2,得0≤x <4;当x <0时,由-x 2+3x <2,得x <1或x >2,因此x <0. 综上,x <4.故f (x )<f (4)的解集为{x |x <4}. 答案 B4.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( ). A .(2,3)B .(-∞,2)∪(3,+∞) C.⎝ ⎛⎭⎪⎫13,12 D.⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞解析由题意知-12,-13是方程ax2-bx-1=0的根,所以由根与系数的关系得-12+⎝⎛⎭⎪⎫-13=ba,⎝⎛⎭⎪⎫-12×⎝⎛⎭⎪⎫-13=-1a.解得a=-6,b=5,不等式x2-bx-a<0即为x2-5x+6<0,解集为(2,3).答案 A5.已知函数f(x)=ax2+bx+c,不等式f(x)<0的解集为{x|x<-3,或x>1},则函数y=f(-x)的图象可以为().解析由f(x)<0的解集为{x|x<-3,或x>1}知a<0,y=f(x)的图象与x轴交点为(-3,0),(1,0),∴f(-x)图象开口向下,与x轴交点为(3,0),(-1,0).答案 B二、填空题6.已知关于x的不等式ax-1x+1<0的解集是(-∞,-1)∪⎝⎛⎭⎪⎫-12,+∞,则a=________.解析由于不等式ax-1x+1<0的解集是(-∞,-1)∪⎝⎛⎭⎪⎫-12,+∞,故-12应是ax-1=0的根,∴a=-2.答案-27.(2013·四川卷)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.解析∵f(x)是偶函数,∴f(x)=f(|x|).又x≥0时,f(x)=x2-4x,不等式f(x+2)<5⇒f(|x+2|)<5⇒|x+2|2-4|x+2|<5⇒(|x+2|-5)(|x+2|+1)<0⇒|x+2|-5<0⇒|x+2|<5⇒-5<x+2<5⇒-7<x<3.故解集为(-7,3).答案(-7,3)8.(2014·福州期末)若不等式x2-(a+1)x+a≤0的解集是[-4,3]的子集,则a的取值范围是________.解析原不等式即(x-a)(x-1)≤0,当a<1时,不等式的解集为[a,1],此时只要a≥-4即可,即-4≤a<1;当a=1时,不等式的解为x=1,此时符合要求;当a>1时,不等式的解集为[1,a],此时只要a≤3即可,即1<a≤3.综上可得-4≤a≤3.答案[-4,3]三、解答题9.求不等式12x2-ax>a2(a∈R)的解集.解∵12x2-ax>a2,∴12x2-ax-a2>0,即(4x+a)(3x-a)>0,令(4x+a)(3x-a)=0,得:x1=-a4,x2=a3.①a>0时,-a4<a3,解集为⎩⎨⎧⎭⎬⎫x|x<-a4或x>a3;②a=0时,x2>0,解集为{x|x∈R且x≠0};③a<0时,-a4>a3,解集为⎩⎨⎧⎭⎬⎫x|x<a3或x>-a4.综上所述,当a>0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.10.(2014·长沙质检)已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.解 法一 f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1)时,f (x )在[-1,+∞)上单调递增, f (x )min =f (-1)=2a +3.要使f (x )≥a 恒成立, 只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1; ②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2, 由2-a 2≥a ,解得-1≤a ≤1.综上所述,所求a 的取值范围是[-3,1]. 法二 令g (x )=x 2-2ax +2-a ,由已知, 得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立, 即Δ=4a 2-4(2-a )≤0或⎩⎨⎧Δ>0,a <-1,g (-1)≥0.解得-3≤a ≤1.所求a 的取值范围是[-3,1].能力提升题组 (建议用时:25分钟)一、选择题1.(2013·安徽卷)已知一元二次不等式f (x )<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >12,则f (10x )>0的解集为( ).A .{x |x <-1或x >-lg 2}B .{x |-1<x <-lg 2}C .{x |x >-lg 2}D .{x |x <-lg 2}解析 依题意知f (x )>0的解为-1<x <12,故-1<10x <12,解得x <lg 12=-lg 2. 答案 D2.(2013·西安二模)在R 上定义运算:⎣⎢⎡⎦⎥⎤a b cd =ad -bc .若不等式⎣⎢⎡⎦⎥⎤x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为( ). A .-12 B .-32 C.13 D.32解析 原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,-12≤a ≤32.故选D. 答案 D 二、填空题3.(2014·铜陵一模)已知二次函数f (x )的二次项系数为a ,且不等式f (x )>0的解集为(1,2),若f (x )的最大值小于1,则a 的取值范围是________.解析 由题意知a <0,可设f (x )=a (x -1)(x -2)=ax 2-3ax +2a ,∴f (x )max =f ⎝ ⎛⎭⎪⎫32=-a4<1, ∴a >-4,故-4<a <0. 答案 (-4,0) 三、解答题4.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3). (1)若方程f (x )+6a =0有两个相等的根,求f (x )的解析式;(2)若f (x )的最大值为正数,求a 的取值范围. 解 (1)∵f (x )+2x >0的解集为(1,3), f (x )+2x =a (x -1)(x -3),且a <0,因而f (x )=a (x -1)(x -3)-2x =ax 2-(2+4a )x +3a .① 由方程f (x )+6a =0,得ax 2-(2+4a )x +9a =0.② 因为方程②有两个相等的根, 所以Δ=[-(2+4a )]2-4a ·9a =0, 即5a 2-4a -1=0,解得a =1或a =-15. 由于a <0,舍去a =1,将a =-15代入①, 得f (x )=-15x 2-65x -35.(2)由f (x )=ax 2-2(1+2a )x +3a =a ⎝⎛⎭⎪⎫x -1+2a a 2-a 2+4a +1a 及a <0,可得f (x )的最大值为-a 2+4a +1a .由⎩⎪⎨⎪⎧-a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0.故当f (x )的最大值为正数时,实数a 的取值范围是 (-∞,-2-3)∪(-2+3,0).第3讲 二元一次不等式(组)与简单的线性规划问题[最新考纲]1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. 3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知 识 梳 理1.二元一次不等式(组)表示的平面区域(1)一般地,二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧的所有点组成的平面区域(半平面)不含边界直线.不等式Ax +By +C ≥0所表示的平面区域(半平面)包括边界直线.(2)对于直线Ax +By +C =0同一侧的所有点(x ,y ),使得Ax +By +C 的值符号相同,也就是位于同一半平面内的点,其坐标适合同一个不等式Ax +By +C >0;而位于另一个半平面内的点,其坐标适合另一个不等式Ax +By +C <0.(3)由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分. 2.线性规划的有关概念名称 意义线性约束条件 由x ,y 的一次不等式(或方程)组成的不等式组,是对x ,y 的约束条件目标函数 关于x ,y 的解析式 线性目标函数 关于x ,y 的一次解析式 可行解 满足线性约束条件的解(x ,y ) 可行域 所有可行解组成的集合最优解 使目标函数达到最大值或最小值的可行解线性规划问题求线性目标函数在线性约束条件下的最大值或最小值的问题辨 析 感 悟1.对二元一次不等式(组)表示的平面区域的认识(1)点(x 1,y 1),(x 2,y 2)在直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0,异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.(√) (2)第二、四象限表示的平面区域可以用不等式xy <0表示.(√)(3)(教材习题改编)已知变量x ,y 满足约束条件⎩⎨⎧x -y +3≥0,-1≤x ≤1,y ≥1,则其表示的平面区域的面积为4.(√)2.对简单的线性规划问题的理解(4)线性目标函数取得最值的点一定在可行域的顶点或边界上.(√)(5)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.(×)(6)(2013·湖南卷改编)若变量x ,y 满足约束条件⎩⎨⎧y ≤2xx +y ≤1y ≥-1,则x +2y 的最大值是53.(√) [感悟·提升]1.确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.2.求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.学生用书第100页考点一 二元一次不等式(组)表示的平面区域【例1】 (1)(2014·济南模拟)不等式组⎩⎨⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为 ( ).A .4B .1C .5D .无穷大(2)(2013·安徽卷)在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域的面积是 ( ). A .2 2 B .2 3 C .4 2D .4 3解析(1)不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域如图所示(阴影部分),△ABC 的面积即为所求.求出点A ,B ,C 的坐标分别为(1,2),(2,2),(3,0),则△ABC 的面积为S =12×(2-1)×2=1.(2)由|OA →|=|OB →|=OA →·OB →=2,知<OA →,OB →>=π3. 设OA →=(2,0),OB →=(1,3),OP →=(x ,y ),则⎩⎪⎨⎪⎧x =2λ+μ,y =3μ,解得⎩⎪⎨⎪⎧μ=y 3,λ=12⎝⎛⎭⎪⎫x -y 3.由|λ|+|μ|≤1得|3x -y |+|2y |≤2 3. 作可行域如图.则所求面积S =2×12×2×23=4 3.答案 (1)B (2)D规律方法 二元一次不等式组所确定的平面区域是不等式组中各个不等式所表示的半平面区域的公共部分,画出平面区域的关键是把各个半平面区域确定准确,其基本方法是“直线定界、特殊点定域”.【训练1】 若不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是( ).A.⎣⎢⎡⎭⎪⎫43,+∞ B .(0,1]C.⎣⎢⎡⎦⎥⎤1,43 D .(0,1]∪⎣⎢⎡⎭⎪⎫43,+∞解析不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图(阴影部分),求A ,B 两点的坐标分别为⎝ ⎛⎭⎪⎫23,23和(1,0),若原不等式组表示的平面区域是一个三角形,则直线x +y =a 的a 的取值范围是0<a ≤1或a ≥43. 答案 D考点二 线性目标函数的最值【例2】 (1)(2013·天津卷)设变量x ,y 满足约束条件⎩⎨⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为 ( ). A .-7 B .-4 C .1D .2(2)(2013·新课标全国Ⅱ卷)已知a >0,x ,y 满足约束条件⎩⎨⎧x ≥1,x +y ≤3,y ≥a (x -3).若z =2x+y 的最小值为1,则a = ( ). A.14 B.12 C .1D .2解析 (1)由x ,y 满足的约束条件可画出所表示的平面区域为如图所示的△ABC ,作出直线y =2x ,经过平移得目标函数z =y -2x 在点B (5,3)处取得最小值,即z min =3-10=-7.故选A.(2)由约束条件画出可行域(如图所示的△ABC ), 由⎩⎪⎨⎪⎧x =1,y =a (x -3)得A (1,-2a ), 当直线2x +y -z =0过点A 时,z =2x +y 取得最小值,所以1=2×1-2a ,解得a =12,故选B. 答案 (1)A (2)B规律方法 (1)求目标函数最值的一般步骤为:一画、二移、三求.其关键是准确作出可行域,理解目标函数的意义.(2)在约束条件是线性的情况下,线性目标函数只有在可行域的顶点或者边界上取得最值.在解答选择题或者填空题时可以根据可行域的顶点直接进行检验.【训练2】 (2013·浙江卷)设z =kx +y ,其中实数x ,y 满足⎩⎨⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k =________.解析 约束条件所表示的可行域为如图所示的△ABC ,其中点A (4,4),B (0,2),C (2,0).目标函数z =kx +y ,化为y =-kx +z .当-k ≤12,即k ≥-12时,目标函数z =kx +y 在点A (4,4)取得最大值12,故4k +4=12,k =2,满足题意;当-k >12即k <-12时,目标函数z =kx +y 在点B (0,2)取得最大值12,故k ·0+2=12,无解,综上可知,k =2. 答案 2考点三 线性规划的实际应用【例3】 (2013·湖北卷改编)某客运公司用A ,B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A ,B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天要以不少于900人运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?审题路线 确定问题属于线性规划问题⇒设A ,B 两种型号车辆的数量为x ,y ,营运成本z ⇒读题,列出线性约束条件及目标函数⇒画出可行域⇒把目标函数变形,平移,确定最小值经过的点⇒解两直线的交点⇒点代入目标函数可得.。

2015届高考数学(文)一轮复习知能训练第5章第1讲《不等式的概念与性质》

第五章 不等式第1讲 不等式的概念与性质1.(2013年上海春季)如果a <b <0,那么下列不等式成立的是( ) A.1a <1bB .ab <b 2C .-ab <-a 2D .-1a <-1b2.已知下列不等式:①x 2+3>2x ,②a 3+b 3≥a 2b +ab 2(a ,b ∈R +);③a 2+b 2≥2(a -b -1),其中正确的个数为( )A .0个B .1个C .2个D .3个3.在等比数列{a n }中,a n >0(n ∈N ),公比q ≠1,则( ) A .a 1+a 8>a 4+a 5 B .a 1+a 8<a 4+a 5 C .a 1+a 8=a 4+a 5 D .不确定4.(2012年广东茂名二模)下列三个不等式中,恒成立的个数有( )①x +1x ≥2(x ≠0);②c a <cb (a >b >c >0); ③a +m b +m >a b(a ,b ,m >0,a <b ). A .3个 B .2个 C .1个 D .0个5.(2012年福建)下列不等式一定成立的是( )A .lg ⎝⎛⎭⎫x 2+14>lg x (x >0) B .sin x +1sin x≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R )D.1x 2+1>1(x ∈R ) 6.(2013年浙江)设a ,b ∈R ,定义运算“∧”和“∨”如下:a ∧b =⎩⎪⎨⎪⎧ a ,a ≤b ,b ,a >b , a ∨b =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b .若正数a ,b ,c ,d 满足ab ≥4,c +d ≤4,则( ) A .a ∧b ≥2,c ∧d ≤2 B .a ∧b ≥2,c ∨d ≥2 C .a ∨b ≥2,c ∧d ≤2 D .a ∨b ≥2,c ∨d ≥27.若不等式(-1)na <2+(-1)n +1n对于任意正整数n 恒成立,则实数a 的取值范围是( )A.⎣⎡⎭⎫-2,32B.⎝⎛⎦⎤-2,32 C.⎣⎡⎭⎫-3,32 D.⎝⎛⎭⎫-3,32 8.用若干辆载重为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装8吨,则最后一辆汽车不满也不空.则有汽车________辆.9.已知a >0,b >0,求证:⎝⎛⎭⎫a 2b +⎝⎛⎭⎫b 2a ≥a +b .10.已知α∈(0,π),比较2sin2α与sin α1-cos α的大小.第五章 不等式第1讲 不等式的概念与性质1.D 解析:a <b <0,设a =-2,b =-1,则-12>-1;(-2)×(-1)>(-1)2;-(-2)×(-1)>-(-2)2.故A ,B ,C 错误.故选D.2.D 解析:∵x 2-2x +3=(x -1)2+2>0,∴x 2+3>2x .∵a 3+b 3-a 2b -ab 2=(a -b )(a 2-b 2)=(a +b )(a -b )2≥0,∴a 3+b 3≥a 2b +ab 2.∵a 2+b 2-2(a -b -1)=(a -1)2+(b +1)2≥0,∴a 2+b 2≥2(a -b -1).3.A 解析:(a 1+a 8)-(a 4+a 5)=(a 1+a 1q 7)-(a 1q 3+a 1q 4)=a 1(1-q 3)+a 1q 4(q 3-1)=a 1(1-q 3)(1-q 4)=a 1(1-q )2·(1+q )(1+q 2)(1+q +q 2)>0,∴a 1+a 8>a 4+a 5.4.B 解析:当x <0时,x +1x ≥2(x ≠0)显然不成立.由a >b >0⇒⎩⎪⎨⎪⎧1a <1b c >0⇒c a <cb ,故②成立.a +mb +m -a b =m (b -a )(b +m )b>0,故③成立.故选B. 5.C 解析:此类题目多选用筛选法,对于A :当x =12时,两边相等,故A 错误;对于B :具有基本不等式的形式,但sin x 不一定大于零,故B 错误;对于C :x 2+1≥2|x |⇔x 2±2x +1≥0⇔(x ±1)2≥0,显然成立;对于D ,任意x 都不成立.故选C.6.C 解析:∵a ∧b =⎩⎪⎨⎪⎧ a ,a ≤b ,b ,a >b ,a ∨b =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b , 正数a ,b ,c ,d 满足ab ≥4,c +d ≤4,∴不妨令a =1,b =4,则a ∧b =1≥2错误,故可排除A ,B ;再令c =1,d =1,满足条件c +d ≤4,但不满足c ∨d ≥2,故可排除D.故选C. 7.A8.6 解析:设有x 辆汽车,则货物重为(4x +20)吨.由题意,得⎩⎪⎨⎪⎧8(x -1)<4x +20,8x >4x +20,x ∈N *,解得5<x <7,且x ∈N *.故只有x =6才满足要求.9.证法一:左边-右边=(a )3+(b )3ab-(a +b )=(a +b )(a -ab +b )-ab (a +b )ab=(a +b )(a -2ab +b )ab =(a +b )(a -b )2ab≥0.∴原不等式成立.证法二:左边>0,右边>0.左边右边=(a +b )(a -ab +b )ab (a +b )=(a -ab +b )ab ≥2 ab -abab =1. ∴原不等式成立.10.解:2sin2α-sin α1-cos α=4sin αcos α(1-cos α)-sin α1-cos α=sin α1-cos α(-4cos 2α+4cos α-1)=-sin α1-cos α(2cos α-1)2. ∵α∈(0,π),∴sin α>0,1-cos α>0,(2cos α-1)2≥0.∴-sin α1-cos α(2cos α-1)2≤0,即2sin2α-sin α1-cos α≤0.∴2sin2α≤sin α1-cos α⎝⎛⎭⎫当且仅当α=π3时取等号.。

2015届高考数学(人教,理科)大一轮复习配套讲义:第六章 不等式、推理与证明及不等式选讲

第六章不等式、推理与证明及不等式选讲(选修4-5)第一节不等关系与不等式1.实数大小顺序与运算性质之间的关系a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.2.不等式的基本性质1.在应用传递性时,注意等号是否传递下去,如a≤b,b<c⇒a<c.2.在乘法法则中,要特别注意“乘数c的符号”,例如当c≠0时,有a>b⇒ac2>bc2;若无c≠0这个条件,a>b⇒ac2>bc2就是错误结论(当c=0时,取“=”).[试一试]1.(2013·北京高考)设a,b,c∈R,且a>b,则()A .ac >bc B.1a <1b C .a 2>b 2D. a 3>b 3解析:选D 由性质知选D. 2.12-1________3+1(填“>”或“<”). 解析:12-1=2+1<3+1. 答案:<1.不等式的倒数性质 (1)a >b ,ab >0⇒1a <1b ;(2)a <0<b ⇒1a <1b ;(3)a >b >0,0<c <d ⇒a c >bd ;(4)0<a <x <b 或a <x <b <0⇒1b <1x <1a .2.不等式的分数性质 (1)真分数的性质:b a <b +m a +m ;b a >b -m a -m (b -m >0); (2)假分数的性质:a b >a +m b +m ;a b <a -m b -m (b -m >0). [练一练]若0<a <b ,c >0,则b +c a +c 与a +cb +c 的大小关系为________.答案:b +c a +c >a +c b +c的大小1.已知a 121212,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定解析:选B M -N =a 1a 2-(a 1+a 2-1) =a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1), 又∵a 1∈(0,1),a 2∈(0,1), ∴a 1-1<0,a 2-1<0.∴(a 1-1)(a 2-1)>0,即M -N >0. ∴M >N .2.若实数a ≠1,比较a +2与31-a 的大小.解:a +2-31-a =-a 2-a -11-a =a 2+a +1a -1∴当a >1时,a +2>31-a ;当a <1时,a +2<31-a .[类题通法]比较大小的常用方法(1)作差法:一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤是:①作商;②变形;③判断商与1的大小;④结论. (3)特值法:若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.注意:用作商法时要注意商式中分母的正负,否则极易得出相反的结论.不等式的性质[典例] >b 且c >d ”的A .充分不必要条件 B .既不充分也不必要条件 C .充分必要条件D .必要不充分条件(2)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4[解析] (1)由“a +c >b +d ”不能得知“a >b 且c >d ”,反过来,由“a >b 且c >d ”可得知“a +c >b +d ”,因此“a +c >b +d ”是“a >b 且c >d ”的必要不充分条件,选D.(2)法一:∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bd cd <0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C. 法二:取特殊值. [答案] (1)D (2)C [类题通法]判断多个不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质,常见的反例构成方式可从以下几个方面思考:(1)不等式两边都乘以一个代数式时,考察所乘的代数式是正数、负数或0;(2)不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变; (3)不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变等. [针对训练](2014·北京东城区综合练习)若a >b >0,则下列不等式不成立的是( ) A.1a <1bB .|a |>|b |C .a +b <2abD.⎝⎛⎭⎫12a <⎝⎛⎭⎫12b解析:选C ∵a >b >0,∴1a <1b,且|a |>|b |,a +b >2ab ,又2a >2b ,∴⎝⎛⎭⎫12a <⎝⎛⎭⎫12b ,选C. 不等式性质的应用[典例] ,2≤f (1)≤4.求 [解] f (-1)=a -b ,f (1)=a +b .f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧ m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4, ∴5≤f (-2)≤10.即f (-2)的取值范围为[5,10].又∵1<f (-1)≤2,2≤f (1)<4, ∴5<3f (-1)+f (1)<10, 故5<f (-2)<10.故f (-2)的取值范围为(5,10). [类题通法]利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.[针对训练]若α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧ x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2.∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7. ∴α+3β的取值范围为[1,7].第二节一元二次不等式及其解法一元二次不等式与相应的二次函数及一元二次方程的关系1.二次项系数中含有参数时,则应先考虑二次项是否为零,然后再讨论二次项系数不为零时的情形,以便确定解集的形式.2.当Δ<0时,易混ax 2+bx +c >0(a >0)的解集为R 还是∅. [试一试]1.(2013·浙江高考)设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( ) A .(-2,1] B .(-∞,-4] C .(-∞,1]D .[1,+∞)解析:选C T = {x |-4≤x ≤1},根据补集定义, ∁R S ={x |x ≤-2},所以(∁R S )∪T ={x |x ≤1},选C.2.不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b 的值是( ) A .10 B .-10 C .14D .-14解析:选D 由题意知-12、13是ax 2+bx +2=0的两根.则a =-12,b =-2.a +b =-14.故选D.3.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________. 解析:∵不等式x 2+ax +4<0的解集不是空集,∴Δ=a 2-4×4>0,即a 2>16. ∴a >4或a <-4.答案:(-∞,-4)∪(4,+∞)1.由二次函数图像与一元二次不等式的关系得到的两个常用结论(1)不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c >0,或⎩⎪⎨⎪⎧ a >0,Δ<0.(2)不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c <0,或⎩⎪⎨⎪⎧a <0,Δ<0.2.分类讨论思想解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.[练一练]若不等式mx 2+2mx +1>0的解集为R ,则m 的取值范围是________. 解析:①当m =0时,1>0显然成立. ②当m ≠0时,由条件知⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0. 得0<m <1, 由①②知0≤m <1. 答案:[0,1)一元二次不等式的解法[典例] (1)0<x 2-x -2≤4; (2)x 2-4ax -5a 2>0(a ≠0). [解] (1)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧ (x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{}x |-2≤x <-1或2<x ≤3. (2)由x 2-4ax -5a 2>0知(x -5a )(x +a )>0. 由于a ≠0故分a >0与a <0讨论. 当a <0时,x <5a 或x >-a ; 当a >0时,x <-a 或x >5a .综上,a <0时,解集为{}x |x <5a 或x >-a ;a >0时,解集为{}x |x >5a 或x <-a . [类题通法]1.解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应二次函数的图像,写出不等式的解集.2.解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即Δ的符号进行分类,最后在根存在时,根据根的大小进行分类.[针对训练] 解下列不等式: (1)-3x 2-2x +8≥0; (2)ax 2-(a +1)x +1<0(a >0).解:(1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0. 解得-2 ≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤43. (2)原不等式变为(ax -1)(x -1)<0, 因为a >0,所以a ⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解为1a <x <1;当a =1时,解集为∅; 当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1.一元二次不等式与其对应的函数与方程之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.对于一元二次不等式恒成立问题,常根据二次函数图像与x 轴的交点情况确定判别式的符号,进而求出参数的取值范围.归纳起来常见的命题角度有:(1)形如f (x )≥0(x ∈R )确定参数的范围; (2)形如f (x )≥0(x ∈[a ,b ])确定参数范围; (3)形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围.角度一 形如f (x )≥0(x ∈R )确定参数的范围1.(2013·重庆高考)设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为________.解析:根据题意可得(8sin α)2-4×8cos 2α≤0,即2sin 2α-cos 2α≤0,2sin 2α-(1-2sin 2 α)≤0,即-12≤sin α≤12.因为0≤α≤π,故α∈06π⎡⎤⎢⎥⎣⎦,∪56ππ⎡⎤⎢⎥⎣⎦, 答案:06π⎡⎤⎢⎥⎣⎦,∪56ππ⎡⎤⎢⎥⎣⎦,角度二 形如f (x )≥0(x ∈[a ,b ])确定参数范围2.对任意x ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,求a 的取值范围. 解:函数f (x )=x 2+(a -4)x +4-2a 的对称轴为x =-a -42=4-a2.①当4-a2<-1,即a >6时,f (x )的值恒大于零等价于f (-1)=1+(a -4)×(-1)+4-2a >0, 解得a <3,故有a ∈∅;②当-1≤4-a2≤1,即2≤a ≤6时,只要f ⎝⎛⎭⎫4-a 2=⎝⎛⎭⎫4-a 22+(a -4)×4-a 2+4-2a >0,即a 2<0,故有a ∈∅;③当4-a 2>1,即a <2时,只要f (1)=1+(a -4)+4-2a >0, 即a <1,故有a <1.综上可知,当a <1时,对任意x ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零. 角度三 形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围3.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,求x 的取值范围. 解:由f (x )=x 2+(a -4)x +4-2a =(x -2)a +x 2-4x +4, 令g (a )=(x -2)a +x 2-4x +4.由题意知在[-1,1]上,g (a )的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0, 解得x <1或x >3.故当x <1或x >3时,对任意的a ∈[-1,1],函数f (x )的值恒大于零. [类题通法]恒成立问题及二次不等式恒成立的条件(1)解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(2)对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.一元二次不等式的应用[典例] 件,年销量是a 件.现经销商计划在2014年将该商品的价格降至5.5元/件到7.5元/件之间,经调查,顾客的期望价格是4元/件.经测算,该商品价格下降后新增的年销量与实际价格和顾客期望价格的差成反比,比例系数为k .该商品的成本价为3元/件.(1)写出该商品价格下降后,经销商的年收益y 与实际价格x 的函数关系式;(2)设k =2a ,当实际价格最低定为多少时,仍然可以保证经销商2014年的收益比2013年至少增长20%?[解] (1)设该商品价格下降后为x 元/件, 则由题意可知年销量增加到⎝⎛⎭⎫k x -4+a 件,故经销商的年收益y =⎝⎛⎭⎫kx -4+a (x -3),5.5≤x ≤7.5.(2)当k =2a 时,依题意有⎝⎛⎭⎫2ax -4+a (x -3)≥(8-3)a ×(1+20%),化简得x 2-11x +30x -4≥0,解得x ≥6或4<x ≤5.又5.5≤x ≤7.5,故6≤x ≤7.5,即当实际价格最低定为6元/件时,仍然可以保证经销商2014年的收益比2013年至少增长20%.[类题通法]构建不等式模型解决实际问题不等式的应用问题常常以函数为背景,多是解决实际生活、生产中的最优化问题等,解题时,要仔细审题,认清题目的条件以及要解决的问题,理清题目中各量之间的关系,建立恰当的不等式模型进行求解.[针对训练]某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解:(1)由题意得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价, 所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2]. (2)由题意得20(10-x )(50+8x )≥10 260, 化简得8x 2-30x +13≤0. 解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.第三节绝对值不等式(选修4-5)1.绝对值三角不等式(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.(2)定理2:如果a ,b ,c 是实数,则|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法有以下几种: ①利用绝对值不等式的几何意义求解的思想; ②利用“零点分段法”求解;③通过构造函数,利用函数的图象求解.1.对于绝对值三角不等式,易忽视等号成立的条件.对|a +b |≥|a |-|b |,当且仅当a >-b >0时,等号成立,对|a |-|b |≤|a -b |≤|a |+|b |,如果a <-b <0当且仅当|a |≥|b |且ab ≥0时左边等号成立,当且仅当ab ≤0时右边等号成立.2.形如|x -a |+|x -b |≥c (c >0)的不等式解法在讨论时应注意分类讨论点处的处理及c 的符号判断,若c <0则不等式解集为R.[试一试]1.(2013·广东高考)不等式|x 2-2|<2的解集是( ) A .(-1,1) B .(-2,2) C .(-1,0)∪(0,1)D .(-2,0)∪(0,2)解析:选D 由|x 2-2|<2得-2<x 2-2<2,即0<x 2<4,所以-2<x <0或0<x <2. 2.不等式|x -2|-|x -1|>0的解集为( ) A.⎝⎛⎭⎫-∞,32 B.⎝⎛⎭⎫-∞,-32 C.⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-32,+∞ 解析:选A 原不等式等价于|x -2|>|x -1|, 则(x -2)2>(x -1)2,解得x <32.含绝对值不等式的常用解法1.基本性质法:对a ∈R +,|x |<a ⇔-a <x <a ,|x |>a ⇔x <-a 或x >a . 2.平方法:两边平方去掉绝对值符号.3.零点分区间法(或叫定义法):含有两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.4.几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解. 5.数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.[练一练]1.已知不等式|2x -t |+t -1<0的解集为(-12,12),则t =( )A .-1B .0C .1D .2解析:选B |2x -t |<1-t ,t -1<2x -t <1-t , 2t -1<2x <1,t -12<x <12,∴t =0.2.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________. 解析:利用绝对值不等式的性质求解. ∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3,∴-3≤a -1≤3,∴-2≤a ≤4. 答案:[-2,4]绝对值不等式的解法1.在实数范围内,不等式|x -12|+|x +12|≤3的解集为____________.解析:法一:分类讨论去绝对值号解不等式.当x >12时,原不等式转化为2x ≤3⇒x ≤32;当-12≤x ≤12时,原不等式转化为1≤3,恒成立;当x <-12时,原不等式转化为-2x ≤3⇒x ≥-32.综上知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.法二:利用几何意义求解.不等式⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12≤3,其几何意义为数轴上到12,-12两点的距离之和不超过3的点的集合,数形结合知,当x =32或x =-32时,到12,-12两点的距离之和恰好为3,故当-32≤x ≤32时,满足题意,则原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.答案:⎩⎨⎧x ⎪⎪⎭⎬⎫-32≤x ≤32 2.(2013·西安质检)若关于x 的不等式|x -a |<1的解集为(1,3),则实数a 的值为________. 解析:原不等式可化为a -1<x <a +1,又知其解集为(1,3),所以通过对比可得a =2. 答案:23.如果关于x 的不等式|x -3|-|x -4|<a 的解集不是空集,则实数a 的取值范围是________.解析:法一:令y 1=|x -3|-|x -4| =⎩⎪⎨⎪⎧1, x >4,2x -7, 3≤x ≤4,-1,x <3.y 2=a . 如图要使|x -3|-|x -4|<a 的解集不是空集,则a 的取集范围是a >-1.法二:注意到||x -3|-|x -4||≤|(x -3)-(x -4)|=1,-1≤|x -3|-|x -4|≤1.若不等式|x -3|-|x -4|<a 的解集是空集,则有|x -3|-|x -4|≥a 对任意的x ∈R 都成立,即有(|x -3|-|x -4|)min ≥a ,a ≤-1.因此,由不等式|x -3|-|x -4|<a 的解集不是空集可得,实数a 的取值范围是a >-1.答案:(-1,+∞) [类题通法]利用零点分类讨论法解绝对值不等式时,注意分类讨论时要不重不漏.绝对值不等式的证明[典例] ,不等式f (x )<4M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |. [解] (1)f (x )=|x +1|+|x -1|=⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1,2x ,x >1,当x <-1时,由-2x <4,得-2<x <-1; 当-1≤x ≤1时,f (x )=2<4,∴-1≤x ≤1; 当x >1时,由2x <4,得1<x <2,∴M =(-2,2).(2)证明:a ,b ∈M 即-2<a <2,-2<b <2.∵4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2)=(a 2-4)·(4-b 2)<0,∴4(a +b )2<(4+ab )2,∴2|a +b |<|4+ab |.又|x +1|+|x -1|≥|(x +1)-(x -1)|=2,∴a ≤2. 故a 的取值范围为(2,+∞). [类题通法]证明绝对值不等式主要有三种方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明; (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明; (3)转化为函数问题,数形结合进行证明. [针对训练](2014·乌鲁木齐高三诊断性测验)设函数f (x )=|x -1|+|x -2|. (1)求证:f (x )≥1; (2)若f (x )=a 2+2a 2+1成立,求x 的取值范围.解:(1)证明:f (x )=|x -1|+|x -2|≥|(x -1)-(x -2)|=1. (2)∵a 2+2a 2+1=a 2+1+1a 2+1=a 2+1+1a 2+1≥2,∴要使f (x )=a 2+2a 2+1成立,需且只需|x -1|+|x -2|≥2,即⎩⎪⎨⎪⎧ x <1,1-x +2-x ≥2或⎩⎪⎨⎪⎧ 1≤x <2,x -1+2-x ≥2或⎩⎪⎨⎪⎧x ≥2,x -1+x -2≥2,解得x ≤12或x ≥52,故x 的取值范围是⎝⎛⎦⎤-∞,12∪⎣⎡⎭⎫52,+∞.绝对值不等式的综合应用[|2x +a |,g (x )=(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎡⎭⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围.[解] (1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0.设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x<2}.(2)当x ∈⎣⎡⎭⎫-a 2,12时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈⎣⎡⎭⎫-a 2,12都成立. 故-a 2≥a -2,即a ≤43.从而a 的取值范围是⎝⎛⎦⎤-1,43. [类题通法]1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法.2.对于求y =|x -a |+|x -b |或y =|x +a |-|x -b |型的最值问题利用绝对值三角不等式更方便.形如y =|x -a |+|x -b |的函数只有最小值,形如y =|x -a |-|x -b |的函数既有最大值又有最小值.[针对训练](2013·辽宁模拟)已知f (x )=|x +a |+|x -2|. (1)当a =-1时,解关于x 的不等式f (x )>5;(2)已知关于x 的不等式f (x )+a <2 014(a 是常数)的解集是非空集合,求实数a 的取值范围. 解:(1)构造函数g (x )=|x -1|+|x -2|-5, 则g (x )=⎩⎪⎨⎪⎧-2x -2(x ≤1),-4(1<x <2),2x -8(x ≥2).令g (x )>0,则x <-1或x >4,∴原不等式的解集为(-∞,-1)∪(4,+∞). (2)∵f (x )+a =|x +a |+|x -2|+a ≥|a +2|+a , 又关于x 的不等式f (x )+a <2 014的解集是非空集合,∴|a +2|+a <2 014,解得a <1 006.第四节二元一次不等式(组)及简单的线性规划问题1.二元一次不等式(组)表示的平面区域2.1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式化为ax +by +c >0(a >0).2.线性规划问题中的最优解不一定是唯一的,即可行域内使目标函数取得最值的点不一定只有一个,也可能有无数多个,也可能没有.[试一试]1.(2013·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,x ≤3,则z =2x -3y 的最小值是( ) A .-7 B .-6 C .-5D .-3解析:选B 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x -3y 过点C 时,z 取得最小值.由⎩⎪⎨⎪⎧ x =3,x -y +1=0,得⎩⎪⎨⎪⎧x =3,y =4,∴z min =2×3-3×4=-6,故选B. 2.如图所示的平面区域(阴影部分)满足不等式________.答案:x +y -1>01.确定二元一次不等式表示平面区域的方法二元一次不等式所表示的平面区域的确定,一般是取不在直线上的点(x 0,y 0)作为测试点来进行判定,满足不等式的则平面区域在测试点所在的直线的一侧,反之在直线的另一侧.2.求二元一次函数z =ax +by (ab ≠0)的最值的方法将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.(1)当b >0时,截距z b 取最大值时,z 也取最大值;截距zb 取最小值时,z 也取最小值;(2)当b <0时,截距z b 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.[练一练](2013·陕西高考)若点(x ,y )位于曲线y =|x -1|与y =2所围成的封闭区域,则2x -y 的最小值为________.解析:由题意知y =⎩⎪⎨⎪⎧x -1(x ≥1),1-x (x <1),作出曲线y =|x -1|与y =2所围成的封闭区域,如图中阴影部分所示,即得过点A (-1,2)时,2x -y 取最小值-4.答案:-41.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A.32 B.23 C.43D.34解析:选C 平面区域如图所示.解⎩⎪⎨⎪⎧x +3y =4,3x +y =4得A (1,1), 易得B (0,4),C ⎝⎛⎭⎫0,43, |BC |=4-43=83.∴S △ABC =12×83×1=43.2.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为( )A .-3B .-2C .-1D .0解析:选C 不等式组所表示的平面区域如图中阴影部分,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点,故选C.3.如图阴影部分表示的区域可用二元一次不等式组表示为________.解析:两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 答案:⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0[类题通法]二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域.注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,测试点常选取原点.求目标函数的最值线性规则问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.归纳起来常见的命题角度有:(1)求线性目标函数的最值; (2)求非线性目标的最值; (3)求线性规划中的参数. 角度一 求线性目标函数的最值1.(1)(2013·湖南高考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A .-52B .0 C.53D.52(2)如果函数x 、y 满足条件⎩⎪⎨⎪⎧x -y +1≥0,y +1≥0,x +y +1≤0,那么z =2x -y 的最大值为( )A .2B .1C .-2D .-3解析:(1)选C 不等式组表示的平面区域为图中阴影部分.平行移动y =-12x +12z ,可知该直线经过y =2x 与x +y =1的交点A ⎝⎛⎭⎫13,23时,z 有最大值为13+43=53.(2)选B 如图作出可行域,当z 经过直线y +1=0与x +y +1=0的交点(0,-1)时,z max=1.角度二 求非线性目标的最值2.(1)(2013·山东高考)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12解析:选C 已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13. (2)(2014·长春调研)若实数x ,y 满足⎩⎪⎨⎪⎧12≤x ≤1,y ≥-x +1,y ≤x +1,则y +1x的取值范围是________.解析:由题可知y +1x =y -(-1)x -0,即为求不等式所表示的平面区域内的点与(0,-1)的连线斜率k 的取值范围,由图可知k ∈[1,5].答案:[1,5]角度三 求线性规划中的参数3.(1)(2013·浙江高考)设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k =________.解析:画出可行域,根据线性规划知识,目标函数取最大值12时,最优解一定为(4,4),这时12=4k +4,k =2.答案:2(2)(2014·江西七校联考)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +2y -8≤0,x ≤3.若点⎝⎛⎭⎫3,52是使ax -y 取得最小值的唯一的可行解,则实数a 的取值范围为________.解析:记z =ax -y ,注意到当x =0时,y =-z ,即直线z =ax -y 在y 轴上的截距是-z .在坐标平面内画出题中的不等式组表示的平面区域,结合图形可知,满足题意的实数a 的取值范围为a <-12.答案:⎝⎛⎭⎫-∞,-12 [类题通法]1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距zb的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a .注意:转化的等价性及几何意义.线性规划的实际应用[典例] (2013·两种型号的客车安排名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元[解析] 设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,y -x ≤7,y +x ≤21,x ,y ∈N ,作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值z min =36 800(元).[答案] C [类题通法]求解线性规划应用题的注意点(1)明确问题中的所有约束条件,并根据题意判断约束条件中是否能够取到等号. (2)注意结合实际问题的实际意义,判断所设未知数x ,y 的取值范围,特别注意分析x ,y 是否是整数、非负数等.(3)正确地写出目标函数,一般地,目标函数是等式的形式. [针对训练]某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A .1 800元B .2 400元C .2 800元D .3 100元解析:选C 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,则⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y≥0,z =300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点A (4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值,最大值是z =300×4+400×4=2 800,即该公司可获得的最大利润是2 800元.第五节基本不等式与柯西不等式(选修4-5)1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.3.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)4.平均值不等式(1)定理:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.我们称a +b +c 3为正数a ,b ,c 的算术平均值,3abc 为正数a ,b ,c 的几何平均值,定理中的不等式为三个正数的算术—几何平均值不等式,简称为平均值不等式.(2)一般形式的算术—几何平均值不等式:如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a nn ≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.5.柯西不等式(1)柯西不等式的代数形式:设a 1,a 2,b 1,b 2均为实数,则(a 21+a 22)(b 21+b 22)≥(a 1b 1+a 2b 2)2(当且仅当a 1b 2=a 2b 1时,等号成立).(2)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|. (3)二维形式的三角不等式:设x 1,y 1,x 2,y 2∈R ,那么x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2.(4)柯西不等式的一般形式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0或存在一个数k ,使a i =kb i (i =1,2,…,n )时,等号成立.1.求最值时要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件. 2.多次使用基本不等式时,易忽视取等号的条件的一致性. 3.使用柯西不等式或平均值不等式时易忽视等号成立的条件. [试一试]1.“a >0且b >0”是“a +b2≥ab ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A2.已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13B.12C.34D.23解析:选B 由0<x <1,故3-3x >0,则x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.3.已知x 2+y 2=10,则3x +4y 的最大值为( ) A .510 B .410 C .310D .210解析:选A ∵(32+42)(x 2+y 2)≥(3x +4y )2, 当且仅当3y =4x 时等号成立, ∴25×10≥(3x +4y )2, ∴(3x +4y )max =510.1.活用几个重要的不等式a 2+b 2≥2ab (a ,b ∈R );b a +ab ≥2(a ,b 同号).ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R );⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R ).2.巧用“拆”“拼”“凑”在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.[练一练] 若x >1,则x +4x -1的最小值为________. 解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:5利用基本不等式求最值[典例] (1)(2013·四川高考)已知函数f (x )=4x +ax (x >0,a >0)在x =3时取得最小值,则a =________.[解析] f (x )=4x +ax ≥24x ·a x =4a (x >0,a >0),当且仅当4x =ax,即a =4x 2时取等号,则由题意知a =4×32=36.[答案] 36(2)(2014·长春调研)若两个正实数x ,y 满足2x +1y =1,并且x +2y >m 2+2m 恒成立,则实数m 的取值范围是________.[解析] x +2y =(x +2y )⎝⎛⎭⎫2x +1y =2+4y x +x y +2≥8,当且仅当4y x =xy ,即x =2y =4时等号成立.由x +2y >m 2+2m 恒成立,可知m 2+2m <8,m 2+2m -8<0,解得-4<m <2.[答案] (-4,2)(3)(2013·山东高考改编)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则zxy 的最小值为________.[解析] z =x 2-3xy +4y 2(x ,y ,z ∈R +),∴z xy =x 2-3xy +4y 2xy =x y +4y x-3≥2x y ·4yx-3=1. 当且仅当x y =4yx ,即x =2y =4时“=”成立.[答案] 1解:由(3)知当zxy取最小值时x =2y .∴z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2. ∴当y =1时,x +2y -z 取最大值2. [类题通法]两个正数的和与积的转化基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.[针对训练](1)当x >0时,则f (x )=2xx 2+1的最大值为________. (2)已知log 2a +log 2b ≥1,则3a +9b 的最小值为________.(3)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 解析:(1)∵x >0,∴f (x )=2x x 2+1=2x +1x ≤22=1,当且仅当x =1x ,即x =1时取等号.(2)由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b ≥2×3a +2b2(当且仅当3a =32b ,即a =2b 时取等号).又∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号), ∴3a +9b ≥2×32=18.即当a =2b 时,3a +9b 有最小值18.(3)由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.答案:(1)1 (2)18 (3)10基本不等式的实际应用[典例] 经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2013年生产该产品的固定投入为8万元.每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2013年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2013年的促销费用投入多少万元时,厂家的利润最大? [解] (1)由题意知,当m =0时,x =1(万件), ∴1=3-k ⇒k =2,∴x =3-2m +1, 每件产品的销售价格为1.5×8+16xx(元), ∴2013年的利润y =1.5x ×8+16xx -8-16x -m=-⎣⎡⎦⎤16m +1+(m +1)+29(m ≥0).(2)∵m ≥0时,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3(万元)时,y max =21(万元).故该厂家2013年的促销费用投入3万元时,厂家的利润最大为21万元. [类题通法]利用基本不等式求解实际应用题的方法(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.[针对训练](2013·湖南省五市十校联合检测)某化工企业2012年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x 年的年平均污水处理费用为y (单位:万元).(1)用x 表示y ;(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品题库试题
文数
1.(广西省桂林中学2014届高三月考测试题) 已知,现有下列不等式:
①;②;③;④,其中正确的个数是()
A.1 B.2 C.3 D.4
[解析] 1.因为,所以,又,所以
,故①正确,对于②,当时,故②错误,因为,所以,故③正确,
若,,所以,,故④错误. 所以正确的个数为2个.
2.(2012长春高三联合测试, 9, 5分) 已知m∈(b, a) 且m≠0, 的取值范围是, 则实数a, b满足( )
A. a>b>0
B. a>0>b
C. a<0<b
D. a<b<0
[解析] 2.由题知b<a, 从而排除选项C, D. 若ab<0, 则由>可得a<b, 不合题意, 故选项B不正确. 从而知A正确.
3.(2012山东日照高三第二次段考,4,5分)若,则()
A. B. C.
D.
[解析] 3. ∵,∴;∵,∴.
4.(2013福建厦门一月质量检测,2,5分)下列命题中,真命题是
A.R,sinx<l
B.x∈R,
C.若a>b,则ac>bc
D.若x>l且y>2,则x+y>3
[解析] 4.A中,当时,,所以A是假命题;B中,对任意实数,都有,所以B是假命题;C中,当时,,所以C是假命题;D中,不等式x>l与y>2是同向不等式,相加得,所以D是真命题.
5.(2013浙江,10,5分) 设a, b∈R, 定义运算“∧” 和“∨” 如下:
a∧b=a∨b=
若正数a, b, c, d满足ab≥4, c+d≤4, 则( )
A. a∧b≥2, c∧d≤2
B. a∧b≥2, c∨d≥2
C. a∨b≥2, c∧d≤2
D. a∨b≥2, c∨d≥2
[解析] 5.不妨设a≤b, c≤d, 则a∨b=b, c∧d=c.
若b< 2, 则a< 2, ∴ab< 4, 与ab≥4矛盾, ∴b≥2. 故a∨b≥2.
若c> 2, 则d> 2, ∴c+d> 4, 与c+d≤4矛盾, ∴c≤2. 故c∧d≤2. 故选C
6.(2013浙江,16,5分) 设a, b∈R, 若x≥0时恒有0≤x4-x3+ax+b≤(x2-1) 2, 则
ab= .
[解析] 6.令x=0, 有0≤b≤1, 令x=1, 有a+b=0,
∴b=-a, ∴x4-x3-b(x-1) =(x-1) (x3-b).
由(x-1) (x3-b) ≥0对x≥0恒成立知b=1, 否则b∈[0,1), 当x∈(, 1) 时, 有x-1< 0, x3-b> 0. 从而(x-1) (x3-b) < 0, 矛盾. ∴b=1, 故a=-1, 即ab=-1
7.(山西省忻州一中、康杰一中、临汾一中、长治一中四校2014届高三第三次联考) 设函
数求函数的最小值;若恒成立,求实数的取值范围.
[解析] 7.(1)由题意得
所以f(x)在上单调递减,在上单调递增.
所以当时取得最小值
此时
(2)的图像恒过点过
由图象可知.
答案和解析
文数
[答案] 1.B
[解析] 1.因为,所以,又,所以
,故①正确,对于②,当时,故②错误,因为,所以,故③正确,
若,,所以,,故④错误. 所以正确的个数为2个.
[答案] 2.A
[解析] 2.由题知b<a, 从而排除选项C, D. 若ab<0, 则由>可得a<b, 不合题意, 故选项B不正确. 从而知A正确.
[答案] 3.C
[解析] 3. ∵,∴;∵,∴.
[答案] 4.D
[解析] 4.A中,当时,,所以A是假命题;B中,对任意实数,都有,
所以B是假命题;C中,当时,,所以C是假命题;D中,不等式x>l与y>2是同向不等式,相加得,所以D是真命题.
[答案] 5.C
[解析] 5.不妨设a≤b, c≤d, 则a∨b=b, c∧d=c.
若b< 2, 则a< 2, ∴ab< 4, 与ab≥4矛盾, ∴b≥2. 故a∨b≥2.
若c> 2, 则d> 2, ∴c+d> 4, 与c+d≤4矛盾, ∴c≤2. 故c∧d≤2. 故选C
[答案] 6. -1
[解析] 6.令x=0, 有0≤b≤1, 令x=1, 有a+b=0,
∴b=-a, ∴x4-x3-b(x-1) =(x-1) (x3-b).
由(x-1) (x3-b) ≥0对x≥0恒成立知b=1, 否则b∈[0,1), 当x∈(, 1) 时, 有x-1< 0, x3-b> 0. 从而(x-1) (x3-b) < 0, 矛盾. ∴b=1, 故a=-1, 即ab=-1
[答案] 7.(答案详见解析)
[解析] 7.(1)由题意得
所以 f(x)在上单调递减,在上单调递增.
所以当时取得最小值
此时
(2)的图像恒过点过
由图象可知.。

相关文档
最新文档