刀具刃磨后磁化处理与刀具寿命
§2.6 刀具磨损与刀具寿命

切削时间
刀具磨损过程
● 急剧磨损阶段 磨损带增加到一定宽度后,切削力和切削温度急剧增高,刀具磨损速度增加很快 ,刀具迅速损坏甚至丧失切削能力。
机械工程学院
机械制造技术——第二章 金属切削原理与刀具 §2.6 刀具磨损与刀具寿命
■ 刀具磨损的机理 (原因) 切削过程中的刀具磨损具有下列特点: (1)刀具与切屑、工件间的接触表面经常是新鲜表面。 (2)接触压力非常大,有时超过被切削材料的屈服强度。 (3)接触表面的温度很高,对于硬质合金刀具可达800~1000℃,对于高速钢刀 具可达800~600℃。 ● 磨粒磨损(硬质点划痕) —— 各种切速下均存在; —— 低速情况下刀具磨损的主要原因。 ● 粘结磨损(冷焊黏结) —— 刀具材料与工件材料亲和力大; —— 刀具材料与工件材料硬度比小;
低速切削时,Байду номын сангаас料磨损是刀具磨损的主要原因
机械工程学院
机械制造技术——第二章 金属切削原理与刀具 §2.6 刀具磨损与刀具寿命
2.相变磨损 刀具在较高速度切削时,由于切 削温度升高,使刀具材料产生相 变,硬度降低,若继续切削,会 引起前面塌陷和切削刃卷曲的 “塑性变形”
3.粘结磨损 刀具与切屑、工件间存在高温高压和强烈摩擦,达到原子间结合而产生粘结现 象,又称为冷焊。相对运动使粘接点破裂而被工件材料带走,造成粘结磨损。 在高速钢刀具的正常工作速度和硬质合金刀具偏低的工作速度下比较严重
况。
切削刃剥落 常发生在硬度高、脆性大的 陶瓷刀具上。并在压力和摩 擦力较大情况下易产生。
机械工程学院
机械制造技术——第二章 金属切削原理与刀具 §2.6 刀具磨损与刀具寿命
热裂 由热循环使材料疲劳,或因间断 切削和切削液浇注不均匀使切削 温度骤变,易引起前、后刀面上 出现细微裂纹。
2.6-刀寿命使用具磨损和刀具解析

机械制造技术基础 — 金属切削原理
2.6 刀具磨损和刀具使用寿命
7
粘结磨损程度主要取决于刀具材料和工件材料在不同 温度下的相互亲和能力。(粘结强度系数K0)
硬质合金晶粒越小,磨损越慢;
刀具与工件的硬度比,刀具表面形状和组织,切削条 件和工艺系统刚度等都影响粘结磨损的速度。
材料时,主要发生这种磨损。
机械制造技术基础 — 金属切削原理
2.6 刀具磨损和刀具使用寿命
3
后刀面磨损带不均匀,刀尖部分磨损严重,最大值为VC; 中间部位磨损较均匀,平均磨损宽度以VB表示;边界处 磨损严重,以VN表示。
(三)边界磨损
切钢料时,主刃、副刃与工件待加工表面或已加工表面接 触处磨出沟纹,称为边界磨损。边界处的加工硬化层、硬 质点、较大的应力梯度和温度梯度所造成。
粘结磨损加剧
◆ 扩散磨损
—— 高温下发生
◆ 化学磨损 —— 高温情况下,在切削刃工作边界发生
机械制造技术基础 — 金属切削原理
2.6 刀具磨损和刀具使用寿命
15
对一定刀具和工件材料,起主导作用的是切削温度,低温 时以机械磨损(硬质点磨损)为主,高温时以热、化学磨 损(粘结、扩散、化学磨损)为主;
高速钢刀具(硬质点磨损和粘结磨损); 硬质合金刀具(粘结磨损和扩散磨损); 氧化铝陶瓷刀具(机械磨损和粘结磨损); 立方氮化硼刀具的扩散磨损很小,而金刚石刀具的扩散 磨损很大,金刚石刀具不宜加工钢料。
• (2)正常磨损阶段 经过初期磨损后,刀具后刀面与工件的接 触面积增大,单位面积上承受的压力逐渐减小,刀具后刀面 的微观粗糙表面已经磨平,因此磨损速度变慢,此阶段称为 刀具的正常磨损阶段。它是刀具的有效工作阶段。
机械制造技术基础 第二章 第六节 刀具磨损和刀具寿命

第六节 刀具磨损、破损和刀具寿命
一、刀具的磨损形态
三、刀具磨损过程及磨钝标准
1、刀具的磨损过程 随着切削时间的延长,刀具的磨损将增加。根据切削试验,以切削时间和刀具后刀面 磨 损量VB(或前刀面月牙洼磨损深度KT)为横坐标和纵坐标,可得刀具的磨损典型曲线,如 图所示。由图可知:刀具磨损过程可以分三个阶段。 ⑴ 初期磨损阶段 这一阶段磨损曲线的斜率较大,说明磨损较快。因为新刃磨的刀具刃口锋利 ,后刀面 与加工表面接触面积较小,压应力较大;且新刃磨刀具的后刀面存在粗糙不平之处及显微裂 纹等缺陷,所以这一阶段磨损速率较大。 这一阶段时间较短,磨损量通常为:0.05~0.1mm,其大小与刃磨质量有关。 ⑵ 正常磨损阶段 这一阶段磨损比较缓慢均匀,后刀面的磨损量随时间的延长近似成比例增加。 这是因为,经过初期磨损阶段后,刀具的毛糙表面被磨平,形成一条狭窄的光滑棱面,压应 力减小,所以这一阶段磨损比较缓慢均匀。 这一阶段时间较长。 ⑶ 急剧磨损阶段 当磨损带宽度增加到一定限度后,刀具的磨损速率急速加快,以致刀具损坏而失去切 削 能力。表现为:切削力与切削温度均迅速升高,加工表面粗糙度变粗。 在生产中,应避免达到这个磨损阶段。 2、刀具的磨钝标准 ⑴ 磨钝标准:刀具磨损到一定限度就不能继续使用,这个磨损限度称为磨钝标准 。 通常以后刀面的磨损量作为磨钝标准。但,自动化生产中的精加工刀具,常以沿工件 径
四、刀具寿命及经验公式
1、刀具寿命及刀具总寿命 刀具寿命:一把刀具由刃磨后开始使用,直至达到磨钝标准所经历的实际切削时间称刀具寿 命。 刀具总寿命:一把新刀从第一次投入使用,直至这把刀完全报废为止所经历的实际切削时间 称刀具总寿命。 2、刀具寿命的经验公式(切削用量与刀具寿命的关系) ⑴ 切削速度与刀具寿命的关系 选定磨钝标准,固定其他切削条件,在常用的切削速度范围内,取不同的的速度进行 刀具磨损试验,得磨损曲线如图所示: 根据规定的磨钝标准,对应于不同的切削速度,就有相应的刀具寿命T1、T2、T3… 在双对数坐标纸上,标出( T1 ,V1), ( T2 ,V2), ( T3 ,V3),…各点。在一定 的切削速度范围内,发现这些点基本上在一条直线上,如图示。该直线方程为 logV=-mlogT+logC0 故 VTm=C0 T=C0’/V1/m ① 式中 V——切削速度(m/min); T——刀具寿命(min); m——指数,表示速度V对刀具寿命T的影响程度,通常耐热性越低的材料m值越 小,V对T的影响程度就越大,如图。 C0 ——系数,与刀具、工件材料和切削条件有关。 若切削中形成积屑瘤或刀具发生破损此式不适合。
第6章 刀具磨损与刀具使用寿命

实际切削中一般刀具的后刀面上都有磨损,它 同时后刀面磨损量比较容易测量,因此在刀具 管理和金属切削的科学研究中多按后刀面磨损 尺寸来制定磨钝标准。通常所谓磨钝标准是指 后刀面磨损带中间部分平均磨损量允许达到的 最大值,以VB表示。
对加工精度和切削力的影响比前刀面磨损显著,
C
B
D
VC A KT A VBmax VB b a) A r KM A c)
VN
KB
b)
国际标准ISO统一规定以1/2背吃刀量处 的刀具后刀面上测定的磨损带宽度VB作 为刀具的磨钝标准。
自动化生产中,常以刀具的径向磨损量 NB作为刀具的磨钝标准。见图6.8
在实际生产中,经常卸下刀来测量后刀 面磨损量肯定会影响生产的正常进行, 因此不能直接以后刀面磨损量的大小来 衡量磨损的程度。通常根据切削中的一 些现象来判断刀具是否已经磨钝。粗加 工时,观察加工表面是否出现亮带,切 屑的颜色和形状的变化,是否出现震动 和不正常的响声等。精加工时,可观察
扩散磨损是在更高温度下产生的一种现象。 当温度足够高时,相互间有亲和作用的元素 原子从浓度高处向浓度低处迁移,这种现象 称为扩散。例如高速切削时,硬质合金中的C、 W、Co向钢中扩散,而钢中的Fe 向硬质合金 中扩散。
3、扩散磨损
刀具的扩散磨损除了刀具材料的组成元 素在高温作用下直接扩散到工件材料中 去以外,还会由于相互扩散使刀具表层 的强度下降,使碳化物晶粒从刀具基体 中被切屑带走,从而加剧了粘结磨损。 因此扩散磨损往往同粘结磨损一起发生。 教材P63中图6.5显示了扩散的形式。
了刀具正常磨损阶段。这个阶段刀具的 磨损曲线表现为缓慢均匀的随时间的推 移成比例的逐渐增加。这一阶段是刀具 的有效工作阶段,我们总希望这一阶段 愈长愈好。 3、急剧磨损阶段 当刀具继续使用到一 定的时间,我们会发现已加工表面粗糙 度加大,切削力增大,切削温度增高,
2.6刀具磨损与刀具寿命

第二章 切削 过程及其控制
2.6 刀具磨损和刀具寿命
1、刀具的磨损形态
(一)前刀面磨损
切塑性材料,v 和ac较大时, 在前刀面上形成月牙洼磨损, 以最大深度KT 表示
(二)后刀面磨损
切铸铁或v 和ac较小切塑性 材料时,主要发生这种磨损。
第二章 切削 过程及其控制
2.6 刀具磨损和刀具寿命
后刀面磨损带不均匀,刀尖部分磨损严重,最大值为VC; 中间部位磨损较均匀,平均磨损宽度以VB表示;边界处 磨损严重,以VN表示。
第六节 刀具磨损和刀具寿命
切削金属时,刀具一方面切下切屑,另一方面刀具本 身也要发生损坏。刀具损坏到一定程度,就要换刀或更换 新的刀刃,才能进行正常切削。刀具损坏的形式主要有磨 损和破损两类。前者是连续的逐渐磨损;后者包括脆性破 损(如崩刃、碎断、剥落、裂纹破损等)和塑性破损两种。 刀具磨损后,使工件加工精度降低,表面粗糙度增大,并 导致切削力加大、切削温度升高,甚至产生振动,不能继 续正常切削。因此,刀具磨损直接影响加工效率、质量和 成本。
条件下。
第二章 切削 过程及其控制
2.6 刀具磨损和刀具寿命
3、刀具磨损过程
1. 初期磨损阶段 与刀具刃磨质量有关 2. 正常磨损阶段 VB与切削时间近似正比 斜率表示磨损强度
3. 急剧磨损阶段
切削力、温度急升,刀 具磨损加剧,之前换刀
第二章 切削 过程及其控制
2.6 刀具磨损和刀具寿命
第二章 切削 过程及其控制
(三)边界磨损
切钢料时,主刃、副刃与工件待加工表面或已加工表面接 触处磨出沟纹,称为边界磨损。边界处的加工硬化层、硬 质点、较大的应力梯度和温度梯度所造成。
第二章 切削 过程及其控制
刀具磨损与刀 具寿命

各种刀具的寿命值参考下列原则来制订,例如: 1)简单刀具的制造成本低,故它的寿命较复杂刀具
的寿命可规定低些; 2)可转位刀具的切削刃转位迅速、更换刀片简便、
故刀具寿命可规定低些; 3)精加工刀具的寿命应制订得较高些; 4)自动线刀具、数控刀具应制订较高刀具寿命。
在生产中是根据切削条件和技术要求首先确定一个 合理的刀具寿命T值,然后以它为依据选择切削速度, 并计算切削效率和核算生产成本。
通常选择刀具合理寿命有两种方法:最高生产率寿命 和最低生产成本寿命。
(1)最高生产率寿命 (2)最低生产成本寿命
它是根据切削一个零件所花 费的时间最少或在单位时间内加 工出的零件最多而定的刀具寿命。
1)磨料磨损(又称机械磨损)——在工件材料中含有氧化物、碳 化物和氮化物等硬质点,在铸、锻工件表面上存在着硬夹杂物和在切屑、 加工表面上粘附着硬的积屑瘤残片,这些硬质点在切削时似同“磨粒” 对刀具表面产生摩擦和刻划作用致使刀面磨损。低速切削时是最主要的 磨损原因。
2)粘结磨损(亦称冷焊磨损)——切削区存在着很大的压力和强 烈的摩擦,切削温度也较高,在切屑、工件与刀具前、后面之间的吸附 膜被挤破,形成新的表面紧密接触,因而发生粘结(冷焊)现象。使刀 具表面局部强度较低的微粒材料被切屑带走或使得切削刃和前面产生小 块剥落。它是一种物理—化学性质的磨损。
(1)刀具磨损的原因(续)
3)扩散磨损——是由于在高温作用下,使工件与刀具材料中 合金元素相互扩散置换造成的。其结果是改变了原来刀具材料中 的化学成分的比值,降低了刀具的切削性能,加快了刀具的磨损, 因而降低了刀具的粘结强度和耐磨性。扩散磨损是一种化学性质 的磨损。
第六节刀具磨损与刀具寿命课件
氧化磨损
刀具刚投入使用时,磨损速率较快,随着表面粗糙度逐渐降低,磨损速率逐渐减缓。
初期磨损阶段
刀具经过初期磨损后,进入稳定切削阶段,磨损速率保持较低水平。
正常磨损阶段
随着切削过程的进行,刀具表面的微观结构发生变化,磨损速率突然增加,此时应立即停止使用刀具以避免意外损坏。
急剧磨损阶段
CHAPTER
韧性
刀具材料的硬度、抗弯强度、热导率等性能对刀具磨损有重要影响。
刀具的几何角度、断屑槽型、涂层等结构因素对切削过程中的摩擦、切屑形成和排出有直接影响,进而影响刀具磨损。
结构
材料
CHAPTER
03
刀具寿命概念
刀具寿命是指在正常工作条件下,刀具从开始使用到磨损严重需要更换的时间跨度。
刀具寿命受到多种因素的影响,如切削参数、切削材料、刀具材料和几何形状等。
通过及时发现和更换磨损刀具,减少停机时间,提高生产效率。
按照设定的时间间隔,定期拆卸刀具进行检测,了解其磨损情况。
定期检测刀具磨损
离线检测需要对刀具进行精确测量,以确保检测结果的准确性。
精度要求高
离线检测适用于一些无法安装在线监控系统的加工场合。
适用特定场合
根据检测结果,对磨损严重的刀具进行修复或更换,并调整切削参数,延长刀具使用寿命。
清洗作用
CHAPTER
05
刀具磨损检测与监控
实时监测刀具磨损
数据处理与分析
预警与提示
提高生产效率
01
02
03
04
系统通过传感器实时监测刀具的振动、声音、温度等参数,及时发现刀具磨损。
系统对采集的数据进行实时处理和分析,生成刀具磨损趋势图和报警信息。
当刀具磨损达到一定程度时,系统自动发出预警和提示,以便及时更换或修复刀具。
刀具磨损和使用寿命
刀具磨损和使用寿命Q:什么是刀具磨损?A:切削加工时,刀具一方面切下切屑,另一方面本身也要发生损坏。
刀具损坏到一定程度,就要换刀(或换新切削刃〉,否则无法进行正常切削,刀具损坏的形式有磨损和破损两类。
刀具磨损后,可明显地发现切削力增大,切削温度上升,切屑颜色改变,工艺系统产生振动,加工表面粗糙度增大,加工精度降低,因此,刀具磨损和耐用度直接关系到切削加工的效率、质量和成本。
当使用一把新磨好的刀具进行切削时,随着切削的持续进行,刀具便逐渐磨损,经过一段时间,由于磨损加剧,切削能力显著降低,以致不再符合切削要求,这一现象称为刀具钝化,除磨损外,刀具钝化的方式还有卷刃和在不正常情况下发生的崩刀.钝化的刀具不宜继续使用,需要及时刃磨.在正常切削时,刀具钝化的主要原因是磨损。
刀具磨损决定于刀具材料、工件材料的物理力学性能和切削条件.不同刀具材料的磨损和破损有不同的特点.掌握刀具磨损和破损的特点及其产生的原因和规律,可以正确选择刀具材料和切削条件,保证加工质量并提高生产效率。
Q:刀具磨损的原因?A:切削过程中刀具磨损与一般机械零件的磨损有显著的不同,它表现在以下几个方面。
①刀具与切屑、刀具与工件接触面经常是活性很高的新鲜表面,不存在氧化膜等的污染。
②刀具的前面和后面与工件表面的接触压力非常大,有时甚至超过被切材料的屈服强度。
③刀具与切屑、刀具与工件接触面的温度很高。
硬质合金刀具加工钢料时其接触面的温度可达800〜100CTC;高速钢刀具加工钢料时其接触面的温度可达300〜600eC。
在上述特殊条件下,刀具正常磨损的原因主要是由机械、热和化学三种作用的综合结果,即由工件材料中硬质点的刻划作用产生的硬质点磨损、由压力和强烈摩擦产生的黏结磨损、由高温下产生的扩散磨损、由氧化作用等产生的化学磨损等几方面的综合作用。
数控刀具磨损检测与刀具寿命管理
数控刀具磨损检测与刀具寿命管理数控刀具在现代制造业中扮演着重要的角色,它们的使用寿命直接影响着生产效率和产品质量。
而刀具磨损是导致切削性能下降的主要原因之一。
因此,对数控刀具的磨损检测和刀具寿命管理显得尤为重要。
一、数控刀具磨损检测的意义数控刀具的磨损程度直接影响着加工效果和工件质量。
当刀具磨损达到一定程度时,切削力将会增加,导致加工质量下降,甚至引发刀具断裂等问题。
因此,及时准确地检测刀具磨损程度,可以帮助企业及时更换刀具,避免因磨损而造成的生产事故和损失。
二、刀具磨损检测的方法目前,常用的刀具磨损检测方法主要有视觉检测、声学检测和振动检测等。
视觉检测是一种简单直观的方法,通过观察刀具表面的磨损程度来判断刀具是否需要更换。
这种方法操作简便,但准确性较低,只适用于刀具磨损程度较为明显的情况。
声学检测是通过检测刀具切削过程中产生的声音来判断刀具的磨损程度。
这种方法可以实时监测刀具的磨损情况,但对于一些噪音较大的加工环境来说,准确性会受到一定的影响。
振动检测是通过检测刀具切削过程中产生的振动信号来判断刀具的磨损程度。
这种方法准确性较高,可以实时监测刀具的磨损情况,并且对加工环境的影响较小。
但是,振动检测方法的设备成本较高,对操作人员的要求也较高。
三、刀具寿命管理的重要性刀具寿命管理是指对数控刀具的使用寿命进行有效管理和延长,以提高切削效率和降低生产成本。
刀具寿命管理的重要性主要体现在以下几个方面:1. 提高生产效率:合理管理刀具寿命可以避免因刀具磨损而导致的频繁更换刀具的情况发生,从而减少停机时间,提高生产效率。
2. 降低生产成本:刀具是生产过程中的重要消耗品,延长刀具的使用寿命可以减少刀具的购买成本,并降低刀具更换和维修的人力成本。
3. 提高产品质量:刀具磨损会导致加工质量下降,而合理管理刀具寿命可以保证切削性能的稳定,提高产品的加工精度和表面质量。
四、刀具寿命管理的方法刀具寿命管理主要包括刀具的选择、刀具的刀具寿命预测和刀具的维护保养等方面。
刀具磨损和刀具寿命讲解
三、刀具寿命
1.刀具寿命定义
从刀具刃磨后开始切削,到其磨损量达到刀具磨钝标 准所经过的总切削时间。这实际上也是表示刀具切削性能的一 个指标,或刀具耐磨损性能的表示,以下用符号T表示。
§3.6 刀具磨损与刀 具寿命
一、刀具磨损形态和磨损机制
切削过程中,随着切屑的不断产生和切除,刀具本 ห้องสมุดไป่ตู้也要逐渐磨损或发生破损(如崩刃、碎断、剥落。裂纹等)。
刀具磨损后,使工件加工精度降低,表面粗糙度增 大,并导致切削力和切削温度升高,甚至产生振动使其不能 继续正常工作。因此刀具磨损直接影响加工效率、加工质量 和成本。
一把新刀往往要经过多次重磨,才会报废,刀具寿命指 的是两次刃磨之间所经历的切削时间。如果用刀具寿命乘以刃 磨次数,得到的就是刀具总寿命。
一般刀具都要发生后刀面磨损,而且测量也比较方 便。因此,国际标准ISO统一规定以1/2切削深度处后刀面上 测定的磨损带宽VB作为刀具磨钝标准。
自动化生产中使用的精加工刀具,从保证工件尺寸精 度考虑,常以刀具的径向尺寸磨损量NB作为衡量刀具的磨钝标 准。
制订刀具的磨钝标准时,既要考虑充分发 挥刀具的切削能力,又要考虑保证工件的 加工质量。
(2)正常磨损阶段 经过初期磨损后,刀具后刀面与工件的 接触面积增大,单位面积上承受的压力逐渐减小,刀具后刀 面的微观粗糙表面已经磨平,因此磨损速度变慢,此阶段称 为刀具的正常磨损阶段。它是刀具的有效工作阶段。
(3)急剧磨损阶段 当刀具磨损量增加到一定限度时,切削 力、切削温度将急剧增高,刀具磨损速度加快.直至丧失切 削能力,此阶段称为急剧磨损阶段。在急剧磨损阶段让刀具 继续工作是一件得不偿失的事倩,既保证不了加工质量,又 加速消耗刀具材料,如出现刀刃崩裂的情况,损失就更大。 刀具在进入急剧磨损阶段之前必须更换。